Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Review Article

Prevention of Oxidative Stress and Diseases by Antioxidant Supplementation

Author(s): Giovanni Martemucci, Piero Portincasa, Vincenzo Centonze, Michele Mariano, Mohamad Khalil* and Angela Gabriella D'Alessandro

Volume 19, Issue 6, 2023

Published on: 26 December, 2022

Page: [509 - 537] Pages: 29

DOI: 10.2174/1573406419666221130162512

Price: $65

Abstract

Excessive and uncontrolled oxidative stress can damage biomacromolecules, such as lipids, proteins, carbohydrates, and DNA, by free radical and oxidant overproduction. In this review, we critically discuss the main properties of free radicals, their implications in oxidative stress, and specific pathological conditions. In clinical medicine, oxidative stress can play a role in several chronic noncommunicable diseases, such as diabetes mellitus, cardiovascular, inflammatory, neurodegenerative diseases, and tumours. Antioxidant supplements can theoretically prevent or stop the progression of diseases, but a careful literature analysis finds that more evidence is needed to dissect the ultimate beneficial effect of antioxidants versus reactive oxygen species in several diseases.

Keywords: Free radicals, oxidative stress, antioxidants, oxidative damage, diseases, reactive oxygen species.

Next »
Graphical Abstract
[1]
Kolovou, G.; Barzilai, N.; Caruso, C.; Sikora, E.; Capri, M.; Tzanetakou, I.; Bilianou, H.; Avery, P.; Katsiki, N.; Panotopoulos, G.; Franceschi, C.; Benetos, A.; Mikhailidis, D. The challenges in moving from ageing to successful longevity. Curr. Vasc. Pharmacol., 2013, 12(5), 662-673.
[http://dx.doi.org/10.2174/1570161111666131219095114] [PMID: 24350930]
[2]
Commoner, B.; Townsend, J.; Pake, G. Free radicals in biological materials. Nature, 1954, 174(4432), 689-691.
[http://dx.doi.org/10.1038/174689a0] [PMID: 13213980]
[3]
Gerschman, R.; Gilbert, D.L.; Nye, S.W.; Dwyer, P.; Fenn, W.O. Oxygen poisoning and X-irradiation: a mechanism in common. Science, 1954, 119(3097), 623-626.
[http://dx.doi.org/10.1126/science.119.3097.623] [PMID: 13156638]
[4]
Harman, D. Origin and evolution of the free radical theory of aging: a brief personal history, 1954–2009. Biogerontology, 2009, 10(6), 773-781.
[http://dx.doi.org/10.1007/s10522-009-9234-2] [PMID: 19466577]
[5]
McCord, J.M.; Fridovich, I. Superoxide dismutase. J. Biol. Chem., 1969, 244(22), 6049-6055.
[http://dx.doi.org/10.1016/S0021-9258(18)63504-5] [PMID: 5389100]
[6]
Britigan, B.E.; Cohen, M.S.; Rosen, G.M. Detection of the production of oxygen-centered free radicals by human neutrophils using spin trapping techniques: a critical perspective. J. Leukoc. Biol., 1987, 41(4), 349-362.
[http://dx.doi.org/10.1002/jlb.41.4.349] [PMID: 3033110]
[7]
Ferrari, C.K.B.; Souto, P.C.S.; França, E.L.; Honorio-França, A.C. Oxidative and nitrosative stress on phagocytes’ function: from effective defense to immunity evasion mechanisms. Arch. Immunol. Ther. Exp. , 2011, 59(6), 441-448.
[http://dx.doi.org/10.1007/s00005-011-0144-z] [PMID: 21972015]
[8]
Sies, H. Role of metabolic H2O2 generation: redox signaling and oxidative stress. J. Biol. Chem., 2014, 289(13), 8735-8741.
[http://dx.doi.org/10.1074/jbc.R113.544635] [PMID: 24515117]
[9]
Stone, J.R.; Yang, S. Hydrogen peroxide: a signaling messenger. Antioxid. Redox Signal., 2006, 8(3-4), 243-270.
[http://dx.doi.org/10.1089/ars.2006.8.243] [PMID: 16677071]
[10]
Winterbourn, C.C.; Hampton, M.B. Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med., 2008, 45(5), 549-561.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.05.004] [PMID: 18544350]
[11]
Lushchak, V.I. Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2011, 153(2), 175-190.
[http://dx.doi.org/10.1016/j.cbpc.2010.10.004] [PMID: 20959147]
[12]
Sies, H. 1@ Oxidative Stress: Introductory Remarks, 1985.
[13]
De la Fuente, M. Effects of antioxidants on immune system ageing. Eur. J. Clin. Nutr., 2002, 56(S3), S5-S8.
[http://dx.doi.org/10.1038/sj.ejcn.1601476] [PMID: 12142953]
[14]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[15]
Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine, 5th ed; Oxford University Press: Oxford, 2015, p. 944.
[http://dx.doi.org/10.1093/acprof:oso/9780198717478.001.0001]
[16]
Cheeseman, K.H.; Slater, T.F. An introduction to free radical biochemistry. Br. Med. Bull., 1993, 49(3), 481-493.
[http://dx.doi.org/10.1093/oxfordjournals.bmb.a072625] [PMID: 8221017]
[17]
Halliwell, B. Free radicals and antioxidants – quo vadis? Trends Pharmacol. Sci., 2011, 32(3), 125-130.
[http://dx.doi.org/10.1016/j.tips.2010.12.002] [PMID: 21216018]
[18]
Kohen, R.; Nyska, A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol., 2002, 30(6), 620-650.
[http://dx.doi.org/10.1080/01926230290166724] [PMID: 12512863]
[19]
Giles, G.; Nasim, M.; Ali, W.; Jacob, C. The reactive sulfur species concept: 15 years on. Antioxidants, 2017, 6(2), 38.
[http://dx.doi.org/10.3390/antiox6020038] [PMID: 28545257]
[20]
Farmer, E.E.; Davoine, C. Reactive electrophile species. Curr. Opin. Plant Biol., 2007, 10(4), 380-386.
[http://dx.doi.org/10.1016/j.pbi.2007.04.019] [PMID: 17646124]
[21]
Panasenko, O.M.; Gorudko, I.V.; Sokolov, A.V. Hypochlorous acid as a precursor of free radicals in living systems. Biochemistry, 2013, 78(13), 1466-1489.
[http://dx.doi.org/10.1134/S0006297913130075] [PMID: 24490735]
[22]
Genestra, M. Oxyl radicals, redox-sensitive signalling cascades and antioxidants. Cell. Signal., 2007, 19(9), 1807-1819.
[http://dx.doi.org/10.1016/j.cellsig.2007.04.009] [PMID: 17570640]
[23]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[24]
Rock, C.L.; Jacob, R.A.; Bowen, P. Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J. Am. Diet. Assoc., 1996, 96(7), 693-702.
[http://dx.doi.org/10.1016/S0002-8223(96)00190-3] [PMID: 8675913]
[25]
Graves, D.B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D Appl. Phys., 2012, 45(26), 263001.
[http://dx.doi.org/10.1088/0022-3727/45/26/263001]
[26]
Persson, T.; Popescu, B.O.; Cedazo-Minguez, A. Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid. Med. Cell. Longev., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/427318] [PMID: 24669288]
[27]
Poljsak, B.; Šuput, D.; Milisav, I. Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxid. Med. Cell. Longev., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/956792] [PMID: 23738047]
[28]
Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative stress mitigation by antioxidants - An overview on their chemistry and influences on health status. Eur. J. Med. Chem., 2021, 209, 112891.
[http://dx.doi.org/10.1016/j.ejmech.2020.112891] [PMID: 33032084]
[29]
Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem., 2015, 97, 55-74.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.040] [PMID: 25942353]
[30]
Trachootham, D.; Lu, W.; Ogasawara, M.A.; Valle, N.R-D.; Huang, P. Redox regulation of cell survival. Antioxid. Redox Signal., 2008, 10(8), 1343-1374.
[http://dx.doi.org/10.1089/ars.2007.1957] [PMID: 18522489]
[31]
Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal., 2006, 8(9-10), 1865-1879.
[http://dx.doi.org/10.1089/ars.2006.8.1865] [PMID: 16987039]
[32]
Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748.
[http://dx.doi.org/10.1146/annurev-biochem-061516-045037] [PMID: 28441057]
[33]
Selye, H. Further thoughts on “stress without distress”. Med. Times, 1976, 104(11), 124-144.
[PMID: 994775]
[34]
Lushchak, V.I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chem. Biol. Interact., 2014, 224, 164-175.
[http://dx.doi.org/10.1016/j.cbi.2014.10.016] [PMID: 25452175]
[35]
Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[36]
Ursini, F.; Maiorino, M.; Forman, H.J. Redox homeostasis: The golden mean of healthy living. Redox Biol., 2016, 8, 205-215.
[http://dx.doi.org/10.1016/j.redox.2016.01.010] [PMID: 26820564]
[37]
Sies, H. On the history of oxidative stress: Concept and some aspects of current development. Curr. Opin. Toxicol., 2018, 7, 122-126.
[http://dx.doi.org/10.1016/j.cotox.2018.01.002]
[38]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[39]
Pickering, A.M.; Vojtovich, L.; Tower, J.A.; Davies, K.J. Oxidative stress adaptation with acute, chronic, and repeated stress. Free Radic. Biol. Med., 2013, 55, 109-118.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.001] [PMID: 23142766]
[40]
Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biol., 2015, 4, 180-183.
[http://dx.doi.org/10.1016/j.redox.2015.01.002] [PMID: 25588755]
[41]
Ngo, J.K.; Pomatto, L.C.D.; Davies, K.J.A. Upregulation of the mitochondrial Lon Protease allows adaptation to acute oxidative stress but dysregulation is associated with chronic stress, disease, and aging. Redox Biol., 2013, 1(1), 258-264.
[http://dx.doi.org/10.1016/j.redox.2013.01.015] [PMID: 24024159]
[42]
McCord, J.M. The evolution of free radicals and oxidative stress. Am. J. Med., 2000, 108(8), 652-659.
[http://dx.doi.org/10.1016/S0002-9343(00)00412-5] [PMID: 10856414]
[43]
Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol., 2014, 24(10), R453-R462.
[http://dx.doi.org/10.1016/j.cub.2014.03.034] [PMID: 24845678]
[44]
Di Meo, S.; Venditti, P. Evolution of the knowledge of free radicals and other oxidants. Oxid. Med. Cell. Longev., 2020, 2020, 1-32.
[http://dx.doi.org/10.1155/2020/9829176] [PMID: 32411336]
[45]
Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev., 2010, 4(8), 118-126.
[http://dx.doi.org/10.4103/0973-7847.70902] [PMID: 22228951]
[46]
Sjödin, B.; Westing, Y.H.; Apple, F.S. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Med., 1990, 10(4), 236-254.
[http://dx.doi.org/10.2165/00007256-199010040-00003] [PMID: 2247725]
[47]
Balaban, R.S.; Nemoto, S.; Finkel, T. Mitochondria, oxidants, and aging. Cell, 2005, 120(4), 483-495.
[http://dx.doi.org/10.1016/j.cell.2005.02.001] [PMID: 15734681]
[48]
Bedard, K.; Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev., 2007, 87(1), 245-313.
[http://dx.doi.org/10.1152/physrev.00044.2005] [PMID: 17237347]
[49]
Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J., 2009, 417(1), 1-13.
[http://dx.doi.org/10.1042/BJ20081386] [PMID: 19061483]
[50]
Knock, G.A. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic. Biol. Med., 2019, 145, 385-427.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.029] [PMID: 31585207]
[51]
Halliwell, B.; Gutteridge, J. Free Radicals in Biology and Medicine; OUP Oxford, 2007.
[52]
Kumagai, Y.; Akiyama, M.; Unoki, T. Adaptive responses to electrophilic stress and reactive sulfur species as their regulator molecules. Toxicol. Res., 2019, 35(4), 303-310.
[http://dx.doi.org/10.5487/TR.2019.35.4.303] [PMID: 31636841]
[53]
Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Zavadskiy, S.P.; Kuz’menko, A.N.; Terentiev, A.A. Dual character of reactive oxygen, nitrogen, and halogen species: endogenous sources, interconversions and neutralization. Biochemistry, 2020, 85(S1), 56-78.
[http://dx.doi.org/10.1134/S0006297920140047] [PMID: 32087054]
[54]
Lu, Q.B. Reaction cycles of halogen species in the immune defense: implications for human health and diseases and the pathology and treatment of COVID-19. Cells, 2020, 9(6), 1461.
[http://dx.doi.org/10.3390/cells9061461] [PMID: 32545714]
[55]
Panasenko, O.M.; Sergienko, V.I. Halogenizing stress and its biomarkers. Vestn. Ross. Akad. Med. Nauk, 2010, (1), 27-39.
[PMID: 20408436]
[56]
Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39(1), 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[57]
Jones, D.P.; Park, Y.; Ziegler, T.R. Nutritional metabolomics: progress in addressing complexity in diet and health. Annu. Rev. Nutr., 2012, 32(1), 183-202.
[http://dx.doi.org/10.1146/annurev-nutr-072610-145159] [PMID: 22540256]
[58]
Esterbauer, H.; Puhl, H.; Dieber-rotheneder, M.; Waeg, G.; Rabl, H. Effect of antioxidants on oxidative modification of LDL. Ann. Med., 1991, 23(5), 573-581.
[http://dx.doi.org/10.3109/07853899109150520] [PMID: 1756027]
[59]
Girotti, A.W. Lipid hydroperoxide generation, turnover, and effector action in biological systems. J. Lipid Res., 1998, 39(8), 1529-1542.
[http://dx.doi.org/10.1016/S0022-2275(20)32182-9] [PMID: 9717713]
[60]
Marnett, L.J. Lipid peroxidation—DNA damage by malondialdehyde. Mutat. Res., 1999, 424(1-2), 83-95.
[http://dx.doi.org/10.1016/S0027-5107(99)00010-X] [PMID: 10064852]
[61]
Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev., 2014, 2014, 1-31.
[http://dx.doi.org/10.1155/2014/360438] [PMID: 24999379]
[62]
Doorn, J.A.; Petersen, D.R. Covalent adduction of nucleophilic amino acids by 4-hydroxynonenal and 4-oxononenal. Chem. Biol. Interact., 2003, 143-144, 93-100.
[http://dx.doi.org/10.1016/S0009-2797(02)00178-3] [PMID: 12604193]
[63]
Milne, G.L.; Musiek, E.S.; Morrow, J.D.F. 2 -Isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers, 2005, 10(S1), 10-23.
[http://dx.doi.org/10.1080/13547500500216546] [PMID: 16298907]
[64]
Barrera, G.; Pizzimenti, S.; Dianzani, M.U. Lipid peroxidation: control of cell proliferation, cell differentiation and cell death. Mol. Aspects Med., 2008, 29(1-2), 1-8.
[http://dx.doi.org/10.1016/j.mam.2007.09.012] [PMID: 18037483]
[65]
Frei, B. Cardiovascular disease and nutrient antioxidants: Role of low-density lipoprotein oxidation. Crit. Rev. Food Sci. Nutr., 1995, 35(1-2), 83-98.
[http://dx.doi.org/10.1080/10408399509527689] [PMID: 7748483]
[66]
Nedeljkovic, Z.S.; Gokce, N.; Loscalzo, J. Mechanisms of oxidative stress and vascular dysfunction. Postgrad. Med. J., 2003, 79(930), 195-200.
[http://dx.doi.org/10.1136/pmj.79.930.195] [PMID: 12743334]
[67]
Kulig, W.; Cwiklik, L.; Jurkiewicz, P.; Rog, T.; Vattulainen, I. Cholesterol oxidation products and their biological importance. Chem. Phys. Lipids, 2016, 199, 144-160.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.03.001] [PMID: 26956952]
[68]
Davies, M.J.; Fu, S.; Wang, H.; Dean, R.T. Stable markers of oxidant damage to proteins and their application in the study of human disease. Free Radic. Biol. Med., 1999, 27(11-12), 1151-1163.
[http://dx.doi.org/10.1016/S0891-5849(99)00206-3] [PMID: 10641706]
[69]
Dalle-Donne, I.; Scaloni, A.; Giustarini, D.; Cavarra, E.; Tell, G.; Lungarella, G.; Colombo, R.; Rossi, R.; Milzani, A. Proteins as biomarkers of oxidative/nitrosative stress in diseases: The contribution of redox proteomics. Mass Spectrom. Rev., 2005, 24(1), 55-99.
[http://dx.doi.org/10.1002/mas.20006] [PMID: 15389864]
[70]
Berlett, B.S.; Stadtman, E.R. Protein oxidation in aging, disease, and oxidative stress. J. Biol. Chem., 1997, 272(33), 20313-20316.
[http://dx.doi.org/10.1074/jbc.272.33.20313] [PMID: 9252331]
[71]
Sung, C.C.; Hsu, Y.C.; Chen, C.C.; Lin, Y.F.; Wu, C.C. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. Oxid. Med. Cell. Longev., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/301982] [PMID: 24058721]
[72]
Headlam, H.A.; Davies, M.J. Markers of protein oxidation: different oxidants give rise to variable yields of bound and released carbonyl products. Free Radic. Biol. Med., 2004, 36(9), 1175-1184.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.02.017] [PMID: 15082071]
[73]
Baraibar, M.A.; Liu, L.; Ahmed, E.K.; Friguet, B. Protein oxidative damage at the crossroads of cellular senescence, aging, and age-related diseases. Oxid. Med. Cell. Longev., 2012, 2012, 1-8.
[http://dx.doi.org/10.1155/2012/919832] [PMID: 23125894]
[74]
Valko, M.; Izakovic, M.; Mazur, M.; Rhodes, C.J.; Telser, J. Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell. Biochem., 2004, 266(1/2), 37-56.
[http://dx.doi.org/10.1023/B:MCBI.0000049134.69131.89] [PMID: 15646026]
[75]
Gandhi, S.; Abramov, A.Y. Mechanism of oxidative stress in neurodegeneration. Oxid. Med. Cell. Longev., 2012, 2012, 1-11.
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[76]
Ding, Q.; Markesbery, W.R.; Chen, Q.; Li, F.; Keller, J.N. Ribosome dysfunction is an early event in Alzheimer’s disease. J. Neurosci., 2005, 25(40), 9171-9175.
[http://dx.doi.org/10.1523/JNEUROSCI.3040-05.2005] [PMID: 16207876]
[77]
Freudenthal, B.D.; Beard, W.A.; Perera, L.; Shock, D.D.; Kim, T.; Schlick, T.; Wilson, S.H. Uncovering the polymerase-induced cytotoxicity of an oxidized nucleotide. Nature, 2015, 517(7536), 635-639.
[http://dx.doi.org/10.1038/nature13886] [PMID: 25409153]
[78]
Robertson, R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem., 2004, 279(41), 42351-42354.
[http://dx.doi.org/10.1074/jbc.R400019200] [PMID: 15258147]
[79]
Monnier, V.M.; Cerami, A. Nonenzymatic browning in vivo: possible process for aging of long-lived proteins. Science, 1981, 211(4481), 491-493.
[http://dx.doi.org/10.1126/science.6779377] [PMID: 6779377]
[80]
Giardino, I.; Edelstein, D.; Brownlee, M. Nonenzymatic glycosylation in vitro and in bovine endothelial cells alters basic fibroblast growth factor activity. A model for intracellular glycosylation in diabetes. J. Clin. Invest., 1994, 94(1), 110-117.
[http://dx.doi.org/10.1172/JCI117296] [PMID: 8040253]
[81]
Żebrowska, E.; Chabowski,, A.; Zalewska,, A.; Maciejczyk,, M. High-sugar diet disrupts hypothalamic but not cerebral cortex redox homeostasis. Nutrients, 2020, 12(10), 3181.
[http://dx.doi.org/10.3390/nu12103181] [PMID: 33080950]
[82]
Schmidt, A.M.; Hori, O.; Chen, J.X.; Li, J.F.; Crandall, J.; Zhang, J.; Cao, R.; Yan, S.D.; Brett, J.; Stern, D. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J. Clin. Invest., 1995, 96(3), 1395-1403.
[http://dx.doi.org/10.1172/JCI118175] [PMID: 7544803]
[83]
Baynes, J.W.; Thorpe, S.R. Role of oxidative stress in diabetic complications: A new perspective on an old paradigm. Diabetes, 1999, 48(1), 1-9.
[http://dx.doi.org/10.2337/diabetes.48.1.1] [PMID: 9892215]
[84]
Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature, 2001, 414(6865), 813-820.
[http://dx.doi.org/10.1038/414813a] [PMID: 11742414]
[85]
Cave, A.; Grieve, D.; Johar, S.; Zhang, M.; Shah, A.M. NADPH oxidase-derived reactive oxygen species in cardiac pathophysiology. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2005, 360(1464), 2327-2334.
[http://dx.doi.org/10.1098/rstb.2005.1772] [PMID: 16321803]
[86]
Knott, A.B.; Bossy-Wetzel, E. Nitric oxide in health and disease of the nervous system. Antioxid. Redox Signal., 2009, 11(3), 541-553.
[http://dx.doi.org/10.1089/ars.2008.2234] [PMID: 18715148]
[87]
Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: A review. Biochim. Biophys. Acta Mol. Cell Res., 2011, 1813(1), 238-259.
[http://dx.doi.org/10.1016/j.bbamcr.2010.10.010] [PMID: 20969895]
[88]
Fulda, S.; Gorman, A.M.; Hori, O.; Samali, A. Cellular stress responses: cell survival and cell death. Int. J. Cell Biol., 2010, 2010, 1-23.
[http://dx.doi.org/10.1155/2010/214074] [PMID: 20182529]
[89]
Nipič, D.; Pirc, A.; Banič, B.; Šuput, D.; Milisav, I. Preapoptotic cell stress response of primary hepatocytes. Hepatology, 2010, 51(6), 2140-2151.
[http://dx.doi.org/10.1002/hep.23598] [PMID: 20513000]
[90]
Gundamaraju, R.; Vemuri, R.; Chong, W.C.; Geraghty, D.P.; Eri, R. Cell stress signaling cascades regulating cell fate. Curr. Pharm. Des., 2018, 24(27), 3176-3183.
[http://dx.doi.org/10.2174/1381612824666180711122753] [PMID: 29992877]
[91]
Durackova, Z. Some current insights into oxidative stress. Physiolog. res.,, 2010, 59(4), 459-469.
[92]
Mikhed, Y.; Görlach, A.; Knaus, U.G.; Daiber, A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol., 2015, 5, 275-289.
[http://dx.doi.org/10.1016/j.redox.2015.05.008] [PMID: 26079210]
[93]
Shang, F.; Taylor, A. Ubiquitin–proteasome pathway and cellular responses to oxidative stress. Free Radic. Biol. Med., 2011, 51(1), 5-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.03.031] [PMID: 21530648]
[94]
Orsi, A.; Polson, H.E.J.; Tooze, S.A. Membrane trafficking events that partake in autophagy. Curr. Opin. Cell Biol., 2010, 22(2), 150-156.
[http://dx.doi.org/10.1016/j.ceb.2009.11.013] [PMID: 20036114]
[95]
Li, W.; Yang, Q.; Mao, Z. Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell. Mol. Life Sci., 2011, 68(5), 749-763.
[http://dx.doi.org/10.1007/s00018-010-0565-6] [PMID: 20976518]
[96]
Spriggs, K.A.; Bushell, M.; Willis, A.E. Translational regulation of gene expression during conditions of cell stress. Mol. Cell, 2010, 40(2), 228-237.
[http://dx.doi.org/10.1016/j.molcel.2010.09.028] [PMID: 20965418]
[97]
Buchberger, A.; Bukau, B.; Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: Brothers in arms. Mol. Cell, 2010, 40(2), 238-252.
[http://dx.doi.org/10.1016/j.molcel.2010.10.001] [PMID: 20965419]
[98]
Gomez-Pastor, R.; Burchfiel, E.T.; Thiele, D.J. Regulation of heat shock transcription factors and their roles in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(1), 4-19.
[http://dx.doi.org/10.1038/nrm.2017.73] [PMID: 28852220]
[99]
Åkerfelt, M.; Morimoto, R.I.; Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol., 2010, 11(8), 545-555.
[http://dx.doi.org/10.1038/nrm2938] [PMID: 20628411]
[100]
Jomova, K.; Valko, M. Health protective effects of carotenoids and their interactions with other biological antioxidants. Eur. J. Med. Chem., 2013, 70, 102-110.
[http://dx.doi.org/10.1016/j.ejmech.2013.09.054] [PMID: 24141200]
[101]
Wang, Y.; Chun, O.; Song, W. Plasma and dietary antioxidant status as cardiovascular disease risk factors: a review of human studies. Nutrients, 2013, 5(8), 2969-3004.
[http://dx.doi.org/10.3390/nu5082969] [PMID: 23912327]
[102]
Bresciani, G.; da Cruz, I.B.M.; González-Gallego, J. Manganese superoxide dismutase and oxidative stress modulation. Adv. Clin. Chem., 2015, 68, 87-130.
[http://dx.doi.org/10.1016/bs.acc.2014.11.001] [PMID: 25858870]
[103]
Nakamura, T.; Lipton, S.A. Nitric oxide-dependent protein post-translational modifications impair mitochondrial function and metabolism to contribute to neurodegenerative diseases. Antioxid. Redox Signal., 2020, 32(12), 817-833.
[http://dx.doi.org/10.1089/ars.2019.7916] [PMID: 31657228]
[104]
Olson, K.R. Reactive oxygen species or reactive sulfur species: why we should consider the latter. J. Exp. Biol., 2020, 223(4), jeb196352.
[http://dx.doi.org/10.1242/jeb.196352] [PMID: 32102833]
[105]
Parvez, S.; Long, M.J.C.; Poganik, J.R.; Aye, Y. Redox signaling by reactive electrophiles and oxidants. Chem. Rev., 2018, 118(18), 8798-8888.
[http://dx.doi.org/10.1021/acs.chemrev.7b00698] [PMID: 30148624]
[106]
Davies, M.J.; Hawkins, C.L. The role of myeloperoxidase in biomolecule modification, chronic inflammation, and disease. Antioxid. Redox Signal., 2020, 32(13), 957-981.
[http://dx.doi.org/10.1089/ars.2020.8030] [PMID: 31989833]
[107]
Santolini, J.; Wootton, S.A.; Jackson, A.A.; Feelisch, M. The Redox architecture of physiological function. Curr. Opin. Physiol., 2019, 9, 34-47.
[http://dx.doi.org/10.1016/j.cophys.2019.04.009] [PMID: 31417975]
[108]
Rössig, L.; Fichtlscherer, B.; Breitschopf, K.; Haendeler, J.; Zeiher, A.M.; Mülsch, A.; Dimmeler, S. Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J. Biol. Chem., 1999, 274(11), 6823-6826.
[http://dx.doi.org/10.1074/jbc.274.11.6823] [PMID: 10066732]
[109]
Mishra, V.; Banga, J.; Silveyra, P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol. Ther., 2018, 181, 169-182.
[http://dx.doi.org/10.1016/j.pharmthera.2017.08.011] [PMID: 28842273]
[110]
Mendes, A.F.; Caramona, M.M.; Carvalho, A.P.; Lopes, M.C. Role of mitogen-activated protein kinases and tyrosine kinases on IL-1-Induced NF-kappaB activation and iNOS expression in bovine articular chondrocytes. Nitric Oxide, 2002, 6(1), 35-44.
[http://dx.doi.org/10.1006/niox.2001.0378] [PMID: 11829533]
[111]
Ray, P.D.; Huang, B.W.; Tsuji, Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 2012, 24(5), 981-990.
[http://dx.doi.org/10.1016/j.cellsig.2012.01.008] [PMID: 22286106]
[112]
Hsu, T.C.; Young, M.R.; Cmarik, J.; Colburn, N.H. Activator protein 1 (AP-1)– and nuclear factor κB (NF-κB)–dependent transcriptional events in carcinogenesis. Free Radic. Biol. Med., 2000, 28(9), 1338-1348.
[http://dx.doi.org/10.1016/S0891-5849(00)00220-3] [PMID: 10924853]
[113]
Brandes, N.; Schmitt, S.; Jakob, U. Thiol-based redox switches in eukaryotic proteins. Antioxid. Redox Signal., 2009, 11(5), 997-1014.
[http://dx.doi.org/10.1089/ars.2008.2285] [PMID: 18999917]
[114]
Deshmukh, P.; Unni, S.; Krishnappa, G.; Padmanabhan, B. The Keap1–Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases. Biophys. Rev., 2017, 9(1), 41-56.
[http://dx.doi.org/10.1007/s12551-016-0244-4] [PMID: 28510041]
[115]
Sykiotis, G.P.; Bohmann, D. Stress-activated cap’n’collar transcription factors in aging and human disease. Sci. Signal., 2010, 3(112), re3.
[http://dx.doi.org/10.1126/scisignal.3112re3] [PMID: 20215646]
[116]
Kobayashi, M.; Yamamoto, M. Nrf2–Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv. Enzyme Regul., 2006, 46(1), 113-140.
[http://dx.doi.org/10.1016/j.advenzreg.2006.01.007] [PMID: 16887173]
[117]
Birben, E.; Sahiner, U.M.; Sackesen, C.; Erzurum, S.; Kalayci, O. Oxidative stress and antioxidant defense. World Allergy Organ. J., 2012, 5(1), 9-19.
[http://dx.doi.org/10.1097/WOX.0b013e3182439613] [PMID: 23268465]
[118]
Schena, M.; Shalon, D.; Davis, R.W.; Brown, P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270(5235), 467-470.
[http://dx.doi.org/10.1126/science.270.5235.467] [PMID: 7569999]
[119]
Marinho, H.S.; Real, C.; Cyrne, L.; Soares, H.; Antunes, F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol., 2014, 2, 535-562.
[http://dx.doi.org/10.1016/j.redox.2014.02.006] [PMID: 24634836]
[120]
Flohé, L. The impact of thiol peroxidases on redox regulation. Free Radic. Res., 2016, 50(2), 126-142.
[http://dx.doi.org/10.3109/10715762.2015.1046858] [PMID: 26291534]
[121]
Winterbourn, C.C. Biological production, detection, and fate of hydrogen peroxide. Antioxid. Redox Signal., 2018, 29(6), 541-551.
[http://dx.doi.org/10.1089/ars.2017.7425] [PMID: 29113458]
[122]
Rigoulet, M.; Yoboue, E.D.; Devin, A. Mitochondrial ROS generation and its regulation: mechanisms involved in H2O2 signaling. Antioxid. Redox Signal., 2011, 14(3), 459-468.
[http://dx.doi.org/10.1089/ars.2010.3363] [PMID: 20649461]
[123]
WHO. Biomarkers in risk assessment: validity and validation 2001.
[124]
Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; Gasparovic, A.C.; Cuadrado, A.; Weber, D.; Poulsen, H.E.; Grune, T.; Schmidt, H.H.H.W.; Ghezzi, P. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal., 2015, 23(14), 1144-1170.
[http://dx.doi.org/10.1089/ars.2015.6317] [PMID: 26415143]
[125]
Pedersen-Lane, J.H.; Zurier, R.B.; Lawrence, D.A. Analysis of the thiol status of peripheral blood leukocytes in rheumatoid arthritis patients. J. Leukoc. Biol., 2007, 81(4), 934-941.
[http://dx.doi.org/10.1189/jlb.0806533] [PMID: 17210617]
[126]
Ghezzi, P. Environmental risk factors and their footprints in vivo – A proposal for the classification of oxidative stress biomarkers. Redox Biol., 2020, 34, 101442.
[http://dx.doi.org/10.1016/j.redox.2020.101442] [PMID: 32035921]
[127]
Altomare, A.; Baron, G.; Gianazza, E.; Banfi, C.; Carini, M.; Aldini, G. Lipid peroxidation derived reactive carbonyl species in free and conjugated forms as an index of lipid peroxidation: limits and perspectives. Redox Biol., 2021, 42, 101899.
[http://dx.doi.org/10.1016/j.redox.2021.101899] [PMID: 33642248]
[128]
Chao, M.R.; Evans, M.D.; Hu, C.W.; Ji, Y.; Møller, P.; Rossner, P.; Cooke, M.S. Biomarkers of nucleic acid oxidation – A summary state-of-the-art. Redox Biol., 2021, 42, 101872.
[http://dx.doi.org/10.1016/j.redox.2021.101872] [PMID: 33579665]
[129]
Vincent, H.K.; Taylor, A.G. Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. Int. J. Obes., 2006, 30(3), 400-418.
[http://dx.doi.org/10.1038/sj.ijo.0803177] [PMID: 16302012]
[130]
Robson, R.; Kundur, A.R.; Singh, I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab. Syndr., 2018, 12(3), 455-462.
[http://dx.doi.org/10.1016/j.dsx.2017.12.029] [PMID: 29307576]
[131]
Daiber, A.; Hahad, O.; Andreadou, I.; Steven, S.; Daub, S.; Münzel, T. Redox-related biomarkers in human cardiovascular disease - classical footprints and beyond. Redox Biol., 2021, 42, 101875.
[http://dx.doi.org/10.1016/j.redox.2021.101875] [PMID: 33541847]
[132]
Aleksandrova, K.; Koelman, L.; Rodrigues, C.E. Dietary patterns and biomarkers of oxidative stress and inflammation: A systematic review of observational and intervention studies. Redox Biol., 2021, 42, 101869.
[http://dx.doi.org/10.1016/j.redox.2021.101869] [PMID: 33541846]
[133]
Takeshita, K.; Ozawa, T. Recent progress in in vivo ESR spectroscopy. J. Radiat. Res., 2004, 45(3), 373-384.
[http://dx.doi.org/10.1269/jrr.45.373] [PMID: 15613782]
[134]
Dikalov, S.I.; Harrison, D.G. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid. Redox Signal., 2014, 20(2), 372-382.
[http://dx.doi.org/10.1089/ars.2012.4886] [PMID: 22978713]
[135]
Yu, M.; Beyers, R.J.; Gorden, J.D.; Cross, J.N.; Goldsmith, C.R. A magnetic resonance imaging contrast agent capable of detecting hydrogen peroxide. Inorg. Chem., 2012, 51(17), 9153-9155.
[http://dx.doi.org/10.1021/ic3012603] [PMID: 22889331]
[136]
Jørgensen, J.T.; Persson, M.; Madsen, J.; Kjær, A. High tumor uptake of 64Cu: Implications for molecular imaging of tumor characteristics with copper-based PET tracers. Nucl. Med. Biol., 2013, 40(3), 345-350.
[http://dx.doi.org/10.1016/j.nucmedbio.2013.01.002] [PMID: 23394821]
[137]
Mason, R.P. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping. Redox Biol., 2016, 8, 422-429.
[http://dx.doi.org/10.1016/j.redox.2016.04.003] [PMID: 27203617]
[138]
Gomes, A.; Fernandes, E.; Lima, J.L.F.C. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods, 2005, 65(2-3), 45-80.
[http://dx.doi.org/10.1016/j.jbbm.2005.10.003] [PMID: 16297980]
[139]
Suzen, S.; Gurer-Orhan, H.; Saso, L. Detection of reactive oxygen and nitrogen species by Electron Paramagnetic Resonance (EPR) Technique. Molecules, 2017, 22(1), 181.
[http://dx.doi.org/10.3390/molecules22010181] [PMID: 28117726]
[140]
Khramtsov, V.V. In vivo electron paramagnetic resonance: Radical concepts for translation to the clinical setting. Antioxid. Redox Signal., 2018, 28(15), 1341-1344.
[http://dx.doi.org/10.1089/ars.2017.7472] [PMID: 29304554]
[141]
Zielonka, J.; Kalyanaraman, B. Small-molecule luminescent probes for the detection of cellular oxidizing and nitrating species. Free Radic. Biol. Med., 2018, 128, 3-22.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.03.032] [PMID: 29567392]
[142]
Zielonka, J.; Zielonka, M.; Sikora, A.; Adamus, J.; Joseph, J.; Hardy, M.; Ouari, O.; Dranka, B.P.; Kalyanaraman, B. Global profiling of reactive oxygen and nitrogen species in biological systems: high-throughput real-time analyses. J. Biol. Chem., 2012, 287(5), 2984-2995.
[http://dx.doi.org/10.1074/jbc.M111.309062] [PMID: 22139901]
[143]
Andries, A.; Rozenski, J.; Vermeersch, P.; Mekahli, D.; Van Schepdael, A. Recent progress in the LC–MS/MS analysis of oxidative stress biomarkers. Electrophoresis, 2021, 42(4), 402-428.
[http://dx.doi.org/10.1002/elps.202000208] [PMID: 33280143]
[144]
Claeson, K.; Thorsén, G.; Karlberg, B. Methyl malondialdehyde as an internal standard for the determination of malondialdehyde. J. Chromatogr., Biomed. Appl., 2001, 751(2), 315-323.
[http://dx.doi.org/10.1016/S0378-4347(00)00490-4] [PMID: 11236087]
[145]
Wakita, C.; Honda, K.; Shibata, T.; Akagawa, M.; Uchida, K. A method for detection of 4-hydroxy-2-nonenal adducts in proteins. Free Radic. Biol. Med., 2011, 51(1), 1-4.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.02.037] [PMID: 21457776]
[146]
Il’yasova, D.; Kinev, A.; Melton, C.D.; Davis, F.G. Donor-specific cell-based assays in studying sensitivity to low-dose radiation: a population-based perspective. Front. Public Health, 2014, 2, 244.
[PMID: 25478557]
[147]
Wehr, N.B.; Levine, R.L. Quantitation of protein carbonylation by dot blot. Anal. Biochem., 2012, 423(2), 241-245.
[http://dx.doi.org/10.1016/j.ab.2012.01.031] [PMID: 22326366]
[148]
Bak, D.W.; Weerapana, E. Cysteine-mediated redox signalling in the mitochondria. Mol. Biosyst., 2015, 11(3), 678-697.
[http://dx.doi.org/10.1039/C4MB00571F] [PMID: 25519845]
[149]
Finkel, T. From sulfenylation to sulfhydration: what a thiolate needs to tolerate. Sci. Signal., 2012, 5(215), pe10.
[http://dx.doi.org/10.1126/scisignal.2002943] [PMID: 22416275]
[150]
Lovell, M.A.; Soman, S.; Bradley, M.A. Oxidatively modified nucleic acids in preclinical Alzheimer’s disease (PCAD) brain. Mech. Ageing Dev., 2011, 132(8-9), 443-448.
[http://dx.doi.org/10.1016/j.mad.2011.08.003] [PMID: 21878349]
[151]
Cossarizza, A.; Ferraresi, R.; Troiano, L.; Roat, E.; Gibellini, L.; Bertoncelli, L.; Nasi, M.; Pinti, M. Simultaneous analysis of reactive oxygen species and reduced glutathione content in living cells by polychromatic flow cytometry. Nat. Protoc., 2009, 4(12), 1790-1797.
[http://dx.doi.org/10.1038/nprot.2009.189] [PMID: 20010930]
[152]
Sinhorin, V.D.G.; Sinhorin, A.P.; Teixeira, J.M.S.; Miléski, K.M.L.; Hansen, P.C.; Moreira, P.S.A.; Kawashita, N.H.; Baviera, A.M.; Loro, V.L. Effects of the acute exposition to glyphosate-based herbicide on oxidative stress parameters and antioxidant responses in a hybrid Amazon fish surubim (Pseudoplatystoma sp). Ecotoxicol. Environ. Saf., 2014, 106, 181-187.
[http://dx.doi.org/10.1016/j.ecoenv.2014.04.040] [PMID: 24840881]
[153]
Bruynsteen, L.; Janssens, G.P.J.; Harris, P.A.; Duchateau, L.; Valle, E.; Odetti, P.; Vandevelde, K.; Buyse, J.; Hesta, M. Changes in oxidative stress in response to different levels of energy restriction in obese ponies. Br. J. Nutr., 2014, 112(8), 1402-1411.
[http://dx.doi.org/10.1017/S0007114514001974] [PMID: 25181634]
[154]
Ahn, S.H.; Lee, S.H.; Kim, B.J.; Lim, K.H.; Bae, S.J.; Kim, E.H.; Kim, H.K.; Choe, J.W.; Koh, J.M.; Kim, G.S. Higher serum uric acid is associated with higher bone mass, lower bone turnover, and lower prevalence of vertebral fracture in healthy postmenopausal women. Osteoporos. Int., 2013, 24(12), 2961-2970.
[http://dx.doi.org/10.1007/s00198-013-2377-7] [PMID: 23644878]
[155]
Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients, 2014, 6(2), 466-488.
[http://dx.doi.org/10.3390/nu6020466] [PMID: 24473231]
[156]
Bartosz, G. Non-enzymatic antioxidant capacity assays: Limitations of use in biomedicine. Free Radic. Res., 2010, 44(7), 711-720.
[http://dx.doi.org/10.3109/10715761003758114] [PMID: 20446897]
[157]
Laguerre, M.; Decker, E.A.; Lecomte, J.; Villeneuve, P. Methods for evaluating the potency and efficacy of antioxidants. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(5), 518-525.
[http://dx.doi.org/10.1097/MCO.0b013e32833aff12] [PMID: 20601864]
[158]
Laurindo, F.R.M.; Pescatore, L.A.; de Castro Fernandes, D. Protein disulfide isomerase in redox cell signaling and homeostasis. Free Radic. Biol. Med., 2012, 52(9), 1954-1969.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.02.037] [PMID: 22401853]
[159]
Lu, J.; Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med., 2014, 66, 75-87.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.07.036] [PMID: 23899494]
[160]
Knasmüller, S.; Nersesyan, A.; Miaík, M.; Gerner, C.; Mikulits, W.; Ehrlich, V.A.; Hoelzl, C.; Szakmary, A.; Wagner, K-H. Use of conventional and -omics based methods for health claims of dietary antioxidants: a critical overview. Br. J. Nutr., 2008, 99, ES3-ES52.
[161]
Veglia, F.; Cighetti, G.; De Franceschi, M.; Zingaro, L.; Boccotti, L.; Tremoli, E.; Cavalca, V. Age- and gender-related oxidative status determined in healthy subjects by means of OXY-SCORE, a potential new comprehensive index. Biomarkers, 2006, 11(6), 562-573.
[http://dx.doi.org/10.1080/13547500600898623] [PMID: 17056475]
[162]
Vassalle, C. An easy and reliable automated method to estimate oxidative stress in the clinical setting. Methods Mol. Biol., 2008, 477, 31-39.
[http://dx.doi.org/10.1007/978-1-60327-517-0_3] [PMID: 19082936]
[163]
Sánchez-Rodríguez, M.A.; Mendoza-Núñez, V.M. Oxidative stress indexes for diagnosis of health or disease in humans. Oxid. Med. Cell. Longev., 2019, 2019, 1-32.
[http://dx.doi.org/10.1155/2019/4128152] [PMID: 31885788]
[164]
Holt, R.I.G.; DeVries, J.H.; Hess-Fischl, A.; Hirsch, I.B.; Kirkman, M.S.; Klupa, T.; Ludwig, B.; Nørgaard, K.; Pettus, J.; Renard, E.; Skyler, J.S.; Snoek, F.J.; Weinstock, R.S.; Peters, A.L. The Management of Type 1 Diabetes in Adults. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2021, 44(11), 2589-2625.
[http://dx.doi.org/10.2337/dci21-0043] [PMID: 34593612]
[165]
Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Hosseini Fard, H.; Ghojazadeh, M. Prevalence and incidence of type 1 diabetes in the world: A systematic review and meta-analysis. Health Promot. Perspect., 2020, 10(2), 98-115.
[http://dx.doi.org/10.34172/hpp.2020.18] [PMID: 32296622]
[166]
Pearson, J.A.; Agriantonis, A.; Wong, F.S.; Wen, L. Modulation of the immune system by the gut microbiota in the development of type 1 diabetes. Hum. Vaccin. Immunother., 2018, 14(11), 1-17.
[http://dx.doi.org/10.1080/21645515.2018.1514354] [PMID: 30156993]
[167]
Aydin, Ö.; Nieuwdorp, M.; Gerdes, V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr. Diab. Rep., 2018, 18(8), 55.
[http://dx.doi.org/10.1007/s11892-018-1020-6] [PMID: 29931613]
[168]
Di Ciaula, A.; Garruti, G.; Lunardi Baccetto, R.; Molina-Molina, E.; Bonfrate, L.; Wang, D.Q.; Portincasa, P. Bile acid physiology. Ann. Hepatol., 2017, 16(S105), s4-s14.
[http://dx.doi.org/10.5604/01.3001.0010.5493]
[169]
Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Mannerås-Holm, L.; Ståhlman, M.; Olsson, L.M.; Serino, M.; Planas-Fèlix, M.; Xifra, G.; Mercader, J.M.; Torrents, D.; Burcelin, R.; Ricart, W.; Perkins, R.; Fernàndez-Real, J.M.; Bäckhed, F. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med., 2017, 23(7), 850-858.
[http://dx.doi.org/10.1038/nm.4345] [PMID: 28530702]
[170]
Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care, 2003, 26(S1), s5-s20.
[http://dx.doi.org/10.2337/diacare.26.2007.S5] [PMID: 12502614]
[171]
Cosentino, F.; Grant, P.J.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; Huikuri, H.V.; Johansson, I.; Jüni, P.; Lettino, M.; Marx, N.; Mellbin, L.G.; Östgren, C.J.; Rocca, B.; Roffi, M.; Sattar, N. Seferović, P.M.; Sousa-Uva, M.; Valensi, P.; Wheeler, D.C.; Piepoli, M.F.; Birkeland, K.I.; Adamopoulos, S.; Ajjan, R.; Avogaro, A.; Baigent, C.; Brodmann, M.; Bueno, H.; Ceconi, C.; Chioncel, O.; Coats, A.; Collet, J.P.; Collins, P.; Cosyns, B.; Di Mario, C.; Fisher, M.; Fitzsimons, D.; Halvorsen, S.; Hansen, D.; Hoes, A.; Holt, R.I.G.; Home, P.; Katus, H.A.; Khunti, K.; Komajda, M.; Lambrinou, E.; Landmesser, U.; Lewis, B.S.; Linde, C.; Lorusso, R.; Mach, F.; Mueller, C.; Neumann, F.J.; Persson, F.; Petersen, S.E.; Petronio, A.S.; Richter, D.J.; Rosano, G.M.C.; Rossing, P.; Rydén, L.; Shlyakhto, E.; Simpson, I.A.; Touyz, R.M.; Wijns, W.; Wilhelm, M.; Williams, B.; Aboyans, V.; Bailey, C.J.; Ceriello, A.; Delgado, V.; Federici, M.; Filippatos, G.; Grobbee, D.E.; Hansen, T.B.; Huikuri, H.V.; Johansson, I.; Jüni, P.; Lettino, M.; Marx, N.; Mellbin, L.G.; Östgren, C.J.; Rocca, B.; Roffi, M.; Sattar, N.; Seferović, P.M.; Sousa-Uva, M.; Valensi, P.; Wheeler, D.C.; Windecker, S.; Aboyans, V.; Baigent, C.; Collet, J.P.; Dean, V.; Delgado, V.; Fitzsimons, D.; Gale, C.P.; Grobbee, D.E.; Halvorsen, S.; Hindricks, G.; Iung, B.; Jüni, P.; Katus, H.A.; Landmesser, U.; Leclercq, C.; Lettino, M.; Lewis, B.S.; Merkely, B.; Mueller, C.; Petersen, S.E.; Petronio, A.S.; Richter, D.J.; Roffi, M.; Shlyakhto, E.; Simpson, I.A.; Sousa-Uva, M.; Touyz, R.M.; Zelveian, P.H.; Scherr, D.; Jahangirov, T.; Lazareva, I.; Shivalkar, B.; Naser, N.; Gruev, I.; Milicic, D.; Petrou, P.M.; Linhart, A.; Hildebrandt, P.; Hasan-Ali, H.; Marandi, T.; Lehto, S.; Mansourati, J.; Kurashvili, R.; Siasos, G.; Lengyel, C.; Thrainsdottir, I.S.; Aronson, D.; Di Lenarda, A.; Raissova, A.; Ibrahimi, P.; Abilova, S.; Trusinskis, K.; Saade, G.; Benlamin, H.; Petrulioniene, Z.; Banu, C.; Magri, C.J.; David, L.; Boskovic, A.; Alami, M.; Liem, A.H.; Bosevski, M.; Svingen, G.F.T.; Janion, M.; Gavina, C.; Vinereanu, D.; Nedogoda, S.; Mancini, T.; Ilic, M.D.; Fabryova, L.; Fras, Z.; Jiménez-Navarro, M.F.; Norhammar, A.; Lehmann, R.; Mourali, M.S.; Ural, D.; Nesukay, E.; Chowdhury, T.A. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur. Heart J., 2020, 41(2), 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[172]
American Diabetes Association. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2019. Diabetes Care, 2019, 42(S1), S13-S28.
[http://dx.doi.org/10.2337/dc19-S002] [PMID: 30559228]
[173]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress—A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[174]
Newsholme, P.; Cruzat, V.F.; Keane, K.N.; Carlessi, R.; de Bittencourt, P.I.H. Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J., 2016, 473(24), 4527-4550.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[175]
Ahmed, R.G. The physiological and biochemical effect of diabetes on the balance between oxidative stress and antioxidant defense system. M. J. Islamic World Acad Sci., 2005, 15(1), 31-42.
[176]
Silva Rosa, S.C.; Nayak, N.; Caymo, A.M.; Gordon, J.W. Mechanisms of muscle insulin resistance and the cross-talk with liver and adipose tissue. Physiol. Rep., 2020, 8(19), e14607.
[http://dx.doi.org/10.14814/phy2.14607] [PMID: 33038072]
[177]
Newsholme, P.; Keane, K.N.; Carlessi, R.; Cruzat, V. Oxidative stress pathways in pancreatic β-cells and insulin-sensitive cells and tissues: importance to cell metabolism, function, and dysfunction. Am. J. Physiol. Cell Physiol., 2019, 317(3), C420-C433.
[http://dx.doi.org/10.1152/ajpcell.00141.2019] [PMID: 31216193]
[178]
Jeong, N.Y.; Jung, J.; Tabassum, R. Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases. Neural Regen. Res., 2020, 15(2), 232-241.
[http://dx.doi.org/10.4103/1673-5374.265543] [PMID: 31552888]
[179]
Anderson, E.J.; Lustig, M.E.; Boyle, K.E.; Woodlief, T.L.; Kane, D.A.; Lin, C.T.; Price, J.W., III; Kang, L.; Rabinovitch, P.S.; Szeto, H.H.; Houmard, J.A.; Cortright, R.N.; Wasserman, D.H.; Neufer, P.D. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J. Clin. Invest., 2009, 119(3), 573-581.
[http://dx.doi.org/10.1172/JCI37048] [PMID: 19188683]
[180]
Evans, J.L.; Goldfine, I.D.; Maddux, B.A.; Grodsky, G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev., 2002, 23(5), 599-622.
[http://dx.doi.org/10.1210/er.2001-0039] [PMID: 12372842]
[181]
Meigs, J.B.; Larson, M.G.; Fox, C.S.; Keaney, J.F., Jr; Vasan, R.S.; Benjamin, E.J. Association of oxidative stress, insulin resistance, and diabetes risk phenotypes: the Framingham Offspring Study. Diabetes Care, 2007, 30(10), 2529-2535.
[http://dx.doi.org/10.2337/dc07-0817] [PMID: 17586736]
[182]
Urakawa, H.; Katsuki, A.; Sumida, Y.; Gabazza, E.C.; Murashima, S.; Morioka, K.; Maruyama, N.; Kitagawa, N.; Tanaka, T.; Hori, Y.; Nakatani, K.; Yano, Y.; Adachi, Y. Oxidative stress is associated with adiposity and insulin resistance in men. J. Clin. Endocrinol. Metab., 2003, 88(10), 4673-4676.
[http://dx.doi.org/10.1210/jc.2003-030202] [PMID: 14557439]
[183]
Ayepola, O.R.; Chegou, N.N.; Brooks, N.L.; Oguntibeju, O.O. Kolaviron, a Garcinia biflavonoid complex ameliorates hyperglycemia-mediated hepatic injury in rats via suppression of inflammatory responses. BMC Complement. Altern. Med., 2013, 13(1), 363.
[http://dx.doi.org/10.1186/1472-6882-13-363] [PMID: 24359406]
[184]
Guzik, T.J.; Cosentino, F. Epigenetics and Immunometabolism in diabetes and aging. Antioxid. Redox Signal., 2018, 29(3), 257-274.
[http://dx.doi.org/10.1089/ars.2017.7299] [PMID: 28891325]
[185]
Paneni, F.; Volpe, M.; Lüscher, T.F.; Cosentino, F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes, 2013, 62(6), 1800-1807.
[http://dx.doi.org/10.2337/db12-1648] [PMID: 23704521]
[186]
Zampetaki, A.; Kiechl, S.; Drozdov, I.; Willeit, P.; Mayr, U.; Prokopi, M.; Mayr, A.; Weger, S.; Oberhollenzer, F.; Bonora, E.; Shah, A.; Willeit, J.; Mayr, M. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ. Res., 2010, 107(6), 810-817.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.226357] [PMID: 20651284]
[187]
Cardoso, C.R.L.; Ferreira, M.T.; Leite, N.C.; Salles, G.F. Prognostic impact of aortic stiffness in high-risk type 2 diabetic patients: the Rio deJaneiro Type 2 Diabetes Cohort Study. Diabetes Care, 2013, 36(11), 3772-3778.
[http://dx.doi.org/10.2337/dc13-0506] [PMID: 23877987]
[188]
Strain, W.D.; Paldánius, P.M. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc. Diabetol., 2018, 17(1), 57.
[http://dx.doi.org/10.1186/s12933-018-0703-2] [PMID: 29669543]
[189]
Brownlee, M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes, 2005, 54(6), 1615-1625.
[http://dx.doi.org/10.2337/diabetes.54.6.1615] [PMID: 15919781]
[190]
Madamanchi, N.R.; Runge, M.S. Redox signaling in cardiovascular health and disease. Free Radic. Biol. Med., 2013, 61, 473-501.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.04.001] [PMID: 23583330]
[191]
Yao, D.; Brownlee, M. Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands. Diabetes, 2010, 59(1), 249-255.
[http://dx.doi.org/10.2337/db09-0801] [PMID: 19833897]
[192]
Bonnefont-Rousselot, D. Glucose and reactive oxygen species. Curr. Opin. Clin. Nutr. Metab. Care, 2002, 5(5), 561-568.
[http://dx.doi.org/10.1097/00075197-200209000-00016] [PMID: 12172481]
[193]
Spitaler, M.M.; Graier, W.F. Vascular targets of redox signalling in diabetes mellitus. Diabetologia, 2002, 45(4), 476-494.
[http://dx.doi.org/10.1007/s00125-002-0782-0] [PMID: 12032623]
[194]
Adly, A.M. Oxidative stress and disease: an updated review. Res. J. Immunol., 2010, 3(2), 129-145.
[http://dx.doi.org/10.3923/rji.2010.129.145]
[195]
Figueroa-Romero, C.; Sadidi, M.; Feldman, E.L. Mechanisms of disease: The oxidative stress theory of diabetic neuropathy. Rev. Endocr. Metab. Disord., 2008, 9(4), 301-314.
[http://dx.doi.org/10.1007/s11154-008-9104-2] [PMID: 18709457]
[196]
Van Dam, P.S.; Cotter, M.A.; Bravenboer, B.; Cameron, N.E. Pathogenesis of diabetic neuropathy: Focus on neurovascular mechanisms. Eur. J. Pharmacol., 2013, 719(1-3), 180-186.
[http://dx.doi.org/10.1016/j.ejphar.2013.07.017] [PMID: 23872412]
[197]
Hosseini, A.; Abdollahi, M. Diabetic neuropathy and oxidative stress: therapeutic perspectives. Oxid. Med. Cell. Longev., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/168039] [PMID: 23738033]
[198]
Chung, S.S.M.; Ho, E.C.M.; Lam, K.S.L.; Chung, S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol.,, 2003, 14(8(S3)), S233-S236.
[http://dx.doi.org/10.1097/01.ASN.0000077408.15865.06] [PMID: 12874437]
[199]
Afroz, A.; Zhang, W.; Wei Loh, A.J.; Jie, Lee. D.X.; Billah, B. Macro- and micro-vascular complications and their determinants among people with type 2 diabetes in Bangladesh. Diabetes Metab. Syndr., 2019, 13(5), 2939-2946.
[http://dx.doi.org/10.1016/j.dsx.2019.07.046] [PMID: 31425960]
[200]
De Cristofaro, R.; Rocca, B.; Vitacolonna, E.; Falco, A.; Marchesani, P.; Ciabattoni, G.; Landolfi, R.; Patrono, C.; Davì, G. Lipid and protein oxidation contribute to a prothrombotic state in patients with type 2 diabetes mellitus. J. Thromb. Haemost., 2003, 1(2), 250-256.
[http://dx.doi.org/10.1046/j.1538-7836.2003.00072.x] [PMID: 12871497]
[201]
Rolfe, D.F.; Brown, G.C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev., 1997, 77(3), 731-758.
[http://dx.doi.org/10.1152/physrev.1997.77.3.731] [PMID: 9234964]
[202]
Koppenol, W.H. The Haber-Weiss cycle – 70 years later. Redox Rep., 2001, 6(4), 229-234.
[http://dx.doi.org/10.1179/135100001101536373] [PMID: 11642713]
[203]
Senoner, T.; Dichtl, W. Oxidative stress in cardiovascular diseases: still a therapeutic target? Nutrients, 2019, 11(9), 2090.
[http://dx.doi.org/10.3390/nu11092090] [PMID: 31487802]
[204]
Khalil, M.; Hayek, S.; Khalil, N.; Serale, N.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Role of Sumac (Rhus coriaria L.) in the management of metabolic syndrome and related disorders: Focus on NAFLD-atherosclerosis interplay. J. Funct. Foods, 2021, 87, 104811.
[http://dx.doi.org/10.1016/j.jff.2021.104811]
[205]
Schober, A. Chemokines in vascular dysfunction and remodeling. Arterioscler. Thromb. Vasc. Biol., 2008, 28(11), 1950-1959.
[http://dx.doi.org/10.1161/ATVBAHA.107.161224] [PMID: 18818421]
[206]
Jourde-Chiche, N.; Fakhouri, F.; Dou, L.; Bellien, J.; Burtey, S.; Frimat, M.; Jarrot, P.A.; Kaplanski, G.; Le Quintrec, M.; Pernin, V.; Rigothier, C.; Sallée, M.; Fremeaux-Bacchi, V.; Guerrot, D.; Roumenina, L.T. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol., 2019, 15(2), 87-108.
[http://dx.doi.org/10.1038/s41581-018-0098-z] [PMID: 30607032]
[207]
Way, K.J.; Isshiki, K.; Suzuma, K.; Yokota, T.; Zvagelsky, D.; Schoen, F.J.; Sandusky, G.E.; Pechous, P.A.; Vlahos, C.J.; Wakasaki, H.; King, G.L. Expression of connective tissue growth factor is increased in injured myocardium associated with protein kinase C beta2 activation and diabetes. Diabetes, 2002, 51(9), 2709-2718.
[http://dx.doi.org/10.2337/diabetes.51.9.2709] [PMID: 12196463]
[208]
Harhaj, N.S.; Felinski, E.A.; Wolpert, E.B.; Sundstrom, J.M.; Gardner, T.W.; Antonetti, D.A. VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability. Invest. Ophthalmol. Vis. Sci., 2006, 47(11), 5106-5115.
[http://dx.doi.org/10.1167/iovs.06-0322] [PMID: 17065532]
[209]
Tousoulis, D.; Kampoli, A.M.; Tentolouris, P.N.C.; Stefanadis, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Curr. Vasc. Pharmacol., 2012, 10(1), 4-18.
[http://dx.doi.org/10.2174/157016112798829760] [PMID: 22112350]
[210]
Touyz, R.M. Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension, 2004, 44(3), 248-252.
[http://dx.doi.org/10.1161/01.HYP.0000138070.47616.9d] [PMID: 15262903]
[211]
Ilkun, O.; Boudina, S. Cardiac dysfunction and oxidative stress in the metabolic syndrome: an update on antioxidant therapies. Curr. Pharm. Des., 2013, 19(27), 4806-4817.
[http://dx.doi.org/10.2174/1381612811319270003] [PMID: 23323621]
[212]
Klaunig, J.E.; Wang, Z.; Pu, X.; Zhou, S. Oxidative stress and oxidative damage in chemical carcinogenesis. Toxicol. Appl. Pharmacol., 2011, 254(2), 86-99.
[http://dx.doi.org/10.1016/j.taap.2009.11.028] [PMID: 21296097]
[213]
Aggarwal, V.; Tuli, H.; Varol, A.; Thakral, F.; Yerer, M.; Sak, K.; Varol, M.; Jain, A.; Khan, M.; Sethi, G. Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 2019, 9(11), 735.
[http://dx.doi.org/10.3390/biom9110735] [PMID: 31766246]
[214]
Liou, G.Y.; Storz, P. Reactive oxygen species in cancer. Free Radic. Res., 2010, 44(5), 479-496.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[215]
Acuña, U.M.; Wittwer, J.; Ayers, S.; Pearce, C.J.; Oberlies, N.H.; Blanco, DE E.J. Effects of (5Z)-7-oxozeaenol on the oxidative pathway of cancer cells. Anticancer Res., 2012, 32(7), 2665-2671.
[PMID: 22753724]
[216]
Cairns, R.A.; Harris, I.; McCracken, S.; Mak, T.W. Cancer cell metabolism. Cold Spring Harb. Symp. Quant. Biol., 2011, 76(0), 299-311.
[http://dx.doi.org/10.1101/sqb.2011.76.012856] [PMID: 22156302]
[217]
Kumari, S.; Badana, A.K. G, M.M.; G, S.; Malla, R. Reactive oxygen species: a key constituent in cancer survival. Biomark. Insights, 2018, 13.
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[218]
Helfinger, V.; Schröder, K. Redox control in cancer development and progression. Mol. Aspects Med., 2018, 63, 88-98.
[http://dx.doi.org/10.1016/j.mam.2018.02.003] [PMID: 29501614]
[219]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[220]
Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res., 2018, 37(1), 266.
[http://dx.doi.org/10.1186/s13046-018-0909-x] [PMID: 30382874]
[221]
Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res., 2016, 1863(12), 2977-2992.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[222]
Mehta, M.; Dhanjal, D.S.; Paudel, K.R.; Singh, B.; Gupta, G.; Rajeshkumar, S.; Thangavelu, L.; Tambuwala, M.M.; Bakshi, H.A.; Chellappan, D.K.; Pandey, P.; Dureja, H.; Charbe, N.B.; Singh, S.K.; Shukla, S.D.; Nammi, S.; Aljabali, A.A.; Wich, P.R.; Hansbro, P.M.; Satija, S.; Dua, K. Cellular signalling pathways mediating the pathogenesis of chronic inflammatory respiratory diseases: an update. Inflammopharmacology, 2020, 28(4), 795-817.
[http://dx.doi.org/10.1007/s10787-020-00698-3] [PMID: 32189104]
[223]
Kessenbrock, K.; Plaks, V.; Werb, Z. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell, 2010, 141(1), 52-67.
[http://dx.doi.org/10.1016/j.cell.2010.03.015] [PMID: 20371345]
[224]
Leufkens, A.M.; van Duijnhoven, F.J.B.; Woudt, S.H.S.; Siersema, P.D.; Jenab, M.; Jansen, E.H.J.M.; Pischon, T.; Tjønneland, A.; Olsen, A.; Overvad, K.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Morois, S.; Palli, D.; Pala, V.; Tumino, R.; Vineis, P.; Panico, S.; Kaaks, R.; Lukanova, A.; Boeing, H.; Aleksandrova, K.; Trichopoulou, A.; Trichopoulos, D.; Dilis, V.; Peeters, P.H.; Skeie, G.; González, C.A.; Argüelles, M.; Sánchez, M.J.; Dorronsoro, M.; Huerta, J.M.; Ardanaz, E.; Hallmans, G.; Palmqvist, R.; Khaw, K.T.; Wareham, N.; Allen, N.E.; Crowe, F.L.; Fedirko, V.; Norat, T.; Riboli, E.; Bueno-de-Mesquita, H.B. Biomarkers of oxidative stress and risk of developing colorectal cancer: a cohort-nested case-control study in the European Prospective Investigation Into Cancer and Nutrition. Am. J. Epidemiol., 2012, 175(7), 653-663.
[http://dx.doi.org/10.1093/aje/kwr418] [PMID: 22422922]
[225]
Araki, O.; Matsumura, Y.; Inoue, T.; Karube, Y.; Maeda, S.; Kobayashi, S.; Chida, M. Association of perioperative redox balance on long-term outcome in patients undergoing lung resection. Ann. Thorac. Cardiovasc. Surg., 2018, 24(1), 13-18.
[http://dx.doi.org/10.5761/atcs.oa.17-00127] [PMID: 29129842]
[226]
Gào, X.; Wilsgaard, T.; Jansen, E.H.J.M.; Holleczek, B.; Zhang, Y.; Xuan, Y.; Anusruti, A.; Brenner, H.; Schöttker, B. Pre-diagnostic derivatives of reactive oxygen metabolites and the occurrence of lung, colorectal, breast and prostate cancer: An individual participant data meta-analysis of two large population-based studies. Int. J. Cancer, 2019, 145(1), 49-57.
[http://dx.doi.org/10.1002/ijc.32073] [PMID: 30561010]
[227]
Ishibashi, T. Molecular hydrogen: new antioxidant and anti-inflammatory therapy for rheumatoid arthritis and related diseases. Curr. Pharm. Des., 2013, 19(35), 6375-6381.
[http://dx.doi.org/10.2174/13816128113199990507] [PMID: 23859555]
[228]
Petrie, J.R.; Guzik, T.J.; Touyz, R.M. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can. J. Cardiol., 2018, 34(5), 575-584.
[http://dx.doi.org/10.1016/j.cjca.2017.12.005] [PMID: 29459239]
[229]
Babior, B.M.; Woodman, R.C. Chronic granulomatous disease. Semin. Hematol., 1990, 27(3), 247-259.
[PMID: 2197728]
[230]
Collins, L.M.; Toulouse, A.; Connor, T.J.; Nolan, Y.M. Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology, 2012, 62(7), 2154-2168.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.028] [PMID: 22361232]
[231]
Flohé, L.; Brigelius-Flohé, R.; Saliou, C.; Traber, M.G.; Packer, L. Redox regulation of NF-kappa B activation. Free Radic. Biol. Med., 1997, 22(6), 1115-1126.
[http://dx.doi.org/10.1016/S0891-5849(96)00501-1] [PMID: 9034250]
[232]
Nam, N.H. Naturally occurring NF-kappaB inhibitors. Mini Rev. Med. Chem., 2006, 6(8), 945-951.
[http://dx.doi.org/10.2174/138955706777934937] [PMID: 16918500]
[233]
Birch, J.T., Jr; Bhattacharya, S. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Prim. Care, 2010, 37(4), 779-792, vii..
[http://dx.doi.org/10.1016/j.pop.2010.07.001] [PMID: 21050958]
[234]
Hapeta, B.; Koczy, B.; Fitowska, A.; Dobrakowski, M.; Kasperczyk, A. Ostałowska, A.; Stołtny, T.; Widuchowski, W.; Łukasik, P.; Birkner, E.; Kasperczyk, S. Metabolism and protein transformations in synovial membrane of a knee joint in the course of rheumatoid arthritis and degenerative arthritis. Pol. Orthop. Traumatol., 2012, 77, 53-58.
[PMID: 23306287]
[235]
Stamp, L.K.; Khalilova, I.; Tarr, J.M.; Senthilmohan, R.; Turner, R.; Haigh, R.C.; Winyard, P.G.; Kettle, A.J. Myeloperoxidase and oxidative stress in rheumatoid arthritis. Rheumatology, 2012, 51(10), 1796-1803.
[http://dx.doi.org/10.1093/rheumatology/kes193] [PMID: 22814531]
[236]
Mirshafiey, A.; Mohsenzadegan, M. The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iran. J. Allergy Asthma Immunol., 2008, 7(4), 195-202.
[PMID: 19052348]
[237]
Vasanthi, P.; Nalini, G.; Rajasekhar, G. Status of oxidative stress in rheumatoid arthritis. Int. J. Rheum. Dis., 2009, 12(1), 29-33.
[http://dx.doi.org/10.1111/j.1756-185X.2009.01375.x] [PMID: 20374313]
[238]
Batooei, M.; Tahamoli-Roudsari, A.; Basiri, Z.; Yasrebifar, F.; Shahdoust, M.; Eshraghi, A.; Mehrpooya, M.; Ataei, S. Evaluating the effect of oral n-acetylcysteine as an adjuvant treatment on clinical outcomes of patients with rheumatoid arthritis: a randomized, double blind clinical trial. Rev. Recent Clin. Trials, 2018, 13(2), 132-138.
[http://dx.doi.org/10.2174/1574887113666180307151937] [PMID: 29521247]
[239]
Fonseca, L.J.S.; Nunes-Souza, V.; Goulart, M.O.F.; Rabelo, L.A. Oxidative stress in rheumatoid arthritis: what the future might hold regarding novel biomarkers and add-on therapies. Oxid. Med. Cell. Longev., 2019, 2019, 1-16.
[http://dx.doi.org/10.1155/2019/7536805] [PMID: 31934269]
[240]
Phull, A.R.; Nasir, B.; Haq, I.; Kim, S.J. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem. Biol. Interact., 2018, 281, 121-136.
[http://dx.doi.org/10.1016/j.cbi.2017.12.024] [PMID: 29258867]
[241]
Vaghef-Mehrabany, E.; Homayouni-Rad, A.; Alipour, B.; Sharif, S.K.; Vaghef-Mehrabany, L.; Alipour-Ajiry, S. Effects of probiotic supplementation on oxidative stress indices in women with rheumatoid arthritis: a randomized double-blind clinical trial. J. Am. Coll. Nutr., 2016, 35(4), 291-299.
[http://dx.doi.org/10.1080/07315724.2014.959208] [PMID: 25856220]
[242]
Dai, L.; Lamb, D.J.; Leake, D.S.; Kus, M.L.; Jones, H.W.; Morris, C.J.; Winyard, P.G. Evidence for oxidised low density lipoprotein in synovial fluid from rheumatoid arthritis patients. Free Radic. Res., 2000, 32(6), 479-486.
[http://dx.doi.org/10.1080/10715760000300481] [PMID: 10798713]
[243]
Dalle-Donne, I.; Rossi, R.; Giustarini, D.; Milzani, A.; Colombo, R. Protein carbonyl groups as biomarkers of oxidative stress. Clin. Chim. Acta, 2003, 329(1-2), 23-38.
[http://dx.doi.org/10.1016/S0009-8981(03)00003-2] [PMID: 12589963]
[244]
Khojah, H.M.; Ahmed, S.; Abdel-Rahman, M.S.; Hamza, A.B. Reactive oxygen and nitrogen species in patients with rheumatoid arthritis as potential biomarkers for disease activity and the role of antioxidants. Free Radic. Biol. Med., 2016, 97, 285-291.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.06.020] [PMID: 27344969]
[245]
Bhattacharyya, A.; Chattopadhyay, R.; Mitra, S.; Crowe, S.E. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev., 2014, 94(2), 329-354.
[http://dx.doi.org/10.1152/physrev.00040.2012] [PMID: 24692350]
[246]
Balmus, I.; Ciobica, A.; Trifan, A.; Stanciu, C. The implications of oxidative stress and antioxidant therapies in Inflammatory Bowel Disease: Clinical aspects and animal models. Saudi J. Gastroenterol., 2016, 22(1), 3-17.
[http://dx.doi.org/10.4103/1319-3767.173753] [PMID: 26831601]
[247]
Zhu, H.; Li, Y.R. Oxidative stress and redox signaling mechanisms of inflammatory bowel disease: updated experimental and clinical evidence. Exp. Biol. Med., 2012, 237(5), 474-480.
[http://dx.doi.org/10.1258/ebm.2011.011358] [PMID: 22442342]
[248]
Moura, F.A.; de Andrade, K.Q.; dos Santos, J.C.F.; Araújo, O.R.P.; Goulart, M.O.F. Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol., 2015, 6, 617-639.
[http://dx.doi.org/10.1016/j.redox.2015.10.006] [PMID: 26520808]
[249]
Portincasa, P.; Bonfrate, L.; Khalil, M.; Angelis, M.D.; Calabrese, F.M.; D’Amato, M.; Wang, D.Q.H.; Di Ciaula, A. Intestinal barrier and permeability in health, obesity and NAFLD. Biomedicines, 2021, 10(1), 83.
[http://dx.doi.org/10.3390/biomedicines10010083] [PMID: 35052763]
[250]
Wallace, J.L.; Chin, B.C. Inflammatory mediators in gastrointestinal defense and injury. Exp. Biol. Med., 1997, 214(3), 192-203.
[http://dx.doi.org/10.3181/00379727-214-44087] [PMID: 9083252]
[251]
Alzoghaibi, M.A. Concepts of oxidative stress and antioxidant defense in Crohn’s disease. World J. Gastroenterol., 2013, 19(39), 6540-6547.
[http://dx.doi.org/10.3748/wjg.v19.i39.6540] [PMID: 24151379]
[252]
Hoste, E.A.J.; Bagshaw, S.M.; Bellomo, R.; Cely, C.M.; Colman, R.; Cruz, D.N.; Edipidis, K.; Forni, L.G.; Gomersall, C.D.; Govil, D.; Honoré, P.M.; Joannes-Boyau, O.; Joannidis, M.; Korhonen, A.M.; Lavrentieva, A.; Mehta, R.L.; Palevsky, P.; Roessler, E.; Ronco, C.; Uchino, S.; Vazquez, J.A.; Vidal Andrade, E.; Webb, S.; Kellum, J.A. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med., 2015, 41(8), 1411-1423.
[http://dx.doi.org/10.1007/s00134-015-3934-7] [PMID: 26162677]
[253]
Chawla, L.S.; Eggers, P.W.; Star, R.A.; Kimmel, P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med., 2014, 371(1), 58-66.
[http://dx.doi.org/10.1056/NEJMra1214243] [PMID: 24988558]
[254]
Zoccali, C.; Vanholder, R.; Massy, Z.A.; Ortiz, A.; Sarafidis, P.; Dekker, F.W.; Fliser, D.; Fouque, D.; Heine, G.H.; Jager, K.J.; Kanbay, M.; Mallamaci, F.; Parati, G.; Rossignol, P.; Wiecek, A.; London, G.; European, R. The systemic nature of CKD. Nat. Rev. Nephrol., 2017, 13(6), 344-358.
[http://dx.doi.org/10.1038/nrneph.2017.52] [PMID: 28435157]
[255]
Berger, S.P.; Daha, M.R. Complement in glomerular injury. Semin. Immunopathol., 2007, 29(4), 375-384.
[http://dx.doi.org/10.1007/s00281-007-0090-3] [PMID: 17901956]
[256]
Wang, Y.; Zhang, Y. Kidney and innate immunity. Immunol. Lett., 2017, 183, 73-78.
[http://dx.doi.org/10.1016/j.imlet.2017.01.011] [PMID: 28143791]
[257]
Koc, M.; Toprak, A.; Arikan, H.; Odabasi, Z.; Elbir, Y.; Tulunay, A.; Asicioglu, E.; Eksioglu-Demiralp, E.; Glorieux, G.; Vanholder, R.; Akoglu, E. Toll-like receptor expression in monocytes in patients with chronic kidney disease and haemodialysis: relation with inflammation. Nephrol. Dial. Transplant., 2011, 26(3), 955-963.
[http://dx.doi.org/10.1093/ndt/gfq500] [PMID: 20729266]
[258]
Lepenies, J.; Eardley, K.S.; Kienitz, T.; Hewison, M.; Ihl, T.; Stewart, P.M.; Cockwell, P.; Quinkler, M. Renal TLR4 mRNA expression correlates with inflammatory marker MCP-1 and profibrotic molecule TGF-β₁ in patients with chronic kidney disease. Nephron Clin. Pract., 2011, 119(2), c97-c104.
[http://dx.doi.org/10.1159/000324765] [PMID: 21677444]
[259]
Sean Eardley, K.; Cockwell, P. Macrophages and progressive tubulointerstitial disease. Kidney Int., 2005, 68(2), 437-455.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00422.x] [PMID: 16014021]
[260]
Ferrario, F.; Castiglione, A.; Colasanti, G.; Barbiano di Belgioioso, G.; Bertoli, S.; D’Amico, G.; Nava, S. The detection of monocytes in human glomerulonephritis. Kidney Int., 1985, 28(3), 513-519.
[http://dx.doi.org/10.1038/ki.1985.158] [PMID: 4068484]
[261]
Ricardo, S.D.; van Goor, H.; Eddy, A.A. Macrophage diversity in renal injury and repair. J. Clin. Invest., 2008, 118(11), 3522-3530.
[http://dx.doi.org/10.1172/JCI36150] [PMID: 18982158]
[262]
Ghee, J.Y.; Han, D.H.; Song, H.K.; Kim, W.Y.; Kim, S.H.; Yoon, H.E.; Choi, B.S.; Kim, Y.S.; Kim, J.; Yang, C.W. The role of macrophage in the pathogenesis of chronic cyclosporine-induced nephropathy. Nephrol. Dial. Transplant., 2008, 23(12), 4061-4069.
[http://dx.doi.org/10.1093/ndt/gfn388] [PMID: 18622021]
[263]
Sanz, A.B.; Sanchez-Niño, M.D.; Ramos, A.M.; Moreno, J.A.; Santamaria, B.; Ruiz-Ortega, M.; Egido, J.; Ortiz, A. NF-kappaB in renal inflammation. J. Am. Soc. Nephrol., 2010, 21(8), 1254-1262.
[http://dx.doi.org/10.1681/ASN.2010020218] [PMID: 20651166]
[264]
Zheng, L.; Sinniah, R. I-Hong Hsu, S. In situ glomerular expression of activated NF-κB in human lupus nephritis and other non-proliferative proteinuric glomerulopathy. Virchows Arch., 2006, 448(2), 172-183.
[http://dx.doi.org/10.1007/s00428-005-0061-9] [PMID: 16205945]
[265]
Mezzano, S.; Aros, C.; Droguett, A.; Burgos, M.E.; Ardiles, L.; Flores, C.; Schneider, H.; Ruiz-Ortega, M.; Egido, J. NF- B activation and overexpression of regulated genes in human diabetic nephropathy. Nephrol. Dial. Transplant., 2004, 19(10), 2505-2512.
[http://dx.doi.org/10.1093/ndt/gfh207] [PMID: 15280531]
[266]
Loverre, A.; Ditonno, P.; Crovace, A.; Gesualdo, L.; Ranieri, E.; Pontrelli, P.; Stallone, G.; Infante, B.; Schena, A.; Di Paolo, S.; Capobianco, C.; Ursi, M.; Palazzo, S.; Battaglia, M.; Selvaggi, F.P.; Schena, F.P.; Grandaliano, G. Ischemia-reperfusion induces glomerular and tubular activation of proinflammatory and antiapoptotic pathways: differential modulation by rapamycin. J. Am. Soc. Nephrol., 2004, 15(10), 2675-2686.
[http://dx.doi.org/10.1097/01.ASN.0000139932.00971.E4] [PMID: 15466272]
[267]
Ercan, H.; Birben, E.; Dizdar, E.; Keskin, O.; Karaaslan, C.; Soyer, O.; Dut, R.; Sackesen, C.; Besler, T.; Kalayci, O. Oxidative stress and genetic and epidemiologic determinants of oxidant injury in childhood asthma. J. Allergy Clin. Immunol., 2006, 118(5), 1097-1104.
[http://dx.doi.org/10.1016/j.jaci.2006.08.012] [PMID: 17088135]
[268]
Marple, B.F. Allergic rhinitis and inflammatory airway disease: interactions within the unified airspace. Am. J. Rhinol. Allergy, 2010, 24(4), 249-254.
[http://dx.doi.org/10.2500/ajra.2010.24.3499] [PMID: 20819460]
[269]
Han, M.; Lee, D.; Lee, S.H.; Kim, T.H. Oxidative stress and antioxidant pathway in allergic rhinitis. Antioxidants, 2021, 10(8), 1266.
[http://dx.doi.org/10.3390/antiox10081266] [PMID: 34439514]
[270]
Bowler, R.P.; Crapo, J.D. Oxidative stress in allergic respiratory diseases. J. Allergy Clin. Immunol., 2002, 110(3), 349-356.
[http://dx.doi.org/10.1067/mai.2002.126780] [PMID: 12209079]
[271]
Masoli, M.; Fabian, D.; Holt, S.; Beasley, R. The global burden of asthma: executive summary of the GINA dissemination committee report. Allergy, 2004, 59(5), 469-478.
[http://dx.doi.org/10.1111/j.1398-9995.2004.00526.x] [PMID: 15080825]
[272]
Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging, 2007, 2(2), 219-236.
[PMID: 18044138]
[273]
Pauwels, R.A.; Rabe, K.F. Burden and clinical features of chronic obstructive pulmonary disease (COPD). Lancet, 2004, 364(9434), 613-620.
[http://dx.doi.org/10.1016/S0140-6736(04)16855-4] [PMID: 15313363]
[274]
Van Eeden, S.F.; Sin, D.D. Oxidative stress in chronic obstructive pulmonary disease: a lung and systemic process. Can. Respir. J., 2013, 20(1), 27-29.
[http://dx.doi.org/10.1155/2013/509130] [PMID: 23457671]
[275]
Cobley, J.N.; Fiorello, M.L.; Bailey, D.M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol., 2018, 15, 490-503.
[http://dx.doi.org/10.1016/j.redox.2018.01.008] [PMID: 29413961]
[276]
Magistretti, P.J.; Allaman, I. A cellular perspective on brain energy metabolism and functional imaging. Neuron, 2015, 86(4), 883-901.
[http://dx.doi.org/10.1016/j.neuron.2015.03.035] [PMID: 25996133]
[277]
Morató, L.; Bertini, E.; Verrigni, D.; Ardissone, A.; Ruiz, M.; Ferrer, I.; Uziel, G.; Pujol, A. Mitochondrial dysfunction in central nervous system white matter disorders. Glia, 2014, 62(11), 1878-1894.
[http://dx.doi.org/10.1002/glia.22670] [PMID: 24865954]
[278]
Merlini, E.; Coleman, M.P.; Loreto, A. Mitochondrial dysfunction as a trigger of programmed axon death. Trends Neurosci., 2022, 45(1), 53-63.
[http://dx.doi.org/10.1016/j.tins.2021.10.014] [PMID: 34852932]
[279]
Pollack, R.M.; Barzilai, N.; Anghel, V.; Kulkarni, A.S.; Golden, A.; O’Broin, P.; Sinclair, D.A.; Bonkowski, M.S.; Coleville, A.J.; Powell, D.; Kim, S.; Moaddel, R.; Stein, D.; Zhang, K.; Hawkins, M.; Crandall, J.P. Resveratrol improves vascular function and mitochondrial number but not glucose metabolism in older adults. J. Gerontol. A Biol. Sci. Med. Sci., 2017, 72(12), 1703-1709.
[http://dx.doi.org/10.1093/gerona/glx041] [PMID: 28329397]
[280]
Rivas-Arancibia, S.; Guevara-Guzmán, R.; López-Vidal, Y.; Rodríguez-Martínez, E.; Zanardo-Gomes, M.; Angoa-Pérez, M.; Raisman-Vozari, R. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol. Sci., 2010, 113(1), 187-197.
[http://dx.doi.org/10.1093/toxsci/kfp252] [PMID: 19833740]
[281]
Santiago-López, D.; Bautista-Martínez, J.A.; Reyes-Hernandez, C.I.; Aguilar-Martínez, M.; Rivas-Arancibia, S. Oxidative stress, progressive damage in the substantia nigra and plasma dopamine oxidation, in rats chronically exposed to ozone. Toxicol. Lett., 2010, 197(3), 193-200.
[http://dx.doi.org/10.1016/j.toxlet.2010.05.020] [PMID: 20541596]
[282]
Markesbery, W.R. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med., 1997, 23(1), 134-147.
[http://dx.doi.org/10.1016/S0891-5849(96)00629-6] [PMID: 9165306]
[283]
Feng, Y.; Wang, X. Antioxidant therapies for Alzheimer’s disease. Oxid. Med. Cell. Longev., 2012, 2012, 1-17.
[http://dx.doi.org/10.1155/2012/472932] [PMID: 22888398]
[284]
Sochocka, M.; Koutsouraki, E.; Gasiorowski, K.; Leszek, J. Vascular oxidative stress and mitochondrial failure in the pathobiology of Alzheimer’s disease: a new approach to therapy. CNS Neurol. Disord. Drug Targets, 2013, 12(6), 870-881.
[http://dx.doi.org/10.2174/18715273113129990072] [PMID: 23469836]
[285]
Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74.
[http://dx.doi.org/10.2174/157015909787602823] [PMID: 19721819]
[286]
Dansokho, C.; Heneka, M.T. Neuroinflammatory responses in Alzheimer’s disease. J. Neural Transm., 2018, 125(5), 771-779.
[http://dx.doi.org/10.1007/s00702-017-1831-7] [PMID: 29273951]
[287]
Duncan, T.; Valenzuela, M. Alzheimer’s disease, dementia, and stem cell therapy. Stem Cell Res. Ther., 2017, 8(1), 111.
[http://dx.doi.org/10.1186/s13287-017-0567-5] [PMID: 28494803]
[288]
Zhao, Y.; Zhao, B. Oxidative stress and the pathogenesis of Alzheimer’s disease. Oxid. Med. Cell. Longev., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/316523] [PMID: 23983897]
[289]
Lepka, K.; Volbracht, K.; Bill, E.; Schneider, R.; Rios, N.; Hildebrandt, T.; Ingwersen, J.; Prozorovski, T.; Lillig, C.H.; van Horssen, J.; Steinman, L.; Hartung, H.P.; Radi, R.; Holmgren, A.; Aktas, O.; Berndt, C. Iron-sulfur glutaredoxin 2 protects oligodendrocytes against damage induced by nitric oxide release from activated microglia. Glia, 2017, 65(9), 1521-1534.
[http://dx.doi.org/10.1002/glia.23178] [PMID: 28618115]
[290]
Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol., 2018, 14, 450-464.
[http://dx.doi.org/10.1016/j.redox.2017.10.014] [PMID: 29080524]
[291]
Smith, M.A. Alzheimer disease. Int. Rev. Neurobiol., 1998, 42, 1-54.
[http://dx.doi.org/10.1016/S0074-7742(08)60607-8] [PMID: 9476170]
[292]
Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med., 2010, 12(1), 1-12.
[http://dx.doi.org/10.1007/s12017-009-8104-z] [PMID: 20232515]
[293]
Carrillo-Mora, P.; Luna, R.; Colín-Barenque, L. Amyloid beta: multiple mechanisms of toxicity and only some protective effects? Oxid. Med. Cell. Longev., 2014, 2014, 1-15.
[http://dx.doi.org/10.1155/2014/795375] [PMID: 24683437]
[294]
Butterfield, D.A.; Boyd-Kimball, D. Oxidative stress, amyloid-β peptide, and altered key molecular pathways in the pathogenesis and progression of Alzheimer’s disease. J. Alzheimers Dis., 2018, 62(3), 1345-1367.
[http://dx.doi.org/10.3233/JAD-170543] [PMID: 29562527]
[295]
Goedert, M.; Spillantini, M.G. A century of Alzheimer’s disease. Science, 2006, 314(5800), 777-781.
[http://dx.doi.org/10.1126/science.1132814] [PMID: 17082447]
[296]
Gamblin, T.C.; King, M.E.; Kuret, J.; Berry, R.W.; Binder, L.I. Oxidative regulation of fatty acid-induced tau polymerization. Biochemistry, 2000, 39(46), 14203-14210.
[http://dx.doi.org/10.1021/bi001876l] [PMID: 11087369]
[297]
Stancu, I.C.; Vasconcelos, B.; Terwel, D.; Dewachter, I. Models of β-amyloid induced Tau-pathology: the long and “folded” road to understand the mechanism. Mol. Neurodegener., 2014, 9(1), 51.
[http://dx.doi.org/10.1186/1750-1326-9-51] [PMID: 25407337]
[298]
Montoliu-Gaya, L.; Villegas, S. Protein structures in Alzheimer’s disease: The basis for rationale therapeutic design. Arch. Biochem. Biophys., 2015, 588, 1-14.
[http://dx.doi.org/10.1016/j.abb.2015.10.005] [PMID: 26475676]
[299]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[300]
Eckert, A.; Schulz, K.L.; Rhein, V.; Götz, J. Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. Mol. Neurobiol., 2010, 41(2-3), 107-114.
[http://dx.doi.org/10.1007/s12035-010-8109-5] [PMID: 20217279]
[301]
Rhein, V.; Song, X.; Wiesner, A.; Ittner, L.M.; Baysang, G.; Meier, F.; Ozmen, L.; Bluethmann, H.; Dröse, S.; Brandt, U.; Savaskan, E.; Czech, C.; Götz, J.; Eckert, A. Amyloid-β and tau synergistically impair the oxidative phosphorylation system in triple transgenic Alzheimer’s disease mice. Proc. Natl. Acad. Sci., 2009, 106(47), 20057-20062.
[http://dx.doi.org/10.1073/pnas.0905529106] [PMID: 19897719]
[302]
Praticò, D. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol. Sci., 2008, 29(12), 609-615.
[http://dx.doi.org/10.1016/j.tips.2008.09.001] [PMID: 18838179]
[303]
Bradley, M.A.; Xiong-Fister, S.; Markesbery, W.R.; Lovell, M.A. Elevated 4-hydroxyhexenal in Alzheimer’s disease (AD) progression. Neurobiol. Aging, 2012, 33(6), 1034-1044.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.08.016] [PMID: 20965613]
[304]
Chen, Y.R.; Zweier, J.L. Cardiac mitochondria and reactive oxygen species generation. Circ. Res., 2014, 114(3), 524-537.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300559] [PMID: 24481843]
[305]
Wang, Y.; Xu, E.; Musich, P.R.; Lin, F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci. Ther., 2019, 25(7), 816-824.
[http://dx.doi.org/10.1111/cns.13116] [PMID: 30889315]
[306]
Butterfield, D.A.; Lauderback, C.M. Lipid peroxidation and protein oxidation in alzheimer’s disease brain: potential causes and consequences involving amyloid β-peptide-associated free radical oxidative stress 1,2 1guest editors: mark a. smith and george perry 2this article is part of a series of reviews on “causes and consequences of oxidative stress in Alzheimer’s disease. Free Radical Biol. Med.,, 2002, 32(11), 1050-1060.
[307]
Lovell, M.A.; Ehmann, W.D.; Butler, S.M.; Markesbery, W.R. Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology, 1995, 45(8), 1594-1601.
[http://dx.doi.org/10.1212/WNL.45.8.1594] [PMID: 7644059]
[308]
Selley, M.; Close, D.R.; Stern, S.E. The effect of increased concentrations of homocysteine on the concentration of (E)-4-hydroxy-2-nonenal in the plasma and cerebrospinal fluid of patients with Alzheimer’s disease. Neurobiol. Aging, 2002, 23(3), 383-388.
[http://dx.doi.org/10.1016/S0197-4580(01)00327-X] [PMID: 11959400]
[309]
Hensley, K.; Hall, N.; Subramaniam, R.; Cole, P.; Harris, M.; Aksenov, M.; Aksenova, M.; Gabbita, S.P.; Wu, J.F.; Carney, J.M.; Lovell, M.; Markesbery, W.R.; Butterfield, D.A. Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem., 1995, 65(5), 2146-2156.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65052146.x] [PMID: 7595501]
[310]
Hensley, K.; Butterfieldld, D.A.; Hall, N.; Cole, P.; Subramaniam, R.; Mark, R.; Mattson, M.P.; Markesbery, W.R.; Harris, M.E.; Aksenov, M.; Aksenova, M.; Wu, J.F.; Carney, J.M. Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer’s disease-associated amyloid beta peptide. Ann. N. Y. Acad. Sci.,, 1996, 786((1 Near-Earth Ob),), 120-134.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb39057.x] [PMID: 8687014]
[311]
Butterfield, D.A.; Perluigi, M.; Sultana, R. Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur. J. Pharmacol., 2006, 545(1), 39-50.
[http://dx.doi.org/10.1016/j.ejphar.2006.06.026] [PMID: 16860790]
[312]
Castegna, A.; Lauderback, C.M.; Mohmmad-Abdul, H.; Butterfield, D.A. Modulation of phospholipid asymmetry in synaptosomal membranes by the lipid peroxidation products, 4-hydroxynonenal and acrolein: implications for Alzheimer’s disease. Brain Res., 2004, 1004(1-2), 193-197.
[http://dx.doi.org/10.1016/j.brainres.2004.01.036] [PMID: 15033435]
[313]
Omar, R.A.; Chyan, Y.J.; Andorn, A.C.; Poeggeler, B.; Robakis, N.K.; Pappolla, M.A. Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J. Alzheimers Dis., 1999, 1(3), 139-145.
[http://dx.doi.org/10.3233/JAD-1999-1301] [PMID: 12213999]
[314]
Spangenberg, E.E.; Green, K.N. Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain Behav. Immun., 2017, 61, 1-11.
[http://dx.doi.org/10.1016/j.bbi.2016.07.003] [PMID: 27395435]
[315]
Tuppo, E.E.; Arias, H.R. The role of inflammation in Alzheimer’s disease. Int. J. Biochem. Cell Biol., 2005, 37(2), 289-305.
[http://dx.doi.org/10.1016/j.biocel.2004.07.009] [PMID: 15474976]
[316]
Smits, H.A.; van Beelen, A.J.; de Vos, N.M.; Rijsmus, A.; van der Bruggen, T.; Verhoef, J.; van Muiswinkel, F.L.; Nottet, H.S.L.M. Activation of human macrophages by amyloid-beta is attenuated by astrocytes. J. Immunol., 2001, 166(11), 6869-6876.
[http://dx.doi.org/10.4049/jimmunol.166.11.6869] [PMID: 11359847]
[317]
Jevtic, S.; Sengar, A.S.; Salter, M.W.; McLaurin, J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res. Rev., 2017, 40, 84-94.
[http://dx.doi.org/10.1016/j.arr.2017.08.005] [PMID: 28941639]
[318]
Tan, M.S.; Yu, J.T.; Jiang, T.; Zhu, X.C.; Tan, L. The NLRP3 inflammasome in Alzheimer’s disease. Mol. Neurobiol., 2013, 48(3), 875-882.
[http://dx.doi.org/10.1007/s12035-013-8475-x] [PMID: 23686772]
[319]
Zhou, K.; Shi, L.; Wang, Y.; Chen, S.; Zhang, J. Recent Advances of the NLRP3 inflammasome in central nervous system disorders. J. Immunol. Res., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/9238290] [PMID: 27652274]
[320]
Pellicanò, M.; Larbi, A.; Goldeck, D.; Colonna-Romano, G.; Buffa, S.; Bulati, M.; Rubino, G.; Iemolo, F.; Candore, G.; Caruso, C.; Derhovanessian, E.; Pawelec, G. Immune profiling of Alzheimer patients. J. Neuroimmunol., 2012, 242(1-2), 52-59.
[http://dx.doi.org/10.1016/j.jneuroim.2011.11.005] [PMID: 22153977]
[321]
Stojkovska, I.; Wagner, B.M.; Morrison, B.E. Parkinson’s disease and enhanced inflammatory response. Exp. Biol. Med. , 2015, 240(11), 1387-1395.
[http://dx.doi.org/10.1177/1535370215576313] [PMID: 25769314]
[322]
Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative stress in parkinson’s disease: a systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11, 236.
[http://dx.doi.org/10.3389/fnmol.2018.00236] [PMID: 30026688]
[323]
Slivka, A.; Cohen, G. Hydroxyl radical attack on dopamine. J. Biol. Chem., 1985, 260(29), 15466-15472.
[http://dx.doi.org/10.1016/S0021-9258(17)36277-4] [PMID: 2999117]
[324]
Kish, S.J.; Shannak, K.; Rajput, A.; Deck, J.H.N.; Hornykiewicz, O. Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J. Neurochem., 1992, 58(2), 642-648.
[http://dx.doi.org/10.1111/j.1471-4159.1992.tb09766.x] [PMID: 1729408]
[325]
Dalfó, E.; Portero-Otín, M.; Ayala, V.; Martínez, A.; Pamplona, R.; Ferrer, I. Evidence of oxidative stress in the neocortex in incidental Lewy body disease. J. Neuropathol. Exp. Neurol., 2005, 64(9), 816-830.
[http://dx.doi.org/10.1097/01.jnen.0000179050.54522.5a] [PMID: 16141792]
[326]
Bender, A.; Krishnan, K.J.; Morris, C.M.; Taylor, G.A.; Reeve, A.K.; Perry, R.H.; Jaros, E.; Hersheson, J.S.; Betts, J.; Klopstock, T.; Taylor, R.W.; Turnbull, D.M. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet., 2006, 38(5), 515-517.
[http://dx.doi.org/10.1038/ng1769] [PMID: 16604074]
[327]
Beal, M.F. Oxidatively modified proteins in aging and disease. Free Radic. Biol. Med., 2002, 32(9), 797-803.
[http://dx.doi.org/10.1016/S0891-5849(02)00780-3] [PMID: 11978481]
[328]
Brown, G.C.; Borutaite, V. Inhibition of mitochondrial respiratory complex I by nitric oxide, peroxynitrite and S-nitrosothiols. Biochim. Biophys. Acta Bioenerg., 2004, 1658(1-2), 44-49.
[http://dx.doi.org/10.1016/j.bbabio.2004.03.016] [PMID: 15282173]
[329]
Lindqvist, D.; Kaufman, E.; Brundin, L.; Hall, S.; Surova, Y.; Hansson, O. Non-motor symptoms in patients with Parkinson’s disease - correlations with inflammatory cytokines in serum. PLoS One, 2012, 7(10), e47387.
[http://dx.doi.org/10.1371/journal.pone.0047387] [PMID: 23082161]
[330]
Maatouk, L.; Compagnion, A.C.; Sauvage, M.A.C.; Bemelmans, A.P.; Leclere-Turbant, S.; Cirotteau, V.; Tohme, M.; Beke, A.; Trichet, M.; Bazin, V.; Trawick, B.N.; Ransohoff, R.M.; Tronche, F.; Manoury, B.; Vyas, S. TLR9 activation via microglial glucocorticoid receptors contributes to degeneration of midbrain dopamine neurons. Nat. Commun., 2018, 9(1), 2450.
[http://dx.doi.org/10.1038/s41467-018-04569-y] [PMID: 29934589]
[331]
Janda, E.; Boi, L.; Carta, A.R. Microglial phagocytosis and its regulation: a therapeutic target in Parkinson’s disease? Front. Mol. Neurosci., 2018, 11, 144.
[http://dx.doi.org/10.3389/fnmol.2018.00144] [PMID: 29755317]
[332]
Cadenas, E. Basic mechanisms of antioxidant activity. Biofactors, 1997, 6(4), 391-397.
[http://dx.doi.org/10.1002/biof.5520060404] [PMID: 9388304]
[333]
Zhivotovsky, B.; Orrenius, S. Calcium and cell death mechanisms: A perspective from the cell death community. Cell Calcium, 2011, 50(3), 211-221.
[http://dx.doi.org/10.1016/j.ceca.2011.03.003] [PMID: 21459443]
[334]
Neha, K.; Haider, M.R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem., 2019, 178, 687-704.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.010] [PMID: 31228811]
[335]
Wojcik, M.; Burzynska-Pedziwiatr, I.; Wozniak, L. A review of natural and synthetic antioxidants important for health and longevity. Curr. Med. Chem., 2010, 17(28), 3262-3288.
[http://dx.doi.org/10.2174/092986710792231950] [PMID: 20666718]
[336]
Irato, P.; Santovito, G. Enzymatic and non-enzymatic molecules with antioxidant function. Antioxidants, 2021, 10(4), 579.
[http://dx.doi.org/10.3390/antiox10040579] [PMID: 33918542]
[337]
Dietz, K.J. Redox control, redox signaling, and redox homeostasis in plant cells. Int. Rev. Cytol., 2003, 228, 141-193.
[http://dx.doi.org/10.1016/S0074-7696(03)28004-9] [PMID: 14667044]
[338]
Höhn, A.; Weber, D.; Jung, T.; Ott, C.; Hugo, M.; Kochlik, B.; Kehm, R.; König, J.; Grune, T.; Castro, J.P. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol., 2017, 11, 482-501.
[http://dx.doi.org/10.1016/j.redox.2016.12.001] [PMID: 28086196]
[339]
Bast, A.; Haenen, G.R.M.M. Ten misconceptions about antioxidants. Trends Pharmacol. Sci., 2013, 34(8), 430-436.
[http://dx.doi.org/10.1016/j.tips.2013.05.010] [PMID: 23806765]
[340]
Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst., 1999, 91(4), 317-331.
[http://dx.doi.org/10.1093/jnci/91.4.317] [PMID: 10050865]
[341]
Weisburger, J.H. Mechanisms of action of antioxidants as exemplified in vegetables, tomatoes and tea. Food Chem. Toxicol., 1999, 37(9-10), 943-948.
[http://dx.doi.org/10.1016/S0278-6915(99)00086-1] [PMID: 10541449]
[342]
McCormick, C.C.; Parker, R.S. The cytotoxicity of vitamin E is both vitamer- and cell-specific and involves a selectable trait. J. Nutr., 2004, 134(12), 3335-3342.
[http://dx.doi.org/10.1093/jn/134.12.3335] [PMID: 15570034]
[343]
Fitzpatrick, F.A.; Soberman, R. Regulated formation of eicosanoids. J. Clin. Invest., 2001, 107(11), 1347-1351.
[http://dx.doi.org/10.1172/JCI13241] [PMID: 11390414]
[344]
Gülçin, İ. Antioxidant activity of food constituents: an overview. Arch. Toxicol., 2012, 86(3), 345-391.
[http://dx.doi.org/10.1007/s00204-011-0774-2] [PMID: 22102161]
[345]
Khalil, M.; Rita Caponio, G.; Diab, F.; Shanmugam, H.; Di Ciaula, A.; Khalifeh, H.; Vergani, L.; Calasso, M.; De Angelis, M.; Portincasa, P. Unraveling the beneficial effects of herbal Lebanese mixture “Za’atar”. History, studies, and properties of a potential healthy food ingredient. J. Funct. Foods, 2022, 90, 104993.
[http://dx.doi.org/10.1016/j.jff.2022.104993]
[346]
Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: current status and future prospects. Curr. Med. Chem., 2011, 18(25), 3871-3888.
[http://dx.doi.org/10.2174/092986711803414368] [PMID: 21824100]
[347]
Di Vincenzo, A.; Tana, C.; El Hadi, H.; Pagano, C.; Vettor, R.; Rossato, M. Antioxidant, anti-inflammatory, and metabolic properties of tocopherols and tocotrienols: clinical implications for vitamin e supplementation in diabetic kidney disease. Int. J. Mol. Sci., 2019, 20(20), 5101.
[http://dx.doi.org/10.3390/ijms20205101] [PMID: 31618817]
[348]
Cammisotto, V.; Nocella, C.; Bartimoccia, S.; Sanguigni, V.; Francomano, D.; Sciarretta, S.; Pastori, D.; Peruzzi, M.; Cavarretta, E.; D’Amico, A.; Castellani, V.; Frati, G.; Carnevale, R.; Group, S.M. The role of antioxidants supplementation in clinical practice: focus on cardiovascular risk factors. Antioxidants, 2021, 10(2), 146.
[http://dx.doi.org/10.3390/antiox10020146] [PMID: 33498338]
[349]
Khalil, M.; Bazzi, A.; Zeineddine, D.; Jomaa, W.; Daher, A.; Awada, R. Repressive effect of Rhus coriaria L. fruit extracts on microglial cells-mediated inflammatory and oxidative stress responses. J. Ethnopharmacol., 2021, 269, 113748.
[http://dx.doi.org/10.1016/j.jep.2020.113748] [PMID: 33359864]
[350]
Khalil, M.; Khalifeh, H.; Saad, F.; Serale, N.; Salis, A.; Damonte, G.; Lupidi, G.; Daher, A.; Vergani, L. Protective effects of extracts from Ephedra foeminea Forssk fruits against oxidative injury in human endothelial cells. J. Ethnopharmacol., 2020, 260, 112976.
[http://dx.doi.org/10.1016/j.jep.2020.112976] [PMID: 32428657]
[351]
Lammi, C.; Arnoldi, A. Food-derived antioxidants and COVID-19. J. Food Biochem., 2021, 45(1), e13557.
[http://dx.doi.org/10.1111/jfbc.13557] [PMID: 33171544]
[352]
Roberfroid, M.B. What is beneficial for health? The concept of functional food. Food Chem. Toxicol., 1999, 37(9-10), 1039-1041.
[http://dx.doi.org/10.1016/S0278-6915(99)00080-0] [PMID: 10541461]
[353]
Papas, A.M. Diet and antioxidant status. Food Chem. Toxicol., 1999, 37(9-10), 999-1007.
[http://dx.doi.org/10.1016/S0278-6915(99)00088-5] [PMID: 10541457]
[354]
Akbarirad, H.; Ardabili, A.G.; Kazemeini, S.M.; Khaneghah, A.M. An overview on some of important sources of natural antioxidants. Int. Food Res. J., 2016, 23(3), 928-933.
[355]
Stadtman, E.R. Protein oxidation in aging and age-related diseases. Ann. N. Y. Acad. Sci., 2001, 928(1), 22-38.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb05632.x] [PMID: 11795513]
[356]
Agarwal, A.; Sekhon, L.H. The role of antioxidant therapy in the treatment of male infertility. Hum. Fertil., 2010, 13(4), 217-225.
[http://dx.doi.org/10.3109/14647273.2010.532279] [PMID: 21117931]
[357]
Lichota, A.; Gwozdzinski, L.; Gwozdzinski, K. Therapeutic potential of natural compounds in inflammation and chronic venous insufficiency. Eur. J. Med. Chem., 2019, 176, 68-91.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.075] [PMID: 31096120]
[358]
Moreno-Macias, H.; Romieu, I. Effects of antioxidant supplements and nutrients on patients with asthma and allergies. J. Allergy Clin. Immunol., 2014, 133(5), 1237-1244.
[http://dx.doi.org/10.1016/j.jaci.2014.03.020] [PMID: 24766873]
[359]
Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem., 2014, 84, 206-239.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.013] [PMID: 25019478]
[360]
Xu, D.P.; Li, Y.; Meng, X.; Zhou, T.; Zhou, Y.; Zheng, J.; Zhang, J.J.; Li, H.B. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int. J. Mol. Sci., 2017, 18(1), 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[361]
Embuscado, M.E. Spices and herbs: Natural sources of antioxidants – a mini review. J. Funct. Foods, 2015, 18, 811-819.
[http://dx.doi.org/10.1016/j.jff.2015.03.005]
[362]
Wang, H.; Cao, G.; Prior, R.L. Total antioxidant capacity of fruits. J. Agric. Food Chem., 1996, 44(3), 701-705.
[http://dx.doi.org/10.1021/jf950579y]
[363]
Lin, J.K.; Lin, C.L.; Liang, Y.C.; Lin-Shiau, S.Y.; Juan, I.M. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem., 1998, 46(9), 3635-3642.
[http://dx.doi.org/10.1021/jf980223x]
[364]
Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: antioxidants or signalling molecules? Free Radic. Biol. Med., 2004, 36(7), 838-849.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001] [PMID: 15019969]
[365]
Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278.
[http://dx.doi.org/10.4161/oxim.2.5.9498] [PMID: 20716914]
[366]
Kolehmainen, M.; Mykkänen, O.; Kirjavainen, P.V.; Leppänen, T.; Moilanen, E.; Adriaens, M.; Laaksonen, D.E.; Hallikainen, M.; Puupponen-Pimiä, R.; Pulkkinen, L.; Mykkänen, H.; Gylling, H.; Poutanen, K.; Törrönen, R. Bilberries reduce low-grade inflammation in individuals with features of metabolic syndrome. Mol. Nutr. Food Res., 2012, 56(10), 1501-1510.
[http://dx.doi.org/10.1002/mnfr.201200195] [PMID: 22961907]
[367]
Fitó, M.; Cladellas, M.; de la Torre, R.; Martí, J.; Muñoz, D.; Schröder, H.; Alcántara, M.; Pujadas-Bastardes, M.; Marrugat, J.; López-Sabater, M.C.; Bruguera, J.; Covas, M.I.; Investigators, S. Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: a randomized, crossover, controlled trial. Eur. J. Clin. Nutr., 2008, 62(4), 570-574.
[http://dx.doi.org/10.1038/sj.ejcn.1602724] [PMID: 17375118]
[368]
Carluccio, M.A.; Siculella, L.; Ancora, M.A.; Massaro, M.; Scoditti, E.; Storelli, C.; Visioli, F.; Distante, A.; De Caterina, R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol., 2003, 23(4), 622-629.
[http://dx.doi.org/10.1161/01.ATV.0000062884.69432.A0] [PMID: 12615669]
[369]
Wilkinson-Berka, J.L.; Rana, I.; Armani, R.; Agrotis, A. Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Clin. Sci., 2013, 124(10), 597-615.
[http://dx.doi.org/10.1042/CS20120212] [PMID: 23379642]
[370]
Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 2002, 13(10), 572-584.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[371]
de Souza, R.F.V.; De Giovani, W.F. Antioxidant properties of complexes of flavonoids with metal ions. Redox Rep., 2004, 9(2), 97-104.
[http://dx.doi.org/10.1179/135100004225003897] [PMID: 15231064]
[372]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[373]
Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(S1), 230S-242S.
[http://dx.doi.org/10.1093/ajcn/81.1.230S] [PMID: 15640486]
[374]
Aron, P.M.; Kennedy, J.A. Flavan-3-ols: Nature, occurrence and biological activity. Mol. Nutr. Food Res., 2008, 52(1), 79-104.
[http://dx.doi.org/10.1002/mnfr.200700137] [PMID: 18081206]
[375]
Chu, A. Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflamm. Allergy Drug Targets, 2014, 13(1), 34-64.
[http://dx.doi.org/10.2174/1871528112666131119211002] [PMID: 24251781]
[376]
Checkoway, H.; Powers, K.; Smith-Weller, T.; Franklin, G.M.; Longstreth, W.T., Jr; Swanson, P.D. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am. J. Epidemiol., 2002, 155(8), 732-738.
[http://dx.doi.org/10.1093/aje/155.8.732] [PMID: 11943691]
[377]
Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am. J. Med., 2006, 119(9), 751-759.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.045] [PMID: 16945610]
[378]
Dou, Q.P.; Taskeen, M.; Mohammad, I.; Huo, C.; Chan, T.H.; Dou, Q.P. Recent advances on tea polyphenols. Front. Biosci., 2012, E4(1), 111-131.
[http://dx.doi.org/10.2741/e363] [PMID: 22201858]
[379]
Vauzour, D.; Vafeiadou, K.; Rice-Evans, C.; Williams, R.J.; Spencer, J.P.E. Activation of pro-survival Akt and ERK1/2 signalling pathways underlie the anti-apoptotic effects of flavanones in cortical neurons. J. Neurochem., 2007, 103(4), 1355-1367.
[http://dx.doi.org/10.1111/j.1471-4159.2007.04841.x] [PMID: 17961201]
[380]
Vafeiadou, K.; Vauzour, D.; Lee, H.Y.; Rodriguez-Mateos, A.; Williams, R.J.; Spencer, J.P.E. The citrus flavanone naringenin inhibits inflammatory signalling in glial cells and protects against neuroinflammatory injury. Arch. Biochem. Biophys., 2009, 484(1), 100-109.
[http://dx.doi.org/10.1016/j.abb.2009.01.016] [PMID: 19467635]
[381]
Khalil, M.; Khalifeh, H.; Baldini, F.; Serale, N.; Parodi, A.; Voci, A.; Vergani, L.; Daher, A. Antitumor activity of ethanolic extract from thymbra spicata l. aerial parts: effects on cell viability and proliferation, apoptosis induction, stat3, and nf-kb signaling. Nutr. Cancer, 2021, 73(7), 1193-1206.
[http://dx.doi.org/10.1080/01635581.2020.1792517] [PMID: 32696667]
[382]
Hadi, S.M.; Asad, S.F.; Singh, S.; Ahmad, A. Putative mechanism for anticancer and apoptosis-inducing properties of plant-derived polyphenolic compounds. IUBMB Life, 2000, 50(3), 167-171.
[http://dx.doi.org/10.1080/152165400300001471] [PMID: 11142343]
[383]
Xia, Y. Shen, S.; Verma, I.M. NF-κB, an active player in human cancers. Cancer Immunol. Res., 2014, 2(9), 823-830.
[http://dx.doi.org/10.1158/2326-6066.CIR-14-0112] [PMID: 25187272]
[384]
Wessner, B.; Strasser, E.M.; Koitz, N.; Schmuckenschlager, C.; Unger-Manhart, N.; Roth, E. Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice. J. Nutr., 2007, 137(3), 634-640.
[http://dx.doi.org/10.1093/jn/137.3.634] [PMID: 17311952]
[385]
Harper, C.E.; Patel, B.B.; Wang, J.; Eltoum, I.A.; Lamartiniere, C.A. Epigallocatechin-3-Gallate suppresses early stage, but not late stage prostate cancer in TRAMP mice: Mechanisms of action. Prostate, 2007, 67(14), 1576-1589.
[http://dx.doi.org/10.1002/pros.20643] [PMID: 17705241]
[386]
Chuang, S.E.; Cheng, A.L.; Lin, J.K.; Kuo, M.L. Inhibition by curcumin of diethylnitrosamine-induced hepatic hyperplasia, inflammation, cellular gene products and cell-cycle-related proteins in rats. Food Chem. Toxicol., 2000, 38(11), 991-995.
[http://dx.doi.org/10.1016/S0278-6915(00)00101-0] [PMID: 11038236]
[387]
Ueda, S.; Yasunari, K. What we learnt from randomized clinical trials and cohort studies of antioxidant vitamin? Focus on vitamin E and cardiovascular disease. Curr. Pharm. Biotechnol., 2006, 7(2), 69-72.
[http://dx.doi.org/10.2174/138920106776597649] [PMID: 16724939]
[388]
Iannitti, T.; Palmieri, B. Antioxidant therapy effectiveness: an up to date. Eur. Rev. Med. Pharmacol. Sci., 2009, 13(4), 245-278.
[PMID: 19694341]
[389]
Bjelakovic, G.; Nikolova, D.; Gluud, L.L.; Simonetti, R.G.; Gluud, C. Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Libr., 2012, 2012(3), CD007176.
[http://dx.doi.org/10.1002/14651858.CD007176.pub2] [PMID: 22419320]
[390]
Curti, V.; Di Lorenzo, A.; Dacrema, M.; Xiao, J.; Nabavi, S.M.; Daglia, M. In vitro polyphenol effects on apoptosis: An update of literature data. Semin. Cancer Biol., 2017, 46, 119-131.
[http://dx.doi.org/10.1016/j.semcancer.2017.08.005] [PMID: 28830771]
[391]
Pan, P.; Skaer, C.; Yu, J.; Zhao, H.; Ren, H.; Oshima, K.; Wang, L.S. Berries and other natural products in pancreatic cancer chemoprevention in human clinical trials. J. Berry Res., 2017, 7(3), 147-161.
[http://dx.doi.org/10.3233/JBR-170159] [PMID: 29367867]
[392]
Stanley, W.C.; Khairallah, R.J.; Dabkowski, E.R. Update on lipids and mitochondrial function. Curr. Opin. Clin. Nutr. Metab. Care, 2012, 15(2), 122-126.
[http://dx.doi.org/10.1097/MCO.0b013e32834fdaf7] [PMID: 22248591]
[393]
Zuo, Y.; Wang, C.; Zhan, J. Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS. J. Agric. Food Chem., 2002, 50(13), 3789-3794.
[http://dx.doi.org/10.1021/jf020055f] [PMID: 12059161]
[394]
Spencer, J.P.E.; Abd El Mohsen, M.M.; Minihane, A.M.; Mathers, J.C. Biomarkers of the intake of dietary polyphenols: strengths, limitations and application in nutrition research. Br. J. Nutr., 2008, 99(1), 12-22.
[http://dx.doi.org/10.1017/S0007114507798938] [PMID: 17666146]
[395]
Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: an application of the Phenol-Explorer database. Eur. J. Clin. Nutr., 2010, 64(S3), S112-S120.
[http://dx.doi.org/10.1038/ejcn.2010.221] [PMID: 21045839]
[396]
Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25.
[http://dx.doi.org/10.1016/j.fct.2012.09.021] [PMID: 23017782]
[397]
Margaritelis, N.V. Antioxidants as therapeutics in the intensive care unit: Have we ticked the redox boxes? Pharmacol. Res., 2016, 111, 126-132.
[http://dx.doi.org/10.1016/j.phrs.2016.06.004] [PMID: 27270047]
[398]
Rodrigo, R.; Guichard, C.; Charles, R. Clinical pharmacology and therapeutic use of antioxidant vitamins. Fundam. Clin. Pharmacol., 2007, 21(2), 111-127.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00466.x] [PMID: 17391284]
[399]
Yokose, C.; McCormick, N.; Rai, S.K.; Lu, N.; Curhan, G.; Schwarzfuchs, D.; Shai, I.; Choi, H.K. Effects of low-fat, mediterranean, or low-carbohydrate weight loss diets on serum urate and cardiometabolic risk factors: a secondary analysis of the Dietary Intervention Randomized Controlled Trial (DIRECT). Diabetes Care, 2020, 43(11), 2812-2820.
[http://dx.doi.org/10.2337/dc20-1002] [PMID: 33082244]
[400]
Xu, J.; Wang, A.; Meng, X.; Yalkun, G.; Xu, A.; Gao, Z.; Chen, H.; Ji, Y.; Xu, J.; Geng, D.; Zhu, R.; Liu, B.; Dong, A.; Mu, H.; Lu, Z.; Li, S.; Zheng, H.; Chen, X.; Wang, Y.; Zhao, X.; Wang, Y.; Wang, Y.; Xu, A.; Zhao, X.; Chen, X.; Wang, Y.; Meng, X.; Wang, Y.; Xu, J.; Wang, A.; Zheng, H.; Gao, Z.; Duan, L.; Zhang, J.; Li, S.; Lou, D.; Gao, Z.; Chen, H.; Ji, Y.; Xu, J.; Geng, D.; Zhu, R.; Liu, B.; Dong, A.; Liang, Q.; Yang, H.; Guo, C.; Li, X.; He, M.; Tian, X.; Cui, Y.; Zhou, J.; Wang, N.; Wang, L.; Zhang, X.; Gao, X.; Lu, L.; Li, T.; Cheng, Y.; Liu, K.; Xi, X.; Wang, B.; Sun, L.; Zhao, S.; Chu, X.; Lian, Y.; Yan, F.; Wang, X.; Wang, D.; Shao, B.; Jiao, J.; Wu, H.; Li, G.; Guo, L.; Wang, Y.; Pan, S.; Xu, A.; Li, H.; Zhuang, J.; Li, X.; Wu, J.; Wang, A.; Lou, D.; Zuo, Y.; Zhang, Y.; Zhang, X.; Feng, X.; Meng, X.; Wang, D.; Dong, K.; Liu, Y.; Li, H.; Chen, D.; Lv, Q. Edaravone dexborneol versus edaravone alone for the treatment of acute ischemic stroke. Stroke, 2021, 52(3), 772-780.
[http://dx.doi.org/10.1161/STROKEAHA.120.031197] [PMID: 33588596]
[401]
Alehagen, U.; Aaseth, J.; Lindahl, T.L.; Larsson, A.; Alexander, J. Dietary supplementation with selenium and coenzyme q10 prevents increase in plasma d-dimer while lowering cardiovascular mortality in an elderly swedish population. Nutrients, 2021, 13(4), 1344.
[http://dx.doi.org/10.3390/nu13041344] [PMID: 33920725]
[402]
Vidimce, J.; Pennell, E.N.; Foo, M.; Shiels, R.G.; Shibeeb, S.; Watson, M.; Bulmer, A.C. Effect of silymarin treatment on circulating bilirubin and cardiovascular disease risk factors in healthy men: a single-blind, randomized crossover trial. Clin. Pharmacol. Drug Dev., 2021, 10(10), 1156-1165.
[http://dx.doi.org/10.1002/cpdd.962] [PMID: 34242497]
[403]
Chan, S.W.; Chu, T.T.W.; Choi, S.W.; Benzie, I.F.F.; Tomlinson, B. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother. Res., 2021, 35(6), 3236-3245.
[http://dx.doi.org/10.1002/ptr.7038] [PMID: 33599340]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy