Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Editor's Perspective

Wnt Signaling and WISP1 (CCN4): Critical Components in Neurovascular Disease, Blood Brain Barrier Regulation, and Cerebral Hemorrhage

Author(s): Kenneth Maiese

Volume 19, Issue 4, 2022

Published on: 19 October, 2022

Page: [379 - 382] Pages: 4

DOI: 10.2174/1567202620666221019162248

Next »
[1]
Maiese K. Neurodegeneration, memory loss, and dementia: The impact of biological clocks and circadian rhythm. Front Biosci 2021; 26(9): 614-27.
[2]
Li F, Chong ZZ, Maiese K. Winding through the WNT pathway during cellular development and demise. Histol Histopathol 2006; 21(1): 103-24.
[3]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[4]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[5]
Ma NX, Puls B, Chen G. Transcriptomic analyses of NeuroD1-mediated astrocyte-to-neuron conversion. Dev Neurobiol 2022; 82(5): 375-91.
[6]
Ren LL, Zhou JY, Liang SJ, Wang XQ. Impaired intestinal stem cell activity in ETEC infection: enterotoxins, cyclic nucleotides, and Wnt signaling. Arch Toxicol 2022; 96: 1213-25.
[7]
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt Signaling Pathways: A Role in Pain Processing. Neuromolecular Med 2022; 24(3): 233-49.
[8]
Ma D, Hou L, Xia H, Li H, Fan H, Jia X, et al. PER2 inhibits proliferation and stemness of glioma stem cells via the Wnt/β-catenin signaling pathway. Oncol Rep 2020; 44(2): 533-42.
[9]
Marchetti B. Wnt/beta-Catenin signaling pathway governs a full program for dopaminergic neuron survival, neurorescue and regeneration in the MPTP mouse model of parkinson’s disease. Int J Mol Sci 2018; 19(12): 3743.
[10]
Guo T, Cao G, Li Y, Zhang Z, Nor JE, Clarkson BH, et al. Signals in stem cell differentiation on fluorapatite-modified scaffolds. J Dent Res 2018; 97(12): 1331-8.
[11]
Han XR, Wen X, Wang YJ, Wang S, Shen M, Zhang ZF, et al. MicroRNA-140-5p elevates cerebral protection of dexmedetomidine against hypoxic-ischaemic brain damage via the Wnt/beta-catenin signalling pathway. J Cell Mol Med 2018; 22(6): 3167-82.
[12]
Maiese K. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[13]
Maiese K. Sirtuins: Developing innovative treatments for aged-related memory loss and alzheimer’s disease. Curr Neurovasc Res 2018; 15(4): 367-71.
[14]
Tanioka M, Park WK, Shim I, et al. Neuroprotection from excitotoxic injury by local administration of lipid emulsion into the brain of rats. Int J Mol Sci 2020; 21(8): 2706.
[15]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[16]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[17]
Sedighi M, Baluchnejadmojarad T, Afshin-Majd S, Amiri M, Aminzade M, Roghani M. Anti-aging Klotho Protects SH-SY5Y Cells Against Amyloid β1-42 Neurotoxicity: Involvement of Wnt1/pCREB/Nrf2/HO-1 Signaling. J Mol Neurosci 2020; 71(1): 19-27.
[18]
Engin AB, Engin A. Alzheimer’s disease and protein kinases. Adv Exp Med Biol 2021; 1275: 285-321.
[19]
Jarero-Basulto J, Rivera-Cervantes M, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of alzheimer’s disease. Pharmaceuticals 2020; 13(424): 1-22.
[20]
Liu SL, Lin HX, Lin CY, Sun XQ, Ye LP, Qiu F, et al. TIMELESS confers cisplatin resistance in nasopharyngeal carcinoma by activating the Wnt/beta-catenin signaling pathway and promoting the epithelial mesenchymal transition. Cancer Lett 2017; 402: 117-30.
[21]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[22]
Maiese K. Regeneration in the nervous system with erythropoietin. Front Biosci 2016; 21: 561-96.
[23]
Olsen JJ, Pohl SO, Deshmukh A, Visweswaran M, Ward NC, Arfuso F, et al. The role of wnt signalling in angiogenesis. Clin Biochem Rev 2017; 38(3): 131-42.
[24]
Tsai HC, Tzeng HE, Huang CY, Huang YL, Tsai CH, Wang SW, et al. WISP-1 positively regulates angiogenesis by controlling VEGF-A expression in human osteosarcoma. Cell Death Dis 2017; 8(4): e2750.
[25]
Wright LH, Herr DJ, Brown SS, Kasiganesan H, Menick DR. Angiokine Wisp-1 is increased in myocardial infarction and regulates cardiac endothelial signaling. JCI Insight 2018; 3(4): e95824.
[26]
Liu D, Zhang M, Tian J, Gao M, Liu M, Fu X, et al. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J Hypertens 2022; 40(9): 1666-81.
[27]
Chen Y, Huang C, Zhu SY, Zou HC, Xu CY, Chen YX. Overexpression of HOTAIR attenuates Pi-induced vascular calcification by inhibiting Wnt/β-catenin through regulating miR-126/Klotho/SIRT1 axis. Mol Cell Biochem 2021; 476(10): 3551-61.
[28]
Gao L, Chen B, Li J, Yang F, Cen X, Liao Z, et al. Wnt/beta-catenin signaling pathway inhibits the proliferation and apoptosis of U87 glioma cells via different mechanisms. PLoS One 2017; 12(8): e0181346.
[29]
Jia S, Qu T, Feng M, Ji K, Li Z, Jiang W, et al. Association of Wnt1-inducible signaling pathway protein-1 with the proliferation, migration and invasion in gastric cancer cells. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine 2017; 39(6): 1010428317699755.
[30]
Liu Y, Qin W, Zhang F, Wang J, Li X, Li S, et al. Association between WNT-1-inducible signaling pathway protein-1 (WISP1) genetic polymorphisms and the risk of gastric cancer in Guangxi Chinese. Cancer Cell Int 2021; 21(1): 405.
[31]
Maiese K. Stem cell guidance through the mechanistic target of rapamycin. World J Stem Cells 2015; 7(7): 999-1009.
[32]
Maiese K. Forkhead transcription factors: Formulating a FOXO target for cognitive loss. Curr Neurovasc Res 2017; 14(4): 415-20.
[33]
Zhu Y, Li W, Yang Y, Li Y, Zhao Y. WISP1 indicates poor prognosis and regulates cell proliferation and apoptosis in gastric cancer via targeting AKT/mTOR signaling pathway. Am J Transl Res 2020; 12(11): 7297-311.
[34]
Li Y, Wang F, Liu T, Lv N, Yuan X, Li P. WISP1 induces ovarian cancer via the IGF1/αvβ3/Wnt axis. J Ovarian Res 2022; 15(1): 94.
[35]
Xu JX, Fang K, Gao XR, Liu S, Ge JF. Resveratrol protects SH-SY5Y cells against oleic acid-induced glucolipid metabolic dysfunction and cell injuries via the Wnt/β-catenin signalling pathway. Neurochem Res 202 46(11): 2936-47.
[36]
Paul R, Bapat P, Deogharkar A, Kazi S, Singh SKV, Gupta T, et al. MiR-592 activates the mTOR kinase, ERK1/ERK2 kinase signaling and imparts neuronal differentiation signature characteristic of group 4 medulloblastoma. Hum Mol Genet 2021; 30(24): 2416-28.
[37]
Klimontov VV, Bulumbaeva DM, Fazullina ON, Lykov AP, Bgatova NP, Orlov NB, et al. Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2020; 14(1): 101-9.
[38]
Liu JJ, Shentu LM, Ma N, Wang LY, Zhang GM, Sun Y, et al. Inhibition of NF-kappaB and Wnt/beta-catenin/GSK3 beta signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in streptozotocin (STZ)-induced type 1 diabetic rats. Curr Med Sci 2020; 40(1): 35-47.
[39]
Liu L, Hu J, Yang L, Wang N, Liu Y, Wei X, et al. Association of WISP1/CCN4 with risk of overweight and gestational diabetes mellitus in chinese pregnant women. Dis Markers 2020; 2020: 4934206.
[40]
Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2015; 2015(2015): 875961.
[41]
Maiese K. Heightened attention for wnt signaling in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 215-7.
[42]
Liu L, Xu S, Li P, Li L. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway. Obes Res Clin Pract 2022; 16(2): 122-9.
[43]
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25(14): 6479-95.
[44]
Xie T, Ye W, Liu J, Zhou L, Song Y. The emerging key role of klotho in the hypothalamus-pituitary-ovarian axis. Reprod Sci 2021; 28(2): 322-31.
[45]
Maiese K. FoxO proteins in the nervous system. Anal Cell Pathol (Amst) 2015; 2015: 569392.
[46]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[47]
Vallée A, Vallée JN, Lecarpentier Y. Parkinson’s disease: Potential actions of lithium by targeting the WNT/β-catenin pathway, oxidative stress, inflammation and glutamatergic pathway. Cells 2021; 10(2): 230.
[48]
L’Episcopo F, Tirolo C, Peruzzotti-Jametti L, Serapide MF, Testa N, Caniglia S, et al. Neural stem cell grafts promote astroglia-driven neurorestoration in the aged parkinsonian brain via wnt/beta-catenin signaling. Stem Cells 2018; 36(8): 1179-97.
[49]
Marchetti B. Nrf2/Wnt resilience orchestrates rejuvenation of glia-neuron dialogue in Parkinson’s disease. Redox Biol 2020; 36: 101664.
[50]
Knotek T, Janeckova L, Kriska J, Korinek V, Anderova M. Glia and neural stem and progenitor cells of the healthy and ischemic brain: The workplace for the wnt signaling pathway. Genes (Basel) 2020; 11(7): 804.
[51]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[52]
González-Fernández C, González P, González-Pérez F, Rodríguez F. Characterization of ex vivo and in vitro wnt transcriptome induced by spinal cord injury in rat microglial cells. Brain Sci 2022; 12(6): 708.
[53]
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-kappaB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22(9): 1317-29.
[54]
Shang YC, Chong ZZ, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8(4): 270-85.
[55]
Shang YC, Chong ZZ, Wang S, Maiese K. WNT1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern beta-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2012; 9(4): 239-49.
[56]
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of beta-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging (Albany NY) 2012; 4(3): 187-201.
[57]
Shang YC, Chong ZZ, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[58]
Krupska I, Bruford EA, Chaqour B. Eyeing the Cyr61/CTGF/NOV (CCN) group of genes in development and diseases: highlights of their structural likenesses and functional dissimilarities. Hum Genomics 2015; 9(1): 24.
[59]
Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 2014; 11(4): 378-89.
[60]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) Autophagy. 2021; 8: pp. (4)1-382.
[61]
Maiese K. Picking a bone with WISP1 (CCN4): New strategies against degenerative joint disease. J Transl Sci 2016; 1(3): 83-5.
[62]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[63]
Wang Y, Yang SH, Hsu PW, Chien SY, Wang CQ, Su CM, et al. Impact of WNT1-inducible signaling pathway protein-1 (WISP-1) genetic polymorphisms and clinical aspects of breast cancer. Medicine 2019; 98(44): e17854.
[64]
Fernandez-Ruiz R, García-Alamán A, Esteban Y, Mir-Coll J, Serra-Navarro B, Fontcuberta-PiSunyer M, et al. Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11(1): 5982.
[65]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10(4): 518-28.
[66]
Sahin Ersoy G, Altun Ensari T, Subas S, Giray B, Simsek EE, Cevik O. WISP1 is a novel adipokine linked to metabolic parameters in gestational diabetes mellitus. J Matern Fetal Neonatal Med 2017; 30(8): 942-6.
[67]
Li Y, Zhu Z, Hou X, Sun Y. LncRNA AFAP1-AS1 Promotes the progression of colorectal cancer through miR-195-5p and WISP1. J Oncol 2021; 2021: 6242798.
[68]
Cai D, Hong S, Yang J, San P. The Effects of microRNA-515-5p on the toll-like receptor 4 (TLR4)/JNK signaling pathway and WNT1-inducible-signaling pathway protein 1 (WISP-1) expression in rheumatoid arthritis fibroblast-like synovial (RAFLS) Cells following treatment with receptor activator of nuclear factor-kappa-B ligand (RANKL). Med Sci Monit 2020; 26: e920611.
[69]
Chen S, Li B. MiR-128-3p Post-Transcriptionally inhibits WISP1 to suppress apoptosis and inflammation in human articular chondrocytes via the PI3K/AKT/NF-κB signaling pathway. Cell Transplant 2020; 29: 963689720939131.
[70]
Wang QY, Feng YJ, Ji R. High expression of WISP1 promotes metastasis and predicts poor prognosis in hepatocellular carcinoma. Eur Rev Med Pharmacol Sci 2020; 24(20): 10445-51.
[71]
Li P, Wu C, Guo X, Wen Y, Liu L, Liang X, et al. Integrative analysis of genome-wide association studies and DNA methylation profile identified genetic control genes of DNA methylation for kashin-beck disease. Cartilage 2021; 13(1_suppl): 780s-8s.
[72]
Wang QR, Yang ZY, Zhang WL, Li QH, Kang PD. Abnormal hyperplasia of chondrocytes in a rat model of glucocorticoid-induced osteonecrosis of the femoral head. Eur Rev Med Pharmacol Sci 2022; 26(18): 6536-49.
[73]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[74]
Zheng H, Jia L, Liu CC, Li Zhong ZR, Yang L, Chen XF, et al. TREM2 promotes microglial survival by activating Wnt/beta-catenin pathway. J Neurosci 2017; 37(7): 1771-84.
[75]
He W, Lu Q, Sherchan P, Huang L, Hu X, Zhang JH, et al. Activation of Frizzled-7 attenuates blood-brain barrier disruption through Dvl/β-catenin/WISP1 signaling pathway after intracerebral hemorrhage in mice. Fluids Barriers CNS 2021; 18(1): 44.

© 2024 Bentham Science Publishers | Privacy Policy