Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Microbiota- Brain-Gut-Axis Relevance to Parkinson’s Disease: Potential Therapeutic Effects of Probiotics

Author(s): Khadga Raj, Shamsher Singh*, Shivani Chib and Sudhanshu Mallan

Volume 28, Issue 37, 2022

Published on: 14 October, 2022

Page: [3049 - 3067] Pages: 19

DOI: 10.2174/1381612828666221003112300

Price: $65

Abstract

Parkinson's disease (PD) is the second most common type of neurogenerative disease among middleaged and older people, characterized by aggregation of alpha-synuclein and dopaminergic neuron loss. The microbiota- gut-brain axis is a dynamic bidirectional communication network and is involved in the pathogenesis of PD. The aggregation of misfolded protein alpha-synuclein is a neuropathological characteristic of PD, originates in the gut and migrates to the central nervous system (CNS) through the vagus nerve and olfactory bulb. The change in the architecture of gut microbiota increases the level short-chain fatty acids (SCFAs) and other metabolites, acting on the neuroendocrine system and modulating the concentrations of gamma-Aminobutyric acid (GABA), serotonin, and other neurotransmitters. It also alters the vagus and intestinal signalling, influencing the brain and behaviour by activating microglia and systemic cytokines. Both experimental and clinical reports indicate the role of intestinal dysbiosis and microbiota host interaction in neurodegeneration. Probiotics are live microorganisms that modify the gut microbiota in the small intestine to avoid neurological diseases. Probiotics have been shown in clinical and preclinical studies to be effective in the treatment of PD by balancing the gut microbiota. In this article, we described the role of gut-microbiota in the pathogenesis of PD. The article aims to explore the mechanistic strategy of the gut-brain axis and its relation with motor impairment and the use of probiotics to maintain gut microbial flora and prevent PD-like symptoms.

Keywords: Parkinson’s disease, gut-brain axis, gut-microbiota, probiotics, hypothalamic-pituitary adrenal, short-chain fatty acids.

[1]
Adler, C.H. Nonmotor complications in Parkinson’s disease. Mov. Disord., 2005, 20(S11)(Suppl. 11), S23-S29.
[http://dx.doi.org/10.1002/mds.20460] [PMID: 15822106]
[2]
Tan, L. Epidemiology of Parkinson’s disease. Neurol. Asia, 2013, 18(3), 231-238.
[3]
Xia, R.; Mao, Z.H. Progression of motor symptoms in Parkinson’s disease. Neurosci. Bull., 2012, 28(1), 39-48.
[http://dx.doi.org/10.1007/s12264-012-1050-z] [PMID: 22233888]
[4]
Frisardi, V.; Santamato, A.; Cheeran, B. Parkinson’s disease: New insights into pathophysiology and rehabilitative approaches. Parkinsons Dis., 2016, 2016, 1-2.
[http://dx.doi.org/10.1155/2016/3121727] [PMID: 27446627]
[5]
Youssef, S.A.; Capucchio, M.T.; Rofina, J.E.; Chambers, J.K.; Uchida, K.; Nakayama, H.; Head, E. Pathology of the aging brain in domestic and laboratory animals, and animal models of human neurodegenerative diseases. Vet. Pathol., 2016, 53(2), 327-348.
[http://dx.doi.org/10.1177/0300985815623997] [PMID: 26869150]
[6]
Roshan, M.H.K.; Tambo, A.; Pace, N.P. Potential role of caffeine in the treatment of Parkinson’s disease. Open Neurol. J., 2016, 10(1), 42-58.
[http://dx.doi.org/10.2174/1874205X01610010042] [PMID: 27563362]
[7]
Klingelhoefer, L.; Reichmann, H. Pathogenesis of Parkinson disease-the gut-brain axis and environmental factors. Nat. Rev. Neurol., 2015, 11(11), 625-636.
[http://dx.doi.org/10.1038/nrneurol.2015.197] [PMID: 26503923]
[8]
Chelban, V.; Catereniuc, D.; Aftene, D.; Gasnas, A.; Vichayanrat, E.; Iodice, V.; Groppa, S.; Houlden, H. An update on MSA: Premotor and non-motor features open a window of opportunities for early diagnosis and intervention. J. Neurol., 2020, 267(9), 2754-2770.
[http://dx.doi.org/10.1007/s00415-020-09881-6] [PMID: 32436100]
[9]
Van Den Berge, N.; Ferreira, N.; Mikkelsen, T.W.; Alstrup, A.K.O.; Tamgüney, G.; Karlsson, P.; Terkelsen, A.J.; Nyengaard, J.R.; Jensen, P.H.; Borghammer, P. Ageing promotes pathological alpha-synuclein propagation and autonomic dysfunction in wild-type rats. Brain, 2021, 144(6), 1853-1868.
[http://dx.doi.org/10.1093/brain/awab061] [PMID: 33880502]
[10]
Yang, Q.; Zhou, J. Neuroinflammation in the central nervous system: Symphony of glial cells. Glia, 2019, 67(6), 1017-1035.
[http://dx.doi.org/10.1002/glia.23571] [PMID: 30548343]
[11]
Bové, J.; Prou, D.; Perier, C.; Przedborski, S. Toxin-induced models of Parkinson’s disease. NeuroRx, 2005, 2(3), 484-494.
[http://dx.doi.org/10.1602/neurorx.2.3.484] [PMID: 16389312]
[12]
Selvaraj, S.; Piramanayagam, S. Impact of gene mutation in the development of Parkinson’s disease. Genes Dis., 2019, 6(2), 120-128.
[http://dx.doi.org/10.1016/j.gendis.2019.01.004] [PMID: 31193965]
[13]
Van Den Eeden, S.K.; Tanner, C.M.; Bernstein, A.L.; Fross, R.D.; Leimpeter, A.; Bloch, D.A.; Nelson, L.M. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am. J. Epidemiol., 2003, 157(11), 1015-1022.
[http://dx.doi.org/10.1093/aje/kwg068] [PMID: 12777365]
[14]
Moisan, F.; Kab, S.; Mohamed, F.; Canonico, M.; Le Guern, M.; Quintin, C.; Carcaillon, L.; Nicolau, J.; Duport, N.; Singh-Manoux, A.; Boussac-Zarebska, M.; Elbaz, A. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J. Neurol. Neurosurg. Psychiatry, 2016, 87(9), 952-957.
[http://dx.doi.org/10.1136/jnnp-2015-312283] [PMID: 26701996]
[15]
Yang, W.; Hamilton, J.L.; Kopil, C.; Beck, J.C.; Tanner, C.M.; Albin, R.L.; Ray Dorsey, E.; Dahodwala, N.; Cintina, I.; Hogan, P.; Thompson, T. Current and projected future economic burden of Parkinson’s disease in the US. npj. Parkinsons Dis., 2020, 6(1), 1-9.
[16]
Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(10), 577-589.
[http://dx.doi.org/10.1038/nrgastro.2012.156] [PMID: 22945443]
[17]
Zilber-Rosenberg, I.; Rosenberg, E. Role of microorganisms in the evolution of animals and plants: The hologenome theory of evolution. FEMS Microbiol. Rev., 2008, 32(5), 723-735.
[http://dx.doi.org/10.1111/j.1574-6976.2008.00123.x] [PMID: 18549407]
[18]
Larroya-García, A.; Navas-Carrillo, D.; Orenes-Piñero, E. Impact of gut microbiota on neurological diseases: Diet composition and novel treatments. Crit. Rev. Food Sci. Nutr., 2019, 59(19), 3102-3116.
[http://dx.doi.org/10.1080/10408398.2018.1484340] [PMID: 29870270]
[19]
Junges, V.M.; Closs, V.E.; Nogueira, G.M.; Gottlieb, M.G.V. Crosstalk between gut microbiota and central nervous system: A focus on Alzheimer’s disease. Curr. Alzheimer Res., 2018, 15(13), 1179-1190.
[http://dx.doi.org/10.2174/1567205015666180904155908] [PMID: 30182854]
[20]
Settanni, C.R.; Bibbò, S.; Ianiro, G.; Rinninella, E.; Cintoni, M.; Mele, M.C.; Cammarota, G.; Gasbarrini, A. Gastrointestinal involvement of autism spectrum disorder: Focus on gut microbiota. Expert Rev. Gastroenterol. Hepatol., 2021, 15(6), 599-622.
[http://dx.doi.org/10.1080/17474124.2021.1869938] [PMID: 33356668]
[21]
Riaz Rajoka, M.S.; Shi, J.; Mehwish, H.M.; Zhu, J.; Li, Q.; Shao, D.; Huang, Q.; Yang, H. Interaction between diet composition and gut microbiota and its impact on gastrointestinal tract health. Food Sci. Hum. Wellness, 2017, 6(3), 121-130.
[http://dx.doi.org/10.1016/j.fshw.2017.07.003]
[22]
Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S.V.; Knight, R. Current understanding of the human microbiome. Nat. Med., 2018, 24(4), 392-400.
[http://dx.doi.org/10.1038/nm.4517] [PMID: 29634682]
[23]
Hugon, P.; Dufour, J.C.; Colson, P.; Fournier, P.E.; Sallah, K.; Raoult, D. A comprehensive repertoire of prokaryotic species identified in human beings. Lancet Infect. Dis., 2015, 15(10), 1211-1219.
[http://dx.doi.org/10.1016/S1473-3099(15)00293-5] [PMID: 26311042]
[24]
Gomez-Arango, L.F.; Barrett, H.L.; McIntyre, H.D.; Callaway, L.K.; Morrison, M.; Nitert, M.D. Contributions of the maternal oral and gut microbiome to placental microbial colonization in overweight and obese pregnant women. Sci. Rep., 2017, 7(1), 2860.
[http://dx.doi.org/10.1038/s41598-017-03066-4] [PMID: 28588199]
[25]
Patel, K.; Konduru, K.; Patra, A.K.; Chandel, D.S.; Panigrahi, P. Trends and determinants of gastric bacterial colonization of preterm neonates in a NICU setting. PLoS One, 2015, 10(7), e0114664.
[http://dx.doi.org/10.1371/journal.pone.0114664] [PMID: 26132213]
[26]
Willis, K.A.; Purvis, J.H.; Myers, E.D.; Aziz, M.M.; Karabayir, I.; Gomes, C.K.; Peters, B.M.; Akbilgic, O.; Talati, A.J.; Pierre, J.F. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age. FASEB J., 2019, 33(11), 12825-12837.
[http://dx.doi.org/10.1096/fj.201901436RR] [PMID: 31480903]
[27]
LeBlanc, A.M.; LeBlanc, J.G. Effect of probiotic administration on the intestinal microbiota, current knowledge and potential applications. World J. Gastroenterol., 2014, 20(44), 16518-16528.
[http://dx.doi.org/10.3748/wjg.v20.i44.16518] [PMID: 25469019]
[28]
Westfall, S.; Lomis, N.; Kahouli, I.; Dia, S.Y.; Singh, S.P.; Prakash, S. Microbiome, probiotics and neurodegenerative diseases: Deciphering the gut brain axis. Cell. Mol. Life Sci., 2017, 74(20), 3769-3787.
[http://dx.doi.org/10.1007/s00018-017-2550-9] [PMID: 28643167]
[29]
Caspani, G.; Kennedy, S.; Foster, J.A.; Swann, J. Gut microbial metabolites in depression: Understanding the biochemical mechanisms. Microb. Cell, 2019, 6(10), 454-481.
[http://dx.doi.org/10.15698/mic2019.10.693] [PMID: 31646148]
[30]
Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol., 2012, 10(11), 735-742.
[http://dx.doi.org/10.1038/nrmicro2876] [PMID: 23000955]
[31]
Sochocka, M.; Donskow-Łysoniewska, K.; Diniz, B.S.; Kurpas, D.; Brzozowska, E.; Leszek, J. The gut microbiome alterations and inflammation-driven pathogenesis of Alzheimer’s disease-A critical review. Mol. Neurobiol., 2019, 56(3), 1841-1851.
[http://dx.doi.org/10.1007/s12035-018-1188-4] [PMID: 29936690]
[32]
LeBlanc, J.G.; Milani, C.; de Giori, G.S.; Sesma, F.; van Sinderen, D.; Ventura, M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol., 2013, 24(2), 160-168.
[http://dx.doi.org/10.1016/j.copbio.2012.08.005] [PMID: 22940212]
[33]
Harish, K.; Varghese, T. Probiotics in humans-evidence based review. Calicut Med. J., 2006, 4(4), e3.
[34]
Maynard, C.L.; Elson, C.O.; Hatton, R.D.; Weaver, C.T. Reciprocal interactions of the intestinal microbiota and immune system. Nature, 2012, 489(7415), 231-241.
[http://dx.doi.org/10.1038/nature11551] [PMID: 22972296]
[35]
Natividad, J.M.M.; Verdu, E.F. Modulation of intestinal barrier by intestinal microbiota: Pathological and therapeutic implications. Pharmacol. Res., 2013, 69(1), 42-51.
[http://dx.doi.org/10.1016/j.phrs.2012.10.007] [PMID: 23089410]
[36]
Lee, N.; Kim, W.U. Microbiota in T-cell homeostasis and inflammatory diseases. Exp. Mol. Med., 2017, 49(5), e340.
[http://dx.doi.org/10.1038/emm.2017.36] [PMID: 28546563]
[37]
Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun., 2020, 11(1), 5206.
[http://dx.doi.org/10.1038/s41467-020-18871-1] [PMID: 33060586]
[38]
Rhee, S.H.; Pothoulakis, C.; Mayer, E.A. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(5), 306-314.
[http://dx.doi.org/10.1038/nrgastro.2009.35] [PMID: 19404271]
[39]
Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res., 2002, 53(4), 865-871.
[http://dx.doi.org/10.1016/S0022-3999(02)00429-4] [PMID: 12377295]
[40]
Mayer, E.A.; Savidge, T.; Shulman, R.J. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology, 2014, 146(6), 1500-1512.
[http://dx.doi.org/10.1053/j.gastro.2014.02.037] [PMID: 24583088]
[41]
Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science, 2005, 308(5728), 1635-1638.
[42]
Morgan, M.Y. The treatment of chronic hepatic encephalopathy. Hepatogastroenterology, 1991, 38(5), 377-387.
[PMID: 1662661]
[43]
Foster, J.; Neufeld, K.A. Gut-brain axis: How the microbiome influences anxiety and depression. Int. J. Neuropsychopharmacol., 2014, 17, 27.
[44]
Naseribafrouei, A.; Hestad, K.; Avershina, E.; Sekelja, M.; Linløkken, A.; Wilson, R.; Rudi, K. Correlation between the human fecal microbiota and depression. Neurogastroenterol. Motil., 2014, 26(8), 1155-1162.
[http://dx.doi.org/10.1111/nmo.12378] [PMID: 24888394]
[45]
Mayer, E.A.; Padua, D.; Tillisch, K. Altered brain-gut axis in autism: Comorbidity or causative mechanisms? BioEssays, 2014, 36(10), 933-939.
[http://dx.doi.org/10.1002/bies.201400075] [PMID: 25145752]
[46]
Simrén, M.; Barbara, G.; Flint, H.J.; Spiegel, B.M.R.; Spiller, R.C.; Vanner, S.; Verdu, E.F.; Whorwell, P.J.; Zoetendal, E.G. Intestinal microbiota in functional bowel disorders: A Rome foundation report. Gut, 2013, 62(1), 159-176.
[http://dx.doi.org/10.1136/gutjnl-2012-302167] [PMID: 22730468]
[47]
DuPont, H.L. Review article: Evidence for the role of gut microbiota in irritable bowel syndrome and its potential influence on therapeutic targets. Aliment. Pharmacol. Ther., 2014, 39(10), 1033-1042.
[http://dx.doi.org/10.1111/apt.12728] [PMID: 24665829]
[48]
Barbara, G.; Stanghellini, V.; Brandi, G.; Cremon, C.; Di, N.G.; De, G.R.; Corinaldesi, R. Interactions between commensal bacteria and gut sensorimotor function in health and disease. Off. J. Am. Coll. Gastroenterol., 2005, 100(11), 2560-2568.
[http://dx.doi.org/10.1111/j.1572-0241.2005.00230.x]
[49]
Heijtz, R.D.; Wang, S.; Anuar, F.; Qian, Y.; Björkholm, B.; Samuelsson, A.; Hibberd, M.L.; Forssberg, H.; Pettersson, S. Normal gut microbiota modulates brain development and behavior. Proc. Natl. Acad. Sci. USA, 2011, 108(7), 3047-3052.
[http://dx.doi.org/10.1073/pnas.1010529108] [PMID: 21282636]
[50]
Abrams, G.D.; Bishop, J.E. Effect of the normal microbial flora on gastrointestinal motility. Exp. Biol. Med. (Maywood), 1967, 126(1), 301-304.
[http://dx.doi.org/10.3181/00379727-126-32430] [PMID: 6066182]
[51]
Caenepeel, P.; Janssens, J.; Vantrappen, G.; Eyssen, H.; Coremans, G. Interdigestive myoelectric complex in germ-free rats. Dig. Dis. Sci., 1989, 34(8), 1180-1184.
[http://dx.doi.org/10.1007/BF01537265] [PMID: 2752868]
[52]
Husebye, E.; Hellström, P.M.; Sundler, F.; Chen, J.; Midtvedt, T. Influence of microbial species on small intestinal myoelectric activity and transit in germ-free rats. Am. J. Physiol. Gastrointest. Liver Physiol., 2001, 280(3), G368-G380.
[http://dx.doi.org/10.1152/ajpgi.2001.280.3.G368] [PMID: 11171619]
[53]
Hooper, L.V.; Wong, M.H.; Thelin, A.; Hansson, L.; Falk, P.G.; Gordon, J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291(5505), 881-884.
[http://dx.doi.org/10.1126/science.291.5505.881] [PMID: 11157169]
[54]
Neufeld, K.M.; Kang, N.; Bienenstock, J.; Foster, J.A. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil., 2011, 23(3), 255-e119. e119.
[http://dx.doi.org/10.1111/j.1365-2982.2010.01620.x] [PMID: 21054680]
[55]
Clarke, G.; Grenham, S.; Scully, P.; Fitzgerald, P.; Moloney, R.D.; Shanahan, F.; Dinan, T.G.; Cryan, J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry, 2013, 18(6), 666-673.
[http://dx.doi.org/10.1038/mp.2012.77] [PMID: 22688187]
[56]
Saulnier, D.M.; Ringel, Y.; Heyman, M.B.; Foster, J.A.; Bercik, P.; Shulman, R.J.; Versalovic, J.; Verdu, E.F.; Dinan, T.G.; Hecht, G.; Guarner, F. The intestinal microbiome, probiotics and prebiotics in neurogastroenterology. Gut Microbes, 2013, 4(1), 17-27.
[http://dx.doi.org/10.4161/gmic.22973] [PMID: 23202796]
[57]
Bravo, J.A.; Forsythe, P.; Chew, M.V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA, 2011, 108(38), 16050-16055.
[http://dx.doi.org/10.1073/pnas.1102999108] [PMID: 21876150]
[58]
Bercik, P.; Denou, E.; Collins, J.; Jackson, W.; Lu, J.; Jury, J.; Deng, Y.; Blennerhassett, P.; Macri, J.; McCoy, K.D.; Verdu, E.F.; Collins, S.M. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology, 2011, 141(2), 599-609.e3. 609.e1-609.e3.
[http://dx.doi.org/10.1053/j.gastro.2011.04.052] [PMID: 21683077]
[59]
Distrutti, E.; O’Reilly, J.A.; McDonald, C.; Cipriani, S.; Renga, B.; Lynch, M.A.; Fiorucci, S. Modulation of intestinal microbiota by the probiotic VSL#3 resets brain gene expression and ameliorates the age-related deficit in LTP. PLoS One, 2014, 9(9), e106503.
[http://dx.doi.org/10.1371/journal.pone.0106503] [PMID: 25202975]
[60]
Bercik, P.; Park, A.J.; Sinclair, D.; Khoshdel, A.; Lu, J.; Huang, X.; Deng, Y.; Blennerhassett, P.A.; Fahnestock, M.; Moine, D.; Berger, B.; Huizinga, J.D.; Kunze, W.; McLean, P.G.; Bergonzelli, G.E.; Collins, S.M.; Verdu, E.F. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil., 2011, 23(12), 1132-1139.
[http://dx.doi.org/10.1111/j.1365-2982.2011.01796.x] [PMID: 21988661]
[61]
Hughes, D.T.; Sperandio, V. Inter-kingdom signalling: Communication between bacteria and their hosts. Nat. Rev. Microbiol., 2008, 6(2), 111-120.
[http://dx.doi.org/10.1038/nrmicro1836] [PMID: 18197168]
[62]
Guthrie, G.D.; Nicholson-Guthrie, C.S. gamma-Aminobutyric acid uptake by a bacterial system with neurotransmitter binding characteristics. Proc. Natl. Acad. Sci. USA, 1989, 86(19), 7378-7381.
[http://dx.doi.org/10.1073/pnas.86.19.7378] [PMID: 2552441]
[63]
Clarke, M.B.; Hughes, D.T.; Zhu, C.; Boedeker, E.C.; Sperandio, V. The QseC sensor kinase: A bacterial adrenergic receptor. Proc. Natl. Acad. Sci. USA, 2006, 103(27), 10420-10425.
[http://dx.doi.org/10.1073/pnas.0604343103] [PMID: 16803956]
[64]
Macfarlane, S.; Dillon, J.F. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol., 2007, 102(5), 1187-1196.
[http://dx.doi.org/10.1111/j.1365-2672.2007.03287.x] [PMID: 17448154]
[65]
Rubio, C.A.; Huang, C.B. Quantification of the sulphomucin-producing cell population of the colonic mucosa during protracted stress in rats. In Vivo, 1992, 6(1), 81-84.
[PMID: 1627747]
[66]
Gué, M.; Peeters, T.; Depoortere, I.; Vantrappen, G.; Buéno, L. Stress-induced changes in gastric emptying, postprandial motility, and plasma gut hormone levels in dogs. Gastroenterology, 1989, 97(5), 1101-1107.
[http://dx.doi.org/10.1016/0016-5085(89)91678-8] [PMID: 2571543]
[67]
Stolzenberg, E.; Berry, D.; Yang, D.; Lee, E.Y.; Kroemer, A.; Kaufman, S.; Wong, G.C.L.; Oppenheim, J.J.; Sen, S.; Fishbein, T.; Bax, A.; Harris, B.; Barbut, D.; Zasloff, M.A. A role for neuronal alpha-synuclein in gastrointestinal immunity. J. Innate Immun., 2017, 9(5), 456-463.
[http://dx.doi.org/10.1159/000477990] [PMID: 28651250]
[68]
Alam, M.M.; Yang, D.; Li, X.Q.; Liu, J.; Back, T.C.; Trivett, A.; Karim, B.; Barbut, D.; Zasloff, M.; Oppenheim, J.J. Alpha synuclein, the culprit in Parkinson disease, is required for normal immune function. Cell Rep., 2022, 38(2), 110090.
[http://dx.doi.org/10.1016/j.celrep.2021.110090] [PMID: 35021075]
[69]
Goedert, M.; Spillantini, M.G.; Del Tredici, K.; Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol., 2013, 9(1), 13-24.
[http://dx.doi.org/10.1038/nrneurol.2012.242] [PMID: 23183883]
[70]
Chen, S.G.; Stribinskis, V.; Rane, M.J.; Demuth, D.R.; Gozal, E.; Roberts, A.M.; Jagadapillai, R.; Liu, R.; Choe, K.; Shivakumar, B.; Son, F.; Jin, S.; Kerber, R.; Adame, A.; Masliah, E.; Friedland, R.P. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci. Rep., 2016, 6(1), 34477.
[http://dx.doi.org/10.1038/srep34477] [PMID: 27708338]
[71]
Holmqvist, S.; Chutna, O.; Bousset, L.; Aldrin-Kirk, P.; Li, W.; Björklund, T.; Wang, Z.Y.; Roybon, L.; Melki, R.; Li, J.Y. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol., 2014, 128(6), 805-820.
[http://dx.doi.org/10.1007/s00401-014-1343-6] [PMID: 25296989]
[72]
Singleton, AB; Farrer, M; Johnson, J; Singleton, A; Hague, S; Kachergus, J; Hulihan, M; Peuralinna, T; Dutra, A; Nussbaum, R Lincoln, S α-synuclein locus triplication causes Parkinson's disease. Science, 2003, 302(5646), 841.
[73]
Chartier-Harlin, M.C.; Kachergus, J.; Roumier, C.; Mouroux, V.; Douay, X.; Lincoln, S.; Levecque, C.; Larvor, L.; Andrieux, J.; Hulihan, M.; Waucquier, N.; Defebvre, L.; Amouyel, P.; Farrer, M.; Destée, A. α-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 2004, 364(9440), 1167-1169.
[http://dx.doi.org/10.1016/S0140-6736(04)17103-1] [PMID: 15451224]
[74]
Forsyth, C.B.; Shannon, K.M.; Kordower, J.H.; Voigt, R.M.; Shaikh, M.; Jaglin, J.A.; Estes, J.D.; Dodiya, H.B.; Keshavarzian, A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One, 2011, 6(12), e28032.
[http://dx.doi.org/10.1371/journal.pone.0028032] [PMID: 22145021]
[75]
Phillips, R.J.; Walter, G.C.; Ringer, B.E.; Higgs, K.M.; Powley, T.L. Alpha-synuclein immunopositive aggregates in the myenteric plexus of the aging Fischer 344 rat. Exp. Neurol., 2009, 220(1), 109-119.
[http://dx.doi.org/10.1016/j.expneurol.2009.07.025] [PMID: 19664623]
[76]
Sampson, T.R.; Debelius, J.W.; Thron, T.; Janssen, S.; Shastri, G.G.; Ilhan, Z.E.; Challis, C.; Schretter, C.E.; Rocha, S.; Gradinaru, V.; Chesselet, M.F.; Keshavarzian, A.; Shannon, K.M.; Krajmalnik-Brown, R.; Wittung-Stafshede, P.; Knight, R.; Mazmanian, S.K. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell, 2016, 167(6), 1469-1480.e12.
[http://dx.doi.org/10.1016/j.cell.2016.11.018] [PMID: 27912057]
[77]
Schoultz, I.; Keita, Å.V. The intestinal barrier and current techniques for the assessment of gut permeability. Cells, 2020, 9(8), 1909.
[http://dx.doi.org/10.3390/cells9081909] [PMID: 32824536]
[78]
Ali, A.; Tan, H.; Kaiko, G.E. Role of the intestinal epithelium and its interaction with the microbiota in food allergy. Front. Immunol., 2020, 11, 604054.
[http://dx.doi.org/10.3389/fimmu.2020.604054] [PMID: 33365031]
[79]
Hayes, C.L.; Dong, J.; Galipeau, H.J.; Jury, J.; McCarville, J.; Huang, X.; Wang, X.Y.; Naidoo, A.; Anbazhagan, A.N.; Libertucci, J.; Sheridan, C.; Dudeja, P.K.; Bowdish, D.M.E.; Surette, M.G.; Verdu, E.F. Commensal microbiota induces colonic barrier structure and functions that contribute to homeostasis. Sci. Rep., 2018, 8(1), 14184.
[http://dx.doi.org/10.1038/s41598-018-32366-6] [PMID: 30242285]
[80]
Mutch, L.; King, R. Obtaining parental consent--opting in or opting out? Arch. Dis. Child., 1985, 60(10), 979-980.
[http://dx.doi.org/10.1136/adc.60.10.979] [PMID: 2933006]
[81]
Cornick, S.; Tawiah, A.; Chadee, K. Roles and regulation of the mucus barrier in the gut. Tissue Barriers, 2015, 3(1-2), e982426.
[http://dx.doi.org/10.4161/21688370.2014.982426] [PMID: 25838985]
[82]
Smith, H.F.; Fisher, R.E.; Everett, M.L.; Thomas, A.D.; Randal Bollinger, R.; Parker, W. Comparative anatomy and phylogenetic distribution of the mammalian cecal appendix. J. Evol. Biol., 2009, 22(10), 1984-1999.
[http://dx.doi.org/10.1111/j.1420-9101.2009.01809.x] [PMID: 19678866]
[83]
Gutzeit, C.; Magri, G.; Cerutti, A. Intestinal IgA production and its role in host-microbe interaction. Immunol. Rev., 2014, 260(1), 76-85.
[http://dx.doi.org/10.1111/imr.12189] [PMID: 24942683]
[84]
Schoultz, I.; Keita, Å. Cellular and molecular therapeutic targets in inflammatory bowel disease—focusing on intestinal barrier function. Cells, 2019, 8(2), 193.
[http://dx.doi.org/10.3390/cells8020193] [PMID: 30813280]
[85]
Wang, S.L.; Shao, B.Z.; Zhao, S.B.; Fang, J.; Gu, L.; Miao, C.Y.; Li, Z.S.; Bai, Y. Impact of paneth cell autophagy on inflammatory bowel disease. Front. Immunol., 2018, 9, 693.
[http://dx.doi.org/10.3389/fimmu.2018.00693] [PMID: 29675025]
[86]
Rosales, C; Demaurex, N; Lowell, CA; Uribe-Querol, E Neutrophils: Their role in innate and adaptive immunity. J Immunol Res, 2016, 2016
[http://dx.doi.org/10.1155/2016/1469780]
[87]
Bain, C.C.; Mowat, A.M. Macrophages in intestinal homeostasis and inflammation. Immunol. Rev., 2014, 260(1), 102-117.
[http://dx.doi.org/10.1111/imr.12192] [PMID: 24942685]
[88]
Vignali, D.A.A.; Collison, L.W.; Workman, C.J. How regulatory T cells work. Nat. Rev. Immunol., 2008, 8(7), 523-532.
[http://dx.doi.org/10.1038/nri2343] [PMID: 18566595]
[89]
Sansonetti, P.J. The innate signaling of dangers and the dangers of innate signaling. Nat. Immunol., 2006, 7(12), 1237-1242.
[http://dx.doi.org/10.1038/ni1420] [PMID: 17110939]
[90]
Boyapati, R.K.; Rossi, A.G.; Satsangi, J.; Ho, G-T. Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications. Mucosal Immunol., 2016, 9(3), 567-582.
[http://dx.doi.org/10.1038/mi.2016.14] [PMID: 26931062]
[91]
Wells, J.M.; Rossi, O.; Meijerink, M.; van Baarlen, P. Epithelial crosstalk at the microbiota-mucosal interface. Proc. Natl. Acad. Sci. USA, 2011, 108(Suppl. 1), 4607-4614.
[http://dx.doi.org/10.1073/pnas.1000092107] [PMID: 20826446]
[92]
Wallace, K.L.; Zheng, L.B.; Kanazawa, Y.; Shih, D.Q. Immunopathology of inflammatory bowel disease. World J. Gastroenterol., 2014, 20(1), 6-21.
[http://dx.doi.org/10.3748/wjg.v20.i1.6] [PMID: 24415853]
[93]
Hill, D.A.; Artis, D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol., 2010, 28(1), 623-667.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101330] [PMID: 20192812]
[94]
Dicksved, J; Schreiber, O; Willing, B; Petersson, J; Rang, S; Phillipson, M; Holm, L; Roos, S Lactobacillus reuteri maintains a functional mucosal barrier during DSS treatment despite mucus layer dysfunction. PloS ONE, 2012, 7(9), e46399.
[http://dx.doi.org/10.1371/journal.pone.0046399]
[95]
Gareau, M.; Silva, M.; Perdue, M. Pathophysiological mechanisms of stress-induced intestinal damage. Curr. Mol. Med., 2008, 8(4), 274-281.
[http://dx.doi.org/10.2174/156652408784533760] [PMID: 18537635]
[96]
Ueki, A.; Otsuka, M. Life style risks of Parkinson’s disease: Association between decreased water intake and constipation. J. Neurol., 2004, 251(7)(Suppl. 7), vII18-vII23.
[PMID: 15505750]
[97]
Hooper, LV; Littman, DR; Macpherson, AJ. Interactions between the microbiota and the immune system. Science, 2012, 336(6086), 1268-1273.
[98]
Cui, J.; Chen, Y.; Wang, H.Y.; Wang, R.F. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum. Vaccin. Immunother., 2014, 10(11), 3270-3285.
[http://dx.doi.org/10.4161/21645515.2014.979640] [PMID: 25625930]
[99]
Cui, J.; Zhu, L.; Xia, X.; Wang, H.Y.; Legras, X.; Hong, J.; Ji, J.; Shen, P.; Zheng, S.; Chen, Z.J.; Wang, R.F. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell, 2010, 141(3), 483-496.
[http://dx.doi.org/10.1016/j.cell.2010.03.040] [PMID: 20434986]
[100]
Fujiwara, H.; Docampo, M.D.; Riwes, M.; Peltier, D.; Toubai, T.; Henig, I.; Wu, S.J.; Kim, S.; Taylor, A.; Brabbs, S.; Liu, C.; Zajac, C.; Oravecz-Wilson, K.; Sun, Y.; Núñez, G.; Levine, J.E.; van den Brink, M.R.M.; Ferrara, J.L.M.; Reddy, P. Microbial metabolite sensor GPR43 controls severity of experimental GVHD. Nat. Commun., 2018, 9(1), 3674.
[http://dx.doi.org/10.1038/s41467-018-06048-w] [PMID: 30201970]
[101]
Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell, 2014, 157(1), 121-141.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[102]
Gagliani, N.; Palm, N.W.; de Zoete, M.R.; Flavell, R.A. Inflammasomes and intestinal homeostasis: Regulating and connecting infection, inflammation and the microbiota. Int. Immunol., 2014, 26(9), 495-499.
[http://dx.doi.org/10.1093/intimm/dxu066] [PMID: 24948595]
[103]
Wong, M-L.; Inserra, A.; Lewis, M.D.; Mastronardi, C.A.; Leong, L.; Choo, J.; Kentish, S.; Xie, P.; Morrison, M.; Wesselingh, S.L.; Rogers, G.B.; Licinio, J. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol. Psychiatry, 2016, 21(6), 797-805.
[http://dx.doi.org/10.1038/mp.2016.46] [PMID: 27090302]
[104]
Kaufmann, F.N.; Costa, A.P.; Ghisleni, G.; Diaz, A.P.; Rodrigues, A.L.S.; Peluffo, H.; Kaster, M.P. NLRP3 inflammasome-driven pathways in depression: Clinical and preclinical findings. Brain Behav. Immun., 2017, 64, 367-383.
[http://dx.doi.org/10.1016/j.bbi.2017.03.002] [PMID: 28263786]
[105]
Budhwani, M.; Mazzieri, R.; Dolcetti, R. Plasticity of type I interferon-mediated responses in cancer therapy: From anti-tumor immunity to resistance. Front. Oncol., 2018, 8, 322.
[http://dx.doi.org/10.3389/fonc.2018.00322] [PMID: 30186768]
[106]
Giles, E.M.; Stagg, A.J. Type 1 Interferon in the human intestine—a co-ordinator of the immune response to the microbiota. Inflamm. Bowel Dis., 2017, 23(4), 524-533.
[http://dx.doi.org/10.1097/MIB.0000000000001078] [PMID: 28296819]
[107]
Xu, R.H.; Wong, E.B.; Rubio, D.; Roscoe, F.; Ma, X.; Nair, S.; Remakus, S.; Schwendener, R.; John, S.; Shlomchik, M.; Sigal, L.J. Sequential activation of two pathogen-sensing pathways required for type I interferon expression and resistance to an acute DNA virus infection. Immunity, 2015, 43(6), 1148-1159.
[http://dx.doi.org/10.1016/j.immuni.2015.11.015] [PMID: 26682986]
[108]
Yu, X.; Cai, B.; Wang, M.; Tan, P.; Ding, X.; Wu, J.; Li, J.; Li, Q.; Liu, P.; Xing, C.; Wang, H.Y.; Su, X.; Wang, R.F. Cross-regulation of two type I interferon signaling pathways in plasmacytoid dendritic cells controls anti-malaria immunity and host mortality. Immunity, 2016, 45(5), 1093-1107.
[http://dx.doi.org/10.1016/j.immuni.2016.10.001] [PMID: 27793594]
[109]
Weiss, G.; Rasmussen, S.; Zeuthen, L.H.; Nielsen, B.N.; Jarmer, H.; Jespersen, L.; Frøkiaer, H. Lactobacillus acidophilus induces virus immune defence genes in murine dendritic cells by a Toll-like receptor-2-dependent mechanism. Immunology, 2010, 131(2), 268-281.
[http://dx.doi.org/10.1111/j.1365-2567.2010.03301.x] [PMID: 20545783]
[110]
Kawashima, T.; Kosaka, A.; Yan, H.; Guo, Z.; Uchiyama, R.; Fukui, R.; Kaneko, D.; Kumagai, Y.; You, D.J.; Carreras, J.; Uematsu, S.; Jang, M.H.; Takeuchi, O.; Kaisho, T.; Akira, S.; Miyake, K.; Tsutsui, H.; Saito, T.; Nishimura, I.; Tsuji, N.M. Double-stranded RNA of intestinal commensal but not pathogenic bacteria triggers production of protective interferon-β. Immunity, 2013, 38(6), 1187-1197.
[http://dx.doi.org/10.1016/j.immuni.2013.02.024] [PMID: 23791646]
[111]
Steed, A.L.; Christophi, G.P.; Kaiko, G.E.; Sun, L.; Goodwin, V.M.; Jain, U.; Esaulova, E.; Artyomov, M.N.; Morales, D.J.; Holtzman, M.J.; Boon, A.C.M.; Lenschow, D.J.; Stappenbeck, T.S. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science, 2017, 357(6350), 498-502.
[http://dx.doi.org/10.1126/science.aam5336] [PMID: 28774928]
[112]
Martin, P.K.; Marchiando, A.; Xu, R.; Rudensky, E.; Yeung, F.; Schuster, S.L.; Kernbauer, E.; Cadwell, K. Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat. Microbiol., 2018, 3(10), 1131-1141.
[http://dx.doi.org/10.1038/s41564-018-0229-0] [PMID: 30202015]
[113]
Rothhammer, V.; Mascanfroni, I.D.; Bunse, L.; Takenaka, M.C.; Kenison, J.E.; Mayo, L.; Chao, C.C.; Patel, B.; Yan, R.; Blain, M.; Alvarez, J.I.; Kébir, H.; Anandasabapathy, N.; Izquierdo, G.; Jung, S.; Obholzer, N.; Pochet, N.; Clish, C.B.; Prinz, M.; Prat, A.; Antel, J.; Quintana, F.J. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med., 2016, 22(6), 586-597.
[http://dx.doi.org/10.1038/nm.4106] [PMID: 27158906]
[114]
Hayden, M.S.; Ghosh, S. NF-κB in immunobiology. Cell Res., 2011, 21(2), 223-244.
[http://dx.doi.org/10.1038/cr.2011.13] [PMID: 21243012]
[115]
Sanz, Y.; Moya-Pérez, A. (2014). Microbiota, Inflammation and Obesity. In: Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease. Advances in Experimental Medicine and Biology; Lyte, M.; Cryan, J., Eds.; Springer: New York, NY, 2014; Vol. 817, .
[http://dx.doi.org/10.1007/978-1-4939-0897-4_14]
[116]
Shi, Y; Kellingray, L; Zhai, Q; Gall, GL; Narbad, A; Zhao, J; Zhang, H; Chen, W Structural and functional alterations in the microbial community and immunological consequences in a mouse model of antibiotic-induced dysbiosis. Frontiers in Microbiology, 2018, 1948.
[http://dx.doi.org/10.3389/fmicb.2018.01948]
[117]
Masanta, WO; Heimesaat, MM; Bereswill, S; Tareen, AM; Lugert, R; Groß, U; Zautner, AE Modification of intestinal microbiota and its consequences for innate immune response in the pathogenesis of campylobacteriosis. J Immunol Res, 2013, 2013.
[http://dx.doi.org/10.1155/2013/526860]
[118]
Truax, A.D.; Chen, L.; Tam, J.W.; Cheng, N.; Guo, H.; Koblansky, A.A.; Chou, W.C.; Wilson, J.E.; Brickey, W.J.; Petrucelli, A.; Liu, R.; Cooper, D.E.; Koenigsknecht, M.J.; Young, V.B.; Netea, M.G.; Stienstra, R.; Sartor, R.B.; Montgomery, S.A.; Coleman, R.A.; Ting, J.P.Y. The inhibitory innate immune sensor NLRP12 maintains a threshold against obesity by regulating gut microbiota homeostasis. Cell Host Microbe, 2018, 24(3), 364-378.e6.
[http://dx.doi.org/10.1016/j.chom.2018.08.009] [PMID: 30212649]
[119]
Jang, H.M.; Lee, H.J.; Jang, S.E.; Han, M.J.; Kim, D.H. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol., 2018, 11(5), 1386-1397.
[http://dx.doi.org/10.1038/s41385-018-0042-3] [PMID: 29867078]
[120]
Sun, M.F.; Zhu, Y.L.; Zhou, Z.L.; Jia, X.B.; Xu, Y.D.; Yang, Q.; Cui, C.; Shen, Y.Q. Neuroprotective effects of fecal microbiota transplantation on MPTP-induced Parkinson’s disease mice: Gut microbiota, glial reaction and TLR4/TNF-α signaling pathway. Brain Behav. Immun., 2018, 70, 48-60.
[http://dx.doi.org/10.1016/j.bbi.2018.02.005] [PMID: 29471030]
[121]
Yang, X.; Qian, Y.; Xu, S.; Song, Y.; Xiao, Q. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease. Front. Aging Neurosci., 2018, 9, 441.
[http://dx.doi.org/10.3389/fnagi.2017.00441] [PMID: 29358918]
[122]
Johnson, M.E.; Stringer, A.; Bobrovskaya, L. Rotenone induces gastrointestinal pathology and microbiota alterations in a rat model of Parkinson’s disease. Neurotoxicology, 2018, 65, 174-185.
[http://dx.doi.org/10.1016/j.neuro.2018.02.013] [PMID: 29471018]
[123]
Keshavarzian, A.; Green, S.J.; Engen, P.A.; Voigt, R.M.; Naqib, A.; Forsyth, C.B.; Mutlu, E.; Shannon, K.M. Colonic bacterial composition in Parkinson’s disease. Mov. Disord., 2015, 30(10), 1351-1360.
[http://dx.doi.org/10.1002/mds.26307] [PMID: 26179554]
[124]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[125]
Scotti, E; Boué, S; Sasso, GL; Zanetti, F; Belcastro, V; Poussin, C; Sierro, N; Battey, J; Gimalac, A; Ivanov, NV; Hoeng, J Exploring the microbiome in health and disease: Implications for toxicology. Toxicology Research and application, 2017, 1, 2397847317741.
[126]
Novik, G.; Savich, V. Beneficial microbiota. Probiotics and pharmaceutical products in functional nutrition and medicine. Microbes Infect., 2020, 22(1), 8-18.
[http://dx.doi.org/10.1016/j.micinf.2019.06.004] [PMID: 31233819]
[127]
Rosenfeldt, V.; Michaelsen, K.F.; Jakobsen, M.; Larsen, C.N.; Møller, P.L.; Pedersen, P.; Tvede, M.; Weyrehter, H.; Valerius, N.H.; Pærregaard, A. Effect of probiotic Lactobacillus strains in young children hospitalized with acute diarrhea. Pediatr. Infect. Dis. J., 2002, 21(5), 411-416.
[http://dx.doi.org/10.1097/00006454-200205000-00012] [PMID: 12150178]
[128]
Rosenfeldt, V.; Michaelsen, K.F.; Jakobsen, M.; Larsen, C.N.; Møller, P.L.; Tvede, M.; Weyrehter, H.; Valerius, N.H.; Pærregaard, A. Effect of probiotic Lactobacillus strains on acute diarrhea in a cohort of nonhospitalized children attending day-care centers. Pediatr. Infect. Dis. J., 2002, 21(5), 417-419.
[http://dx.doi.org/10.1097/00006454-200205000-00013] [PMID: 12150179]
[129]
Kianifar, HR; Farid, R; Ahanchian, H Probiotics in the treatment of acute diarrhea in young children.,
[130]
Sharif, M.R.; Kashani, H.H.; Ardakani, A.T.; Kheirkhah, D.; Tabatabaei, F.; Sharif, A. The effect of a yeast probiotic on acute diarrhea in children. Probiotics Antimicrob. Proteins, 2016, 8(4), 211-214.
[http://dx.doi.org/10.1007/s12602-016-9221-2] [PMID: 27530282]
[131]
Maity, C.; Gupta, A.K. A prospective, interventional, randomized, double-blind, placebo-controlled clinical study to evaluate the efficacy and safety of Bacillus coagulans LBSC in the treatment of acute diarrhea with abdominal discomfort. Eur. J. Clin. Pharmacol., 2019, 75(1), 21-31.
[http://dx.doi.org/10.1007/s00228-018-2562-x] [PMID: 30264164]
[132]
Nixon, S.L.; Rose, L.; Muller, A.T. Efficacy of an orally administered anti‐diarrheal probiotic paste (Pro‐Kolin Advanced) in dogs with acute diarrhea: A randomized, placebo‐controlled, double‐blinded clinical study. J. Vet. Intern. Med., 2019, 33(3), 1286-1294.
[http://dx.doi.org/10.1111/jvim.15481] [PMID: 30882953]
[133]
Esposito, C.; Roberti, A.; Turrà, F.; Cerulo, M.; Severino, G.; Settimi, A.; Escolino, M. Frequency of antibiotic-associated diarrhea and related complications in pediatric patients who underwent hypospadias repair: A comparative study using probiotics vs placebo. Probiotics Antimicrob. Proteins, 2018, 10(2), 323-328.
[http://dx.doi.org/10.1007/s12602-017-9324-4] [PMID: 28871492]
[134]
Qu, Q.; Yang, F.; Zhao, C.; Liu, X.; Yang, P.; Li, Z.; Han, L.; Shi, X. Effects of fermented ginseng on the gut microbiota and immunity of rats with antibiotic-associated diarrhea. J. Ethnopharmacol., 2021, 267, 113594.
[http://dx.doi.org/10.1016/j.jep.2020.113594] [PMID: 33217518]
[135]
de Vrese, M.; Kristen, H.; Rautenberg, P.; Laue, C.; Schrezenmeir, J. Probiotic lactobacilli and bifidobacteria in a fermented milk product with added fruit preparation reduce antibiotic associated diarrhea and Helicobacter pylori activity. J. Dairy Res., 2011, 78(4), 396-403.
[http://dx.doi.org/10.1017/S002202991100063X] [PMID: 21871144]
[136]
Yang, Y.J.; Chuang, C.C.; Yang, H.B.; Lu, C.C.; Sheu, B.S. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. BMC Microbiol., 2012, 12(1), 38.
[http://dx.doi.org/10.1186/1471-2180-12-38]
[137]
Asgari, B.; Kermanian, F.; Derakhshan, N.; Asna-Ashari, M.; Sadat, Z.R.N.; Yaslianifard, S. Honey-derived Lactobacillus rhamnosus alleviates Helicobacter pylori-induced gastro-intestinal infection and gastric inflammation in C57Bl/6 mice: An immuno-histologic study. Arq. Gastroenterol., 2018, 55(3), 279-282.
[http://dx.doi.org/10.1590/s0004-2803.201800000-70] [PMID: 30540092]
[138]
Bagarolli, R.A.; Tobar, N.; Oliveira, A.G.; Araújo, T.G.; Carvalho, B.M.; Rocha, G.Z.; Vecina, J.F.; Calisto, K.; Guadagnini, D.; Prada, P.O.; Santos, A.; Saad, S.T.O.; Saad, M.J.A. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. J. Nutr. Biochem., 2017, 50, 16-25.
[http://dx.doi.org/10.1016/j.jnutbio.2017.08.006] [PMID: 28968517]
[139]
da Costa, W.K.A.; Brandão, L.R.; Martino, M.E.; Garcia, E.F.; Alves, A.F.; de Souza, E.L.; de Souza Aquino, J.; Saarela, M.; Leulier, F.; Vidal, H.; Magnani, M. Qualification of tropical fruit-derived Lactobacillus plantarum strains as potential probiotics acting on blood glucose and total cholesterol levels in Wistar rats. Food Res. Int., 2019, 124, 109-117.
[http://dx.doi.org/10.1016/j.foodres.2018.08.035] [PMID: 31466629]
[140]
Yan, F.; Li, N.; Yue, Y.; Wang, C.; Zhao, L.; Evivie, S.E.; Li, B.; Huo, G. Screening for potential novel probiotics with dipeptidyl peptidase IV-inhibiting activity for type 2 diabetes attenuation in vitro and in vivo. Front. Microbiol., 2020, 10, 2855.
[http://dx.doi.org/10.3389/fmicb.2019.02855] [PMID: 31998245]
[141]
Wang, Y.; Dilidaxi, D.; Wu, Y.; Sailike, J.; Sun, X.; Nabi, X. Composite probiotics alleviate type 2 diabetes by regulating intestinal microbiota and inducing GLP-1 secretion in db/db mice. Biomed. Pharmacother., 2020, 125, 109914.
[http://dx.doi.org/10.1016/j.biopha.2020.109914] [PMID: 32035395]
[142]
Yan, Y.; Liu, C.; Zhao, S.; Wang, X.; Wang, J.; Zhang, H.; Wang, Y.; Zhao, G. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Express, 2020, 10(1), 101.
[http://dx.doi.org/10.1186/s13568-020-01038-y] [PMID: 32472368]
[143]
Li, H.; Liu, F.; Lu, J.; Shi, J.; Guan, J.; Yan, F.; Li, B.; Huo, G. Probiotic mixture of Lactobacillus plantarum strains improves lipid metabolism and gut microbiota structure in high fat diet-fed mice. Front. Microbiol., 2020, 11, 512.
[http://dx.doi.org/10.3389/fmicb.2020.00512] [PMID: 32273874]
[144]
Kwon, H.K.; Kim, G.C.; Kim, Y.; Hwang, W.; Jash, A.; Sahoo, A.; Kim, J.E.; Nam, J.H.; Im, S.H. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin. Immunol., 2013, 146(3), 217-227.
[http://dx.doi.org/10.1016/j.clim.2013.01.001] [PMID: 23416238]
[145]
Kouchaki, E.; Tamtaji, O.R.; Salami, M.; Bahmani, F.; Daneshvar Kakhaki, R.; Akbari, E.; Tajabadi-Ebrahimi, M.; Jafari, P.; Asemi, Z. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2017, 36(5), 1245-1249.
[http://dx.doi.org/10.1016/j.clnu.2016.08.015] [PMID: 27669638]
[146]
Mardani, F.; Mahmoudi, M.; Esmaeili, S.A.; Khorasani, S.; Tabasi, N.; Rastin, M. In vivo study: Th1-Th17 reduction in pristane‐induced systemic lupus erythematosus mice after treatment with tolerogenic Lactobacillus probiotics. J. Cell. Physiol., 2019, 234(1), 642-649.
[http://dx.doi.org/10.1002/jcp.26819] [PMID: 30078223]
[147]
Khorasani, S.; Mahmoudi, M.; Kalantari, M.R.; Lavi Arab, F.; Esmaeili, S.A.; Mardani, F.; Tabasi, N.; Rastin, M. Amelioration of regulatory T cells by Lactobacillus delbrueckii and Lactobacillus rhamnosus in pristane‐induced lupus mice model. J. Cell. Physiol., 2019, 234(6), 9778-9786.
[http://dx.doi.org/10.1002/jcp.27663] [PMID: 30370554]
[148]
de la Visitación, N.; Robles-Vera, I.; Moleón-Moya, J.; Sánchez, M.; Jiménez, R.; Gómez-Guzmán, M.; González-Correa, C.; Olivares, M.; Toral, M.; Romero, M.; Duarte, J. Probiotics prevent hypertension in a murine model of systemic lupus erythematosus induced by toll-like receptor 7 activation. Nutrients, 2021, 13(8), 2669.
[http://dx.doi.org/10.3390/nu13082669] [PMID: 34444829]
[149]
Pakdaman, M.N.; Udani, J.K.; Molina, J.P.; Shahani, M. The effects of the DDS-1 strain of lactobacillus on symptomatic relief for lactose intolerance - a randomized, double-blind, placebo-controlled, crossover clinical trial. Nutr. J., 2015, 15(1), 56.
[http://dx.doi.org/10.1186/s12937-016-0172-y]
[150]
Roškar, I.; Švigelj, K.; Štempelj, M.; Volfand, J.; Štabuc, B.; Malovrh, Š.; Rogelj, I. Effects of a probiotic product containing Bifidobacterium animalis subsp. animalis IM386 and Lactobacillus plantarum MP2026 in lactose intolerant individuals: Randomized, placebo-controlled clinical trial. J. Funct. Foods, 2017, 35, 1-8.
[http://dx.doi.org/10.1016/j.jff.2017.05.020]
[151]
Vitellio, P.; Celano, G.; Bonfrate, L.; Gobbetti, M.; Portincasa, P.; De Angelis, M. Effects of Bifidobacterium longum and Lactobacillus rhamnosus on gut microbiota in patients with lactose intolerance and persisting functional gastrointestinal symptoms: A randomised, double-blind, cross-over study. Nutrients, 2019, 11(4), 886.
[http://dx.doi.org/10.3390/nu11040886] [PMID: 31010241]
[152]
Masoumi, S.J.; Mehrabani, D.; Saberifiroozi, M.; Fattahi, M.R.; Moradi, F.; Najafi, M. The effect of yogurt fortified with Lactobacillus acidophilus and Bifidobacterium sp. probiotic in patients with lactose intolerance. Food Sci. Nutr., 2021, 9(3), 1704-1711.
[http://dx.doi.org/10.1002/fsn3.2145] [PMID: 33747481]
[153]
Tamtaji, O.R.; Heidari-soureshjani, R.; Mirhosseini, N.; Kouchaki, E.; Bahmani, F.; Aghadavod, E.; Tajabadi-Ebrahimi, M.; Asemi, Z. Probiotic and selenium co-supplementation, and the effects on clinical, metabolic and genetic status in Alzheimer’s disease: A randomized, double-blind, controlled trial. Clin. Nutr., 2019, 38(6), 2569-2575.
[http://dx.doi.org/10.1016/j.clnu.2018.11.034] [PMID: 30642737]
[154]
Mehrabadi, S.; Sadr, S.S. Assessment of probiotics mixture on memory function, inflammation markers, and oxidative stress in an Alzheimer’s disease model of rats. Iran. Biomed. J., 2020, 24(4), 220-228.
[http://dx.doi.org/10.29252/ibj.24.4.220] [PMID: 32306720]
[155]
Tan, F.H.P.; Liu, G.; Lau, S.Y.A.; Jaafar, M.H.; Park, Y.H.; Azzam, G.; Li, Y.; Liong, M.T. Lactobacillus probiotics improved the gut microbiota profile of a Drosophila melanogaster Alzheimer’s disease model and alleviated neurodegeneration in the eye. Benef. Microbes, 2020, 11(1), 79-89.
[http://dx.doi.org/10.3920/BM2019.0086] [PMID: 32066253]
[156]
Crow, J.R.; Davis, S.L.; Chaykosky, D.M.; Smith, T.T.; Smith, J.M. Probiotics and fecal microbiota transplant for primary and secondary prevention of C lostridium difficile infection. Pharmacotherapy, 2015, 35(11), 1016-1025.
[http://dx.doi.org/10.1002/phar.1644] [PMID: 26598094]
[157]
Yukgehnaish, K.; Kumar, P.; Sivachandran, P.; Marimuthu, K.; Arshad, A.; Paray, B.A.; Arockiaraj, J. Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Rev. Aquacult., 2020, 12(3), raq.12416..
[http://dx.doi.org/10.1111/raq.12416]
[158]
Pant, C.; Deshpande, A.; Altaf, M.A.; Minocha, A.; Sferra, T.J. Clostridium difficile infection in children: A comprehensive review. Curr. Med. Res. Opin., 2013, 29(8), 967-984.
[http://dx.doi.org/10.1185/03007995.2013.803058] [PMID: 23659563]
[159]
Amieva, M.R.; El-Omar, E.M. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology, 2008, 134(1), 306-323.
[http://dx.doi.org/10.1053/j.gastro.2007.11.009] [PMID: 18166359]
[160]
Fernández, A.M.; Kim, J.K.; Yakar, S.; Dupont, J.; Hernandez-Sanchez, C.; Castle, A.L.; Filmore, J.; Shulman, G.I.; Le Roith, D. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev., 2001, 15(15), 1926-1934.
[http://dx.doi.org/10.1101/gad.908001] [PMID: 11485987]
[161]
Mukhtar, Y.; Galalain, A.; Yunusa, U. A modern overview on diabetes mellitus: A chronic endocrine disorder. Euro. J. Biol., 2020, 5(2), 1-14.
[http://dx.doi.org/10.47672/ejb.409]
[162]
Abdallah, F.; Mijouin, L.; Pichon, C. Skin immune landscape: Inside and outside the organism. Mediators Inflamm., 2017, 2017, 1-17.
[http://dx.doi.org/10.1155/2017/5095293] [PMID: 29180836]
[163]
Nivetha, A.; Mohanasrinivasan, V. Mini review on role of β-galactosidase in lactose intolerance. IOP Conference Series: Mater. Sci. Eng., 2017, 263(2), p. 022046.
[164]
Videnovic, A.; Lazar, A.S.; Barker, R.A.; Overeem, S. ‘The clocks that time us’—circadian rhythms in neurodegenerative disorders. Nat. Rev. Neurol., 2014, 10(12), 683-693.
[http://dx.doi.org/10.1038/nrneurol.2014.206] [PMID: 25385339]
[165]
Fang, X.; Tian, P.; Zhao, X.; Jiang, C.; Chen, T. Neuroprotective effects of an engineered commensal bacterium in the 1‐methyl‐4‐phenyl‐1, 2, 3, 6‐tetrahydropyridine Parkinson disease mouse model via producing glucagon‐like peptide‐1. J. Neurochem., 2019, 150(4), 441-452.
[http://dx.doi.org/10.1111/jnc.14694] [PMID: 30851189]
[166]
Srivastav, S.; Neupane, S.; Bhurtel, S.; Katila, N.; Maharjan, S.; Choi, H.; Hong, J.T.; Choi, D.Y. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem., 2019, 69, 73-86.
[http://dx.doi.org/10.1016/j.jnutbio.2019.03.021] [PMID: 31063918]
[167]
Alipour Nosrani, E.; Tamtaji, O.R.; Alibolandi, Z.; Sarkar, P.; Ghazanfari, M.; Azami Tameh, A.; Taghizadeh, M.; Banikazemi, Z.; Hadavi, R.; Naderi Taheri, M. Neuroprotective effects of probiotics bacteria on animal model of Parkinson’s disease induced by 6-hydroxydopamine: A behavioral, biochemical, and histological study. J. Immunoassay Immunochem., 2021, 42(2), 106-120.
[http://dx.doi.org/10.1080/15321819.2020.1833917] [PMID: 33078659]
[168]
Perez Visñuk, D.; Savoy de Giori, G.; LeBlanc, J.G.; de Moreno de LeBlanc, A. Neuroprotective effects associated with immune modulation by selected lactic acid bacteria in a Parkinson’s disease model. Nutrition, 2020, 79-80, 110995.
[http://dx.doi.org/10.1016/j.nut.2020.110995] [PMID: 32977125]
[169]
Liao, J.F.; Cheng, Y.F.; You, S.T.; Kuo, W.C.; Huang, C.W.; Chiou, J.J.; Hsu, C.C.; Hsieh-Li, H.M.; Wang, S.; Tsai, Y.C. Lactobacillus plantarum PS128 alleviates neurodegenerative progression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse models of Parkinson’s disease. Brain Behav. Immun., 2020, 90, 26-46.
[http://dx.doi.org/10.1016/j.bbi.2020.07.036] [PMID: 32739365]
[170]
Tsao, S.P.; Nurrahma, B.A.; Kumar, R.; Wu, C.H.; Yeh, T.H.; Chiu, C.C.; Lee, Y.P.; Liao, Y.C.; Huang, C.H.; Yeh, Y.T.; Huang, H.Y. Probiotic enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced parkinson’s disease rats. Antioxidants, 2021, 10(11), 1823.
[http://dx.doi.org/10.3390/antiox10111823] [PMID: 34829694]
[171]
Sun, J.; Li, H.; Jin, Y.; Yu, J.; Mao, S.; Su, K.P.; Ling, Z.; Liu, J. Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav. Immun., 2021, 91, 703-715.
[http://dx.doi.org/10.1016/j.bbi.2020.10.014] [PMID: 33148438]
[172]
Nurrahma, B.A.; Tsao, S.P.; Wu, C.H.; Yeh, T.H.; Hsieh, P.S.; Panunggal, B.; Huang, H.Y. Probiotic supplementation facilitates recovery of 6-OHDA-induced motor deficit via improving mitochondrial function and energy metabolism. Front. Aging Neurosci., 2021, 13, 668775.
[http://dx.doi.org/10.3389/fnagi.2021.668775] [PMID: 34025392]
[173]
Tamtaji, O.R.; Taghizadeh, M.; Daneshvar Kakhaki, R.; Kouchaki, E.; Bahmani, F.; Borzabadi, S.; Oryan, S.; Mafi, A.; Asemi, Z. Clinical and metabolic response to probiotic administration in people with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Clin. Nutr., 2019, 38(3), 1031-1035.
[http://dx.doi.org/10.1016/j.clnu.2018.05.018] [PMID: 29891223]
[174]
Ibrahim, A.; Ali, R.A.R.; Manaf, M.R.A.; Ahmad, N.; Tajurruddin, F.W.; Qin, W.Z.; Desa, S.H.M.; Ibrahim, N.M. Multi-strain probiotics (Hexbio) containing MCP BCMC strains improved constipation and gut motility in Parkinson’s disease: A randomised controlled trial. PLoS One, 2020, 15(12), e0244680.
[http://dx.doi.org/10.1371/journal.pone.0244680] [PMID: 33382780]
[175]
Lu, C.S.; Chang, H.C.; Weng, Y.H.; Chen, C.C.; Kuo, Y.S.; Tsai, Y.C. The add-on effect of Lactobacillus plantarum PS128 in patients with Parkinson’s disease: A pilot study. Front. Nutr., 2021, 8, 650053.
[http://dx.doi.org/10.3389/fnut.2021.650053] [PMID: 34277679]
[176]
Ghyselinck, J.; Verstrepen, L.; Moens, F.; Van Den Abbeele, P.; Bruggeman, A.; Said, J.; Smith, B.; Barker, L.A.; Jordan, C.; Leta, V.; Chaudhuri, K.R.; Basit, A.W.; Gaisford, S. Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson’s disease. Int. J. Pharm. X, 2021, 3, 100087.
[http://dx.doi.org/10.1016/j.ijpx.2021.100087] [PMID: 34977556]
[177]
Tan, A.H.; Lim, S.Y.; Chong, K.K.; A Manap, M.A.A.; Hor, J.W.; Lim, J.L.; Low, S.C.; Chong, C.W.; Mahadeva, S.; Lang, A.E. Probiotics for constipation in Parkinson disease: A randomized placebo-controlled study. Neurology, 2021, 96(5), e772-e782.
[PMID: 33046607]
[178]
Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol., 2013, 6(1), 39-51.
[http://dx.doi.org/10.1177/1756283X12459294] [PMID: 23320049]
[179]
Antonini, M.; Lo Conte, M.; Sorini, C.; Falcone, M. How the interplay between the commensal microbiota, gut barrier integrity, and mucosal immunity regulates brain autoimmunity. Front. Immunol., 2019, 10, 1937.
[http://dx.doi.org/10.3389/fimmu.2019.01937] [PMID: 31475000]
[180]
Gazerani, P. Probiotics for Parkinson’s disease. Int. J. Mol. Sci., 2019, 20(17), 4121.
[http://dx.doi.org/10.3390/ijms20174121] [PMID: 31450864]
[181]
Kołożyn-Krajewska, D.; Dolatowski, Z.J. Probiotic meat products and human nutrition. Process Biochem., 2012, 47(12), 1761-1772.
[http://dx.doi.org/10.1016/j.procbio.2012.09.017]
[182]
Venkataratnamma, V.; Begum, P.S.; Madhavi, G.; Rajagopal, S.; Viswanath, B.; Razak, M.A. Probiotics as functional foods: Potential effects on human health and its impact on neurological diseases. Int. J. Nutr. Pharmacol. Neurol. Dis., 2017, 7(2), 23.
[http://dx.doi.org/10.4103/ijnpnd.ijnpnd_90_16]
[183]
Gupta, S.; Abu-Ghannam, N. Probiotic fermentation of plant based products: Possibilities and opportunities. Crit. Rev. Food Sci. Nutr., 2012, 52(2), 183-199.
[http://dx.doi.org/10.1080/10408398.2010.499779] [PMID: 22059963]
[184]
Sveje, M. Probiotic and prebiotics-improving consumer health through food consumption., Nutracoss, 2007, 28-31.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy