Tumor is one of the most serious threats to human beings. Benefiting from the fast development of nanotechnology, many kinds of
nanoparticles that constructed from various nanomaterials were developed for tumor diagnosis and therapy. Nanoparticles have gained great
attention of both academy and industry. However, few nanoparticles were approved for clinical application although thousands were developed
in lab. Therefore, in this theme issue, we invited several contributors to discuss the application of various kinds of nanoparticles in tumor
targeting drug delivery, as well as their advantages and shortages.
Based on their good biocompatibility and low toxicity, polymeric nanoparticles have gained much attention in gene and drug delivery to
tumor. However, the drug delivery efficiency by polymeric nanoparticles is greatly hindered by the rapid opsonization, phagocytic uptake and
subsequent clearance from bloodstream. Therefore, in the first review, Hu et al. firstly discussed the factors that influence the blood circulation
of polymeric nanoparticles, including particle size, shape, zeta potential and hydrophilicity. Then some natural and synthetic polymers
used in the constructing of nanoparticles were reviewed, such as gelatin, polysaccharides, cyclodextrin, and synthetic polymers. While several
preparation methods were also discussed, including polymerization techniques, precipitation techniques, film extension techniques, and particle
replication in non-wetting templates. Finally, methods to achieve long blood circulation time were reviewed.
In the review provided by Zhang et al., authors further discussed the strategies in long circulating drug delivery by nanoparticles. To
achieve the long blood circulation time, PEGylation is widely used in modification surface of nanoparticles to inhibit the adsorption of opsonins
in blood. As an alternative of finding new nanomaterials especially new surface coating materials, biomimetic nanoparticles showed great
potential because they can adopt the intrinsic long circulation behavior of biological components, such as red blood cells, cancer cells, macrophages,
bacteria, viruses and lipoproteins. The application of these strategies and the constructed nanoparticles were detailed reviewed in the
paper.
Safety of nanomaterials is a great concern for clinical application, that is why only few formulations were approved by Food and Drug
Administration (FDA) of US. To meet the safety concern, natural polymers are good candidates to constructing nanoparticles. Polysaccharide
is one of the most widely explored and used natural polymers, and many kinds of derives were developed to provide excellent properties in
drug delivery. In the review, Dr. Tong and Dr. Ma summarized the representative examples of polysaccharides used in drug delivery, such as
chitosan, hyaluronic acid, dextran and pullulan. Because of their widely application in tumor targeting diagnosis and treatment, the reviewed
discussed several aspects of the application of polysaccharide, including gene delivery, small molecular drug delivery, no matter polysaccharide-
drug conjugates or drug encapsulation, combinational drug delivery, and finally theranostics. In the review, many examples were provided
with in-deep discussion.
As a supplement to the natural polymers, nature products could be directly used in treatment of cancers. Therefore, Dr. Cai and Dr. Yu
reviewed the application of natural products in cancer therapy by targeting the apoptosis pathways. In the review, key proteins involved in the
regulation of apoptosis were firstly summarized, including Cytochrome c, Bcl-2 family, p53, Fas, Survivin, Caspase family, Nuclear factor-
B, and Protein Kinase B. Then various kinds of natural products that can target these proteins were reviewed.
Gold nanoparticles are most widely used inorganic nanomaterials in cancer diagnosis and therapy, while many kinds of anisotropic gold
nanoparticles are developed, including gold nanospheres, gold nanoclusters, one-dimensional gold nanorods, two-dimensional gold nanoplates,
gold nanoshells, platonic gold nanoparticles, hollow gold nanoparticles and other types of gold nanoparticles. In the review provided
by Dr. Shevtsov et al., the various synthesis methods for these kinds of gold nanoparticles were summarized. Then the application of gold
nanoparticles in drug delivery was reviewed. Gold nanoparticles have been used in many aspects of tumor treatment and diagnosis, such as
modification tumor microenvironment, radiosensitization, photothermal therapy, and photodynamic therapy. All these researches demonstrated
the great potential of gold nanoparticles in tumor management.
At last, as a kind of cancers with highest incidence, lung cancer was paid with particular attention. Zheng et al. reviewed the nanoparticles
in management of lung cancer, including polymeric nanoparticles, lipid nanoparticles, human serum albumin nanoparticles, and inorganic
nanoparticles. Then the various models used for different application routes were reviewed. Finally, the clinical application of these administration
routes and formulations were discussed.