Generic placeholder image

Drug Metabolism and Bioanalysis Letters

Editor-in-Chief

ISSN (Print): 2949-6810
ISSN (Online): 2949-6829

Review Article

Role of the Gut Microbiome in Diabetes and Cardiovascular Diseases Including Restoration and Targeting Approaches- A Review

Author(s): Alka Ahuja*, Saraswathy MP, Nandakumar S, Arul Prakash F, Gurpreet KN and Dhanalekshmi UM*

Volume 15, Issue 3, 2022

Published on: 27 September, 2022

Page: [133 - 149] Pages: 17

DOI: 10.2174/2949681015666220615120300

Price: $65

Abstract

Metabolic diseases, including cardiovascular diseases (CVD) and diabetes, have become the leading cause of morbidity and mortality worldwide. Gut microbiota appears to play a vital role in human disease and health, according to recent scientific reports. The gut microbiota plays an important role in sustaining host physiology and homeostasis by creating a cross-talk between the host and microbiome via metabolites obtained from the host's diet. Drug developers and clinicians rely heavily on therapies that target the microbiota in the management of metabolic diseases, and the gut microbiota is considered the biggest immune organ in the human body. They are highly associated with intestinal immunity and systemic metabolic disorders like CVD and diabetes and are reflected as potential therapeutic targets for the management of metabolic diseases. This review discusses the mechanism and interrelation between the gut microbiome and metabolic disorders. It also highlights the role of the gut microbiome and microbially derived metabolites in the pathophysiological effects related to CVD and diabetes. It also spotlights the reasons that lead to alterations of microbiota composition and the prominence of gut microbiota restoration and targeting approaches as effective treatment strategies in diabetes and CVD. Future research should focus onunderstanding the functional level of some specific microbial pathways that help maintain physiological homeostasis, multi-omics, and develop novel therapeutic strategies that intervene with the gut microbiome for the prevention of CVD and diabetes that contribute to a patient's well-being.

Keywords: Diabetes, cardiovascular diseases, gut, microbiome, intestinal immunity, microbiota, metabolic diseases.

Next »
Graphical Abstract
[1]
Miranda, P.J.; DeFronzo, R.A.; Califf, R.M.; Guyton, J.R. Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am. Heart J., 2005, 149(1), 33-45.
[http://dx.doi.org/10.1016/j.ahj.2004.07.013] [PMID: 15660032]
[2]
Agus, A.; Clément, K.; Sokol, H. Gut microbiota-derived metabolites as central regulators in metabolic disorders. Gut, 2021, 70(6), 1174-1182.
[http://dx.doi.org/10.1136/gutjnl-2020-323071] [PMID: 33272977]
[3]
Sittipo, P.; Shim, J-W.; Lee, Y.K. Microbial metabolites determine host health and the status of some diseases. Int. J. Mol. Sci., 2019, 20(21), 5296.
[http://dx.doi.org/10.3390/ijms20215296] [PMID: 31653062]
[4]
Bäckhed, F.; Roswall, J.; Peng, Y.; Feng, Q.; Jia, H.; Kovatcheva-Datchary, P.; Li, Y.; Xia, Y.; Xie, H.; Zhong, H.; Khan, M.T.; Zhang, J.; Li, J.; Xiao, L.; Al-Aama, J.; Zhang, D.; Lee, Y.S.; Kotowska, D.; Colding, C.; Tremaroli, V.; Yin, Y.; Bergman, S.; Xu, X.; Madsen, L.; Kristiansen, K.; Dahlgren, J.; Wang, J. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe, 2015, 17(5), 690-703.
[http://dx.doi.org/10.1016/j.chom.2015.04.004] [PMID: 25974306]
[5]
Xu, J.; Gordon, J.I. Honor thy symbionts. Proc. Natl. Acad. Sci. USA, 2003, 100(18), 10452-10459.
[http://dx.doi.org/10.1073/pnas.1734063100] [PMID: 12923294]
[6]
Flint, H.J. Obesity and the gut microbiota. J. Clin. Gastroenterol., 2011, 45(Suppl.), S128-S132.
[http://dx.doi.org/10.1097/MCG.0b013e31821f44c4] [PMID: 21992951]
[7]
Muegge, B.D.; Kuczynski, J.; Knights, D.; Clemente, J.C.; González, A.; Fontana, L.; Henrissat, B.; Knight, R.; Gordon, J.I. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science, 2011, 332(6032), 970-974.
[http://dx.doi.org/10.1126/science.1198719] [PMID: 21596990]
[8]
Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell, 2021, 12(5), 360-373.
[http://dx.doi.org/10.1007/s13238-020-00814-7] [PMID: 33346905]
[9]
Thingholm, L.B.; Rühlemann, M.C.; Koch, M.; Fuqua, B.; Laucke, G.; Boehm, R.; Bang, C.; Franzosa, E.A.; Hübenthal, M.; Rahnavard, A.; Frost, F.; Lloyd-Price, J.; Schirmer, M.; Lusis, A.J.; Vulpe, C.D.; Lerch, M.M.; Homuth, G.; Kacprowski, T.; Schmidt, C.O.; Nöthlings, U.; Karlsen, T.H.; Lieb, W.; Laudes, M.; Franke, A.; Huttenhower, C. Obese individuals with and without type 2 diabetes show different gut microbial functional capacity and composition. Cell Host Microbe, 2019, 26(2), 252-264.e10.
[http://dx.doi.org/10.1016/j.chom.2019.07.004] [PMID: 31399369]
[10]
Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; Xia, H.; Liu, Z.; Cui, B.; Liang, P.; Xi, L.; Jin, J.; Ying, X.; Wang, X.; Zhao, X.; Li, W.; Jia, H.; Lan, Z.; Li, F.; Wang, R.; Sun, Y.; Yang, M.; Shen, Y.; Jie, Z.; Li, J.; Chen, X.; Zhong, H.; Xie, H.; Zhang, Y.; Gu, W.; Deng, X.; Shen, B.; Xu, X.; Yang, H.; Xu, G.; Bi, Y.; Lai, S.; Wang, J.; Qi, L.; Madsen, L.; Wang, J.; Ning, G.; Kristiansen, K.; Wang, W. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med., 2017, 23(7), 859-868.
[http://dx.doi.org/10.1038/nm.4358] [PMID: 28628112]
[11]
Le, T.K.C.; Hosaka, T.; Nguyen, T.T.; Kassu, A.; Dang, T.O.; Tran, H.B.; Pham, T.P.; Tran, Q.B.; Le, T.H.H.; Pham, X.D. Bifidobacterium species lower serum glucose, increase expressions of insulin signaling proteins, and improve adipokine profile in diabetic mice. Biomed. Res., 2015, 36(1), 63-70.
[http://dx.doi.org/10.2220/biomedres.36.63] [PMID: 25749152]
[12]
Kikuchi, K.; Ben Othman, M.; Sakamoto, K. Sterilized bifidobacteria suppressed fat accumulation and blood glucose level. Biochem. Biophys. Res. Commun., 2018, 501(4), 1041-1047.
[http://dx.doi.org/10.1016/j.bbrc.2018.05.105] [PMID: 29777696]
[13]
Chelakkot, C.; Choi, Y.; Kim, D-K.; Park, H.T.; Ghim, J.; Kwon, Y.; Jeon, J.; Kim, M-S.; Jee, Y-K.; Gho, Y.S.; Park, H-S.; Kim, Y-K.; Ryu, S.H. Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Exp. Mol. Med., 2018, 50(2), e450.
[http://dx.doi.org/10.1038/emm.2017.282] [PMID: 29472701]
[14]
Gurung, M.; Li, Z.; You, H.; Rodrigues, R.; Jump, D.B.; Morgun, A.; Shulzhenko, N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.
[http://dx.doi.org/10.1016/j.ebiom.2019.11.051] [PMID: 31901868]
[15]
Murri, M.; Leiva, I.; Gomez-Zumaquero, J.M.; Tinahones, F.J.; Cardona, F.; Soriguer, F.; Queipo-Ortuno, M.I. Gut microbiota in children with type 1 diabetes differs from that in healthy children: A case-control study. BMC Med., 2013, 11, 46.
[http://dx.doi.org/10.1186/1741-7015-11-46]
[16]
Huang, Y.; Li, S-C.; Hu, J.; Ruan, H-B.; Guo, H-M.; Zhang, H-H.; Wang, X.; Pei, Y-F.; Pan, Y.; Fang, C. Gut microbiota profiling in Han Chinese with type 1 diabetes. Diabetes Res. Clin. Pract., 2018, 141, 256-263.
[http://dx.doi.org/10.1016/j.diabres.2018.04.032] [PMID: 29733871]
[17]
de Goffau, M.C.; Fuentes, S.; van den Bogert, B.; Honkanen, H.; de Vos, W.M.; Welling, G.W.; Hyöty, H.; Harmsen, H.J.M. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children. Diabetologia, 2014, 57(8), 1569-1577.
[http://dx.doi.org/10.1007/s00125-014-3274-0] [PMID: 24930037]
[18]
Cinek, O.; Kramna, L.; Mazankova, K.; Odeh, R.; Alassaf, A.; Ibekwe, M.U.; Ahmadov, G.; Elmahi, B.M.E.; Mekki, H.; Lebl, J.; Abdullah, M.A. The bacteriome at the onset of type 1 diabetes: A study from four geographically distant African and Asian countries. Diabetes Res. Clin. Pract., 2018, 144, 51-62.
[http://dx.doi.org/10.1016/j.diabres.2018.08.010] [PMID: 30121305]
[19]
Wang, B.; Jiang, X.; Cao, M.; Ge, J.; Bao, Q.; Tang, L.; Chen, Y.; Li, L. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci. Rep., 2016, 6, 332002.
[20]
da Silva, H.E.; Teterina, A.; Comelli, E.M.; Taibi, A.; Arendt, B.M.; Fischer, S.E.; Lou, W.; Allard, J.P. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci. Rep., 2018, 8(1), 1466.
[http://dx.doi.org/10.1038/s41598-018-19753-9] [PMID: 29362454]
[21]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[22]
Turnbaugh, P.J.; Bäckhed, F.; Fulton, L.; Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe, 2008, 3(4), 213-223.
[http://dx.doi.org/10.1016/j.chom.2008.02.015] [PMID: 18407065]
[23]
Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol., 2021, 19(1), 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[24]
Temraz, S.; Nassar, F.; Nasr, R.; Charafeddine, M.; Mukherji, D.; Shamseddine, A. Gut microbiome: A promising biomarker for immunotherapy in colorectal cancer. Int. J. Mol. Sci., 2019, 20(17), 4155.
[http://dx.doi.org/10.3390/ijms20174155]
[25]
Ling, Y.; Gong, T.; Zhang, J.; Gu, Q.; Gao, X.; Weng, X.; Liu, J.; Sun, J. Gut microbiome signatures are biomarkers for cognitive impairment in patients with ischemic stroke. Front. Aging Neurosci., 2020, 12, 511562.
[http://dx.doi.org/10.3389/fnagi.2020.511562] [PMID: 33192448]
[26]
Guo, X.; Huang, C.; Xu, J.; Xu, H.; Liu, L.; Zhao, H.; Wang, J.; Huang, W.; Peng, W.; Chen, Y.; Nie, Y.; Zhou, Y.; Zhou, Y. Gut microbiota is a potential biomarker in inflammatory bowel disease. Front. Nutr., 2022, 8, 818902.
[http://dx.doi.org/10.3389/fnut.2021.818902] [PMID: 35127797]
[27]
Singh, R.; Zogg, H.; Wei, L.; Bartlett, A.; Ghoshal, U.C.; Rajender, S.; Ro, S. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J. Neurogastroenterol. Motil., 2021, 27(1), 19-34.
[http://dx.doi.org/10.5056/jnm20149] [PMID: 33166939]
[28]
Li, X.; Atkinson, M.A. The role for gut permeability in the pathogenesis of type 1 diabetes--a solid or leaky concept? Pediatr. Diabetes, 2015, 16(7), 485-492.
[http://dx.doi.org/10.1111/pedi.12305] [PMID: 26269193]
[29]
Kieser, K.J.; Kagan, J.C. Multi-receptor detection of individual bacterial products by the innate immune system. Nat. Rev. Immunol., 2017, 17(6), 376-390.
[http://dx.doi.org/10.1038/nri.2017.25] [PMID: 28461704]
[30]
Filardo, S.; Di Pietro, M.; Farcomeni, A.; Schiavoni, G.; Sessa, R. Chlamydia pneumoniae-mediated inflammation in atherosclerosis: A metaanalysis. Mediators Inflamm., 2015, 2015, 378658.
[http://dx.doi.org/10.1155/2015/378658] [PMID: 26346892]
[31]
Ferris, S.T.; Zakharov, P.N.; Wan, X.; Calderon, B.; Artyomov, M.N.; Unanue, E.R.; Carrero, J.A. The islet-resident macrophage is in an inflammatory state and senses microbial products in blood. J. Exp. Med., 2017, 214(8), 2369-2385.
[http://dx.doi.org/10.1084/jem.20170074] [PMID: 28630088]
[32]
Jie, Z.; Xia, H.; Zhong, S.L.; Feng, Q.; Li, S.; Liang, S.; Zhong, H.; Liu, Z.; Gao, Y.; Zhao, H.; Zhang, D.; Su, Z.; Fang, Z.; Lan, Z.; Li, J.; Xiao, L.; Li, J.; Li, R.; Li, X.; Li, F.; Ren, H.; Huang, Y.; Peng, Y.; Li, G.; Wen, B.; Dong, B.; Chen, J.Y.; Geng, Q.S.; Zhang, Z.W.; Yang, H.; Wang, J.; Wang, J.; Zhang, X.; Madsen, L.; Brix, S.; Ning, G.; Xu, X.; Liu, X.; Hou, Y.; Jia, H.; He, K.; Kristiansen, K. The gut microbiome in atherosclerotic cardiovascular disease. Nat. Commun., 2017, 8(1), 845.
[http://dx.doi.org/10.1038/s41467-017-00900-1] [PMID: 29018189]
[33]
Pluznick, J.L. Renal and cardiovascular sensory receptors and blood pressure regulation. Am. J. Physiol. Renal Physiol., 2013, 305(4), F439-F444.
[http://dx.doi.org/10.1152/ajprenal.00252.2013] [PMID: 23761671]
[34]
Iannotti, F.A.; Di Marzo, V. The gut microbiome, endocannabinoids and metabolic disorders. J. Endocrinol., 2021, 248(2), R83-R97.
[http://dx.doi.org/10.1530/JOE-20-0444] [PMID: 33337346]
[35]
Al-Ghezi, Z.Z.; Busbee, P.B.; Alghetaa, H.; Nagarkatti, P.S.; Nagarkatti, M. Combination of cannabinoids, delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD), mitigates experimental autoimmune encephalomyelitis (EAE) by altering the gut microbiome. Brain Behav. Immun., 2019, 82, 25-35.
[http://dx.doi.org/10.1016/j.bbi.2019.07.028] [PMID: 31356922]
[36]
Allin, K.H.; Nielsen, T.; Pedersen, O. Mechanisms in endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur. J. Endocrinol., 2015, 172(4), R167-R177.
[http://dx.doi.org/10.1530/EJE-14-0874] [PMID: 25416725]
[37]
Winther, S.A.; Øllgaard, J.C.; Tofte, N.; Tarnow, L.; Wang, Z.; Ahluwalia, T.S.; Jorsal, A.; Theilade, S.; Parving, H-H.; Hansen, T.W.; Hazen, S.L.; Pedersen, O.; Rossing, P. Utility of plasma concentration of trimethylamine N-oxide in predicting cardiovascular and renal complications in individuals with type 1 diabetes. Diabetes Care, 2019, 42(8), 1512-1520.
[http://dx.doi.org/10.2337/dc19-0048] [PMID: 31123156]
[38]
Xu, H.; Wang, X.; Feng, W.; Liu, Q.; Zhou, S.; Liu, Q.; Cai, L. The gut microbiota and its interactions with cardiovascular disease. Microb. Biotechnol., 2020, 13(3), 637-656.
[http://dx.doi.org/10.1111/1751-7915.13524] [PMID: 31984651]
[39]
Hartstra, A.V.; Bouter, K.E.; Bäckhed, F.; Nieuwdorp, M. Insights into the role of the microbiome in obesity and type 2 diabetes. Diabetes Care, 2015, 38(1), 159-165.
[http://dx.doi.org/10.2337/dc14-0769] [PMID: 25538312]
[40]
Ahmadmehrabi, S.; Tang, W.H.W. Gut microbiome and its role in cardiovascular diseases. Curr. Opin. Cardiol., 2017, 32(6), 761-766.
[http://dx.doi.org/10.1097/HCO.0000000000000445] [PMID: 29023288]
[41]
Savi, M.; Bocchi, L.; Mena, P.; Dall’Asta, M.; Crozier, A.; Brighenti, F.; Stilli, D.; Del Rio, D. In vivo administration of urolithin A and B prevents the occurrence of cardiac dysfunction in streptozotocin-induced diabetic rats. Cardiovasc. Diabetol., 2017, 16(1), 80.
[http://dx.doi.org/10.1186/s12933-017-0561-3] [PMID: 28683791]
[42]
Allin, K.H.; Tremaroli, V.; Caesar, R.; Jensen, B.A.H.; Damgaard, M.T.F.; Bahl, M.I.; Licht, T.R.; Hansen, T.H.; Nielsen, T.; Dantoft, T.M.; Linneberg, A.; Jørgensen, T.; Vestergaard, H.; Kristiansen, K.; Franks, P.W.; Hansen, T.; Bäckhed, F.; Pedersen, O. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia, 2018, 61(4), 810-820.
[http://dx.doi.org/10.1007/s00125-018-4550-1] [PMID: 29379988]
[43]
Yuan, T.; Yang, T.; Chen, H.; Fu, D.; Hu, Y.; Wang, J.; Yuan, Q.; Yu, H.; Xu, W.; Xie, X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol., 2019, 20, 247-260.
[http://dx.doi.org/10.1016/j.redox.2018.09.025] [PMID: 30384259]
[44]
Dedrick, S.; Sundaresh, B.; Huang, Q.; Brady, C.; Yoo, T.; Cronin, C.; Rudnicki, C.; Flood, M.; Momeni, B.; Ludvigsson, J.; Altindis, E. The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Front. Endocrinol. (Lausanne), 2020, 11, 78.
[http://dx.doi.org/10.3389/fendo.2020.00078] [PMID: 32174888]
[45]
Nevin, I. Gut microbiota and metabolism. Int. J. Med. Biochem., 2018, 1(3), 115-128.
[46]
Haybar, H.; Shokuhian, M.; Bagheri, M.; Davari, N.; Saki, N. Involvement of circulating inflammatory factors in prognosis and risk of cardiovascular disease. J. Mol. Cell. Cardiol., 2019, 132, 110-119.
[http://dx.doi.org/10.1016/j.yjmcc.2019.05.010] [PMID: 31102585]
[47]
Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; Huffman, M.D.; Isasi, C.R.; Jiménez, M.C.; Judd, S.E.; Kissela, B.M.; Lichtman, J.H.; Lisabeth, L.D.; Liu, S.; Mackey, R.H.; Magid, D.J.; McGuire, D.K.; Mohler, E.R., III; Moy, C.S.; Muntner, P.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Nichol, G.; Palaniappan, L.; Pandey, D.K.; Reeves, M.J.; Rodriguez, C.J.; Rosamond, W.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Woo, D.; Yeh, R.W.; Turner, M.B. Heart disease and stroke statistics-2016 update: A report from the American heart association. Circulation, 2016, 133(4), e38-e360.
[PMID: 26673558]
[48]
Jones, M.L.; Martoni, C.J.; Parent, M.; Prakash, S. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br. J. Nutr., 2012, 107(10), 1505-1513.
[http://dx.doi.org/10.1017/S0007114511004703] [PMID: 22067612]
[49]
Brown, J.M.; Hazen, S.L. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases. Annu. Rev. Med., 2015, 66, 343-359.
[http://dx.doi.org/10.1146/annurev-med-060513-093205] [PMID: 25587655]
[50]
May-Zhang, L.S.; Chen, Z.; Dosoky, N.S.; Yancey, P.G.; Boyd, K.L.; Hasty, A.H.; Linton, M.F.; Davies, S.S. Administration of Nacyl-phosphatidylethanolamine expressing bacteria to low density lipoprotein receptor(-/-) mice improves indices of cardiometabolic disease. Sci. Rep., 2019, 9(1), 420.
[http://dx.doi.org/10.1038/s41598-018-37373-1] [PMID: 30674978]
[51]
Moszak, M. Szulińska, M.; Bogdański, P. You are what you eat-the relationship between diet, microbiota, and metabolic disorders-a review. Nutrients, 2020, 12(4), 1096.
[http://dx.doi.org/10.3390/nu12041096] [PMID: 32326604]
[52]
Duboc, H.; Taché, Y.; Hofmann, A.F. The bile acid TGR5 membrane receptor: From basic research to clinical application. Dig. Liver Dis., 2014, 46(4), 302-312.
[http://dx.doi.org/10.1016/j.dld.2013.10.021] [PMID: 24411485]
[53]
Mayerhofer, C.C.K.; Ueland, T.; Broch, K.; Vincent, R.P.; Cross, G.F.; Dahl, C.P.; Aukrust, P.; Gullestad, L.; Hov, J.R.; Trøseid, M. Increased secondary/primary bile acid ratio in chronic heart failure. J. Card. Fail., 2017, 23(9), 666-671.
[http://dx.doi.org/10.1016/j.cardfail.2017.06.007] [PMID: 28688889]
[54]
Bronczek, G.A.; Vettorazzi, J.F.; Soares, G.M.; Kurauti, M.A.; Santos, C.; Bonfim, M.F.; Carneiro, E.M.; Balbo, S.L.; Boschero, A.C.; Costa Júnior, J.M. The bile acid tudca improves beta-cell mass and reduces insulin degradation in mice with early-stage of type-1 diabetes. Front. Physiol., 2019, 10, 561.
[http://dx.doi.org/10.3389/fphys.2019.00561] [PMID: 31156453]
[55]
Kriaa, A.; Bourgin, M.; Potiron, A.; Mkaouar, H.; Jablaoui, A.; Gérard, P.; Maguin, E.; Rhimi, M. Microbial impact on cholesterol and bile acid metabolism: Current status and future prospects. J. Lipid Res., 2019, 60(2), 323-332.
[http://dx.doi.org/10.1194/jlr.R088989] [PMID: 30487175]
[56]
Lamichhane, S.; Sen, P.; Alves, M.A.; Ribeiro, H.C.; Raunioniemi, P.; Hyötyläinen, T. Orešič M. Linking gut microbiome and lipid metabolism: Moving beyond associations. Metabolites, 2021, 11(1), 55.
[http://dx.doi.org/10.3390/metabo11010055] [PMID: 33467644]
[57]
Kenny, D.J.; Plichta, D.R.; Shungin, D.; Koppel, N.; Hall, A.B.; Fu, B.; Vasan, R.S.; Shaw, S.Y.; Vlamakis, H.; Balskus, E.P.; Xavier, R.J. Cholesterol metabolism by uncultured human gut bacteria influences host cholesterol level. Cell Host Microbe, 2020, 28(2), 245-257.e6.
[http://dx.doi.org/10.1016/j.chom.2020.05.013] [PMID: 32544460]
[58]
Hernández, M.A.G.; Canfora, E.E.; Jocken, J.W.E.; Blaak, E.E. The shortchain fatty acid acetate in body weight control and insulin sensitivity. Nutrients, 2019, 11(8), 1943.
[http://dx.doi.org/10.3390/nu11081943] [PMID: 31426593]
[59]
Perry, R.J.; Peng, L.; Barry, N.A.; Cline, G.W.; Zhang, D.; Cardone, R.L.; Petersen, K.F.; Kibbey, R.G.; Goodman, A.L.; Shulman, G.I. Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature, 2016, 534(7606), 213-217.
[http://dx.doi.org/10.1038/nature18309] [PMID: 27279214]
[60]
de Vadder, F.; Kovatcheva-Datchary, P.; Goncalves, D.; Vinera, J.; Zitoun, C.; Duchampt, A.; Bäckhed, F.; Mithieux, G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell, 2014, 156(1-2), 84-96.
[http://dx.doi.org/10.1016/j.cell.2013.12.016] [PMID: 24412651]
[61]
Mariño, E.; Richards, J.L.; McLeod, K.H.; Stanley, D.; Yap, Y.A.; Knight, J.; McKenzie, C.; Kranich, J.; Oliveira, A.C.; Rossello, F.J.; Krishnamurthy, B.; Nefzger, C.M.; Macia, L.; Thorburn, A.; Baxter, A.G.; Morahan, G.; Wong, L.H.; Polo, J.M.; Moore, R.J.; Lockett, T.J.; Clarke, J.M.; Topping, D.L.; Harrison, L.C.; Mackay, C.R. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat. Immunol., 2017, 18(5), 552-562.
[http://dx.doi.org/10.1038/ni.3713] [PMID: 28346408]
[62]
McCoy, K.D.; Ronchi, F.; Geuking, M.B. Host-microbiota interactions and adaptive immunity. Immunol. Rev., 2017, 279(1), 63-69.
[http://dx.doi.org/10.1111/imr.12575] [PMID: 28856735]
[63]
den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T.H.; Oosterveer, M.H.; Jonker, J.W.; Groen, A.K.; Reijngoud, D.J.; Bakker, B.M. Short-chain fatty acids protect against high-fat diet-induced obesity via a ppargamma-dependent switch from lipogenesis to fat oxidation. Diabetes, 2015, 64(7), 2398-2408.
[http://dx.doi.org/10.2337/db14-1213] [PMID: 25695945]
[64]
Pluznick, J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes, 2014, 5(2), 202-207.
[http://dx.doi.org/10.4161/gmic.27492] [PMID: 24429443]
[65]
Ahmed, K.; Tunaru, S.; Offermanns, S. GPR109A, GPR109B and GPR81, a family of hydroxy-carboxylic acid receptors. Trends Pharmacol. Sci., 2009, 30(11), 557-562.
[http://dx.doi.org/10.1016/j.tips.2009.09.001] [PMID: 19837462]
[66]
Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients, 2015, 7(4), 2839-2849.
[http://dx.doi.org/10.3390/nu7042839] [PMID: 25875123]
[67]
Jonsson, A.L.; Bäckhed, F. Role of gut microbiota in atherosclerosis. Nat. Rev. Cardiol., 2017, 14(2), 79-87.
[http://dx.doi.org/10.1038/nrcardio.2016.183] [PMID: 27905479]
[68]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[69]
Kanitsoraphan, C.; Rattanawong, P.; Charoensri, S.; Senthong, V. Trimethylamine N-Oxide and risk of cardiovascular disease and mortality. Curr. Nutr. Rep., 2018, 7(4), 207-213.
[http://dx.doi.org/10.1007/s13668-018-0252-z] [PMID: 30362023]
[70]
Li, X.S.; Obeid, S.; Klingenberg, R.; Gencer, B.; Mach, F.; Räber, L.; Windecker, S.; Rodondi, N.; Nanchen, D.; Muller, O.; Miranda, M.X.; Matter, C.M.; Wu, Y.; Li, L.; Wang, Z.; Alamri, H.S.; Gogonea, V.; Chung, Y.M.; Tang, W.H.; Hazen, S.L.; Lüscher, T.F. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur. Heart J., 2017, 38(11), 814-824. b
[http://dx.doi.org/10.1093/eurheartj/ehw582] [PMID: 28077467]
[71]
Tang, W.H.; Wang, Z.; Fan, Y.; Levison, B.; Hazen, J.E.; Donahue, L.M.; Wu, Y.; Hazen, S.L. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: Refining the gut hypothesis. J. Am. Coll. Cardiol., 2014, 64(18), 1908-1914.
[http://dx.doi.org/10.1016/j.jacc.2014.02.617] [PMID: 25444145]
[72]
Suzuki, T.; Yazaki, Y.; Voors, A.A.; Jones, D.J.L.; Chan, D.C.S.; Anker, S.D.; Cleland, J.G.; Dickstein, K.; Filippatos, G.; Hillege, H.L.; Lang, C.C.; Ponikowski, P.; Samani, N.J.; van Veldhuisen, D.J.; Zannad, F.; Zwinderman, A.H.; Metra, M.; Ng, L.L. Association with outcomes and response to treatment of trimethylamine N-oxide in heart failure: Results from BIOSTAT-CHF. Eur. J. Heart Fail., 2019, 21(7), 877-886.
[http://dx.doi.org/10.1002/ejhf.1338] [PMID: 30370976]
[73]
Bian, X.; Wu, W.; Yang, L.; Lv, L.; Wang, Q.; Li, Y.; Ye, J.; Fang, D.; Wu, J.; Jiang, X.; Shi, D.; Li, L. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium- induced ulcerative colitis in mice. Front. Microbiol., 2019, 10, 2259.
[http://dx.doi.org/10.3389/fmicb.2019.02259] [PMID: 31632373]
[74]
Nallu, A.; Sharma, S.; Ramezani, A.; Muralidharan, J.; Raj, D. Gut microbiome in chronic kidney disease: Challenges and opportunities. Transl. Res., 2017, 179, 24-37.
[http://dx.doi.org/10.1016/j.trsl.2016.04.007] [PMID: 27187743]
[75]
Pereira-Fantini, P.M.; Byars, S.G.; Pitt, J.; Lapthorne, S.; Fouhy, F.; Cotter, P.D.; Bines, J.E. Unravelling the metabolic impact of SBS-associated microbial dysbiosis: Insights from the piglet short bowel syndrome model. Sci. Rep., 2017, 7, 43326.
[http://dx.doi.org/10.1038/srep43326] [PMID: 28230078]
[76]
Hsu, C.C.; Lu, Y.C.; Chiu, C.A.; Yu, T.H.; Hung, W.C.; Wang, C.P.; Lu, L.F.; Chung, F.M.; Lee, Y.J.; Tsai, I.T. Levels of indoxyl sulfate are associated with severity of coronary atherosclerosis. Clin. Invest. Med., 2013, 36(1), E42-E49.
[http://dx.doi.org/10.25011/cim.v36i1.19404] [PMID: 23374599]
[77]
Tumur, Z.; Shimizu, H.; Enomoto, A.; Miyazaki, H.; Niwa, T. Indoxyl sulfate upregulates expression of ICAM-1 and MCP-1 by oxidative stress-induced NF-kappaB activation. Am. J. Nephrol., 2010, 31(5), 435-441.
[http://dx.doi.org/10.1159/000299798] [PMID: 20389059]
[78]
Moss, J.W.; Ramji, D.P. Nutraceutical therapies for atherosclerosis. Nat. Rev. Cardiol., 2016, 13(9), 513-532.
[http://dx.doi.org/10.1038/nrcardio.2016.103] [PMID: 27383080]
[79]
Han, H.; Zhu, J.; Zhu, Z.; Ni, J.; Du, R.; Dai, Y.; Chen, Y.; Wu, Z.; Lu, L.; Zhang, R. p-Cresyl sulfate aggravates cardiac dysfunction associated with chronic kidney disease by enhancing apoptosis of cardiomyocytes. J. Am. Heart Assoc., 2015, 4(6), e001852.
[http://dx.doi.org/10.1161/JAHA.115.001852] [PMID: 26066032]
[80]
Gérard, P. Metabolism of cholesterol and bile acids by the gut microbiota. Pathogens, 2013, 3(1), 14-24.
[http://dx.doi.org/10.3390/pathogens3010014] [PMID: 25437605]
[81]
Vangipurapu, J.; Fernandes Silva, L.; Kuulasmaa, T.; Smith, U.; Laakso, M. Microbiota-related metabolites and the risk of type 2 diabetes. Diabetes Care, 2020, 43(6), 1319-1325.
[http://dx.doi.org/10.2337/dc19-2533] [PMID: 32295805]
[82]
Yamashita, T.; Kasahara, K.; Emoto, T.; Matsumoto, T.; Mizoguchi, T.; Kitano, N.; Sasaki, N.; Hirata, K. Intestinal immunity and gut microbiota as therapeutic targets for preventing atherosclerotic cardiovascular diseases. Circ. J., 2015, 79(9), 1882-1890.
[http://dx.doi.org/10.1253/circj.CJ-15-0526] [PMID: 26212124]
[83]
Zheng, D.; Liwinski, T.; Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res., 2020, 30(6), 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7] [PMID: 32433595]
[84]
Belizário, J.E.; Faintuch, J.; Garay-Malpartida, M. Gut microbiome dysbiosis and immuno metabolism: New frontiers for treatment of metabolic diseases. Mediators Inflamm., 2018, 2018, 2037838.
[http://dx.doi.org/10.1155/2018/2037838] [PMID: 30622429]
[85]
Moffa, S.; Mezza, T.; Cefalo, C.M.A.; Cinti, F.; Impronta, F.; Sorice, G.P.; Santoro, A.; Di Giuseppe, G.; Pontecorvi, A.; Giaccari, A. The interplay between immune system and microbiota in diabetes. Mediators Inflamm., 2019, 2019, 9367404.
[http://dx.doi.org/10.1155/2019/9367404] [PMID: 32082078]
[86]
Hasan, N.; Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ, 2019, 7, e7502.
[http://dx.doi.org/10.7717/peerj.7502] [PMID: 31440436]
[87]
Tang, W.H.; Kitai, T.; Hazen, S.L. Gut microbiota in cardiovascular health and disease. Circ. Res., 2017, 120(7), 1183-1196.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.309715] [PMID: 28360349]
[88]
Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; Lamuela-Raventos, R.M.; Serra-Majem, L.; Pintó, X.; Basora, J.; Muñoz, M.A.; Sorlí, J.V.; Martínez, J.A.; Martínez-González, M.A. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med., 2013, 368(14), 1279-1290.
[http://dx.doi.org/10.1056/NEJMoa1200303] [PMID: 23432189]
[89]
Gagliardi, A.; Totino, V.; Cacciotti, F.; Iebba, V.; Neroni, B.; Bonfiglio, G.; Trancassini, M.; Passariello, C.; Pantanella, F.; Schippa, S. Rebuilding the gut microbiota ecosystem. Int. J. Environ. Res. Public Health, 2018, 15(8), 1679.
[http://dx.doi.org/10.3390/ijerph15081679] [PMID: 30087270]
[90]
Marques, F.Z.; Nelson, E.M.; Chu, P.Y.; Horlock, D.; Fiedler, A.; Ziemann, M.; Tan, J.K.; Kuruppu, S.; Rajapakse, N.W.; El-Osta, A.; Mackay, C.R.; Kaye, D.M. High fibre diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in doca-salt hypertensive mice. Circulation, 2016, 7, 024545.
[PMID: 27927713]
[91]
Biesalski, H.K. Nutrition meets the microbiome: Micronutrients and the microbiota. Ann. N. Y. Acad. Sci., 2016, 1372(1), 53-64.
[http://dx.doi.org/10.1111/nyas.13145] [PMID: 27362360]
[92]
Zeevi, D.; Korem, T.; Zmora, N.; Israeli, D.; Rothschild, D.; Weinberger, A.; Ben-Yacov, O.; Lador, D.; Avnit-Sagi, T.; Lotan-Pompan, M.; Suez, J.; Mahdi, J.A.; Matot, E.; Malka, G.; Kosower, N.; Rein, M.; Zilberman-Schapira, G.; Dohnalová, L.; Pevsner-Fischer, M.; Bikovsky, R.; Halpern, Z.; Elinav, E.; Segal, E. Personalized nutrition by prediction of glycemic responses. Cell, 2015, 163(5), 1079-1094.
[http://dx.doi.org/10.1016/j.cell.2015.11.001] [PMID: 26590418]
[93]
David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; Biddinger, S.B.; Dutton, R.J.; Turnbaugh, P.J. Diet rapidly and reproducibly alters the human gut microbiome. Nature, 2014, 505(7484), 559-563.
[http://dx.doi.org/10.1038/nature12820] [PMID: 24336217]
[94]
Duncan, S.H.; Belenguer, A.; Holtrop, G.; Johnstone, A.M.; Flint, H.J.; Lobley, G.E. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol., 2007, 73(4), 1073-1078.
[http://dx.doi.org/10.1128/AEM.02340-06] [PMID: 17189447]
[95]
Chen, M.L.; Yi, L.; Zhang, Y.; Zhou, X.; Ran, L.; Yang, J.; Zhu, J.D.; Zhang, Q.Y.; Mi, M.T. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-induced atherosclerosis by regulating tmao synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio, 2016, 7(2), e02210-e02215.
[http://dx.doi.org/10.1128/mBio.02210-15] [PMID: 27048804]
[96]
Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; Gougis, S.; Rizkalla, S.; Batto, J.M.; Renault, P.; Doré, J.; Zucker, J.D.; Clément, K.; Ehrlich, S.D. Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500(7464), 585-588.
[http://dx.doi.org/10.1038/nature12480] [PMID: 23985875]
[97]
Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Pedersen, H.K.; Arumugam, M.; Kristiansen, K.; Voigt, A.Y.; Vestergaard, H.; Hercog, R.; Costea, P.I.; Kultima, J.R.; Li, J.; Jørgensen, T.; Levenez, F.; Dore, J.; Nielsen, H.B.; Brunak, S.; Raes, J.; Hansen, T.; Wang, J.; Ehrlich, S.D.; Bork, P.; Pedersen, O. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528(7581), 262-266.
[http://dx.doi.org/10.1038/nature15766] [PMID: 26633628]
[98]
Gall, W.E. Beebe, K.; Lawton, K.A.; Adam, K.P.; Mitchell, M.W.; Nakhle, P.J.; Ryals, J.A.; Milburn, M.V.; Nannipieri, M.; Camastra, S.; Natali, A.; Ferrannini, E. α-hydroxybutyrate is an early biomarker of insulin resistance and glucose intolerance in a nondiabetic population. PLoS One, 2010, 5(5), e10883.
[http://dx.doi.org/10.1371/journal.pone.0010883] [PMID: 20526369]
[99]
Brunkwall, L.; Orho-Melander, M. The gut microbiome as a target for prevention and treatment of hyperglycaemia in type 2 diabetes: From current human evidence to future possibilities. Diabetologia, 2017, 60(6), 943-951.
[http://dx.doi.org/10.1007/s00125-017-4278-3] [PMID: 28434033]
[100]
Everard, A.; Lazarevic, V.; Derrien, M.; Girard, M.; Muccioli, G.G.; Neyrinck, A.M.; Possemiers, S.; Van Holle, A.; François, P.; de Vos, W.M.; Delzenne, N.M.; Schrenzel, J.; Cani, P.D. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes, 2011, 60(11), 2775-2786.
[http://dx.doi.org/10.2337/db11-0227] [PMID: 21933985]
[101]
Dewulf, E.M.; Cani, P.D.; Claus, S.P.; Fuentes, S.; Puylaert, P.G.; Neyrinck, A.M.; Bindels, L.B.; de Vos, W.M.; Gibson, G.R.; Thissen, J.P.; Delzenne, N.M. Insight into the prebiotic concept: Lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut, 2013, 62(8), 1112-1121.
[http://dx.doi.org/10.1136/gutjnl-2012-303304] [PMID: 23135760]
[102]
McNulty, N.P.; Yatsunenko, T.; Hsiao, A.; Faith, J.J.; Muegge, B.D.; Goodman, A.L.; Henrissat, B.; Oozeer, R.; Cools-Portier, S.; Gobert, G.; Chervaux, C.; Knights, D.; Lozupone, C.A.; Knight, R.; Duncan, A.E.; Bain, J.R.; Muehlbauer, M.J.; Newgard, C.B.; Heath, A.C.; Gordon, J.I. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci. Transl. Med., 2011, 3(106), 106ra106.
[http://dx.doi.org/10.1126/scitranslmed.3002701] [PMID: 22030749]
[103]
Hemarajata, P.; Versalovic, J. Effects of probiotics on gut microbiota: Mechanisms of intestinal immunomodulation and neuromodulation. Therap. Adv. Gastroenterol., 2013, 6(1), 39-51.
[http://dx.doi.org/10.1177/1756283X12459294] [PMID: 23320049]
[104]
Neef, A.; Sanz, Y. Future for probiotic science in functional food and dietary supplement development. Curr. Opin. Clin. Nutr. Metab. Care, 2013, 16(6), 679-687.
[http://dx.doi.org/10.1097/MCO.0b013e328365c258] [PMID: 24071779]
[105]
Vrieze, A.; Van Nood, E.; Holleman, F.; Salojärvi, J.; Kootte, R.S.; Bartelsman, J.F.; Dallinga-Thie, G.M.; Ackermans, M.T.; Serlie, M.J.; Oozeer, R.; Derrien, M.; Druesne, A.; Van Hylckama Vlieg, J.E.; Bloks, V.W.; Groen, A.K.; Heilig, H.G.; Zoetendal, E.G.; Stroes, E.S.; de Vos, W.M.; Hoekstra, J.B.; Nieuwdorp, M. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology, 2012, 143(4), 913-6.e7.
[http://dx.doi.org/10.1053/j.gastro.2012.06.031] [PMID: 22728514]
[106]
Gregory, J.C.; Buffa, J.A.; Org, E.; Wang, Z.; Levison, B.S.; Zhu, W.; Wagner, M.A.; Bennett, B.J.; Li, L.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem., 2015, 290(9), 5647-5660.
[http://dx.doi.org/10.1074/jbc.M114.618249] [PMID: 25550161]
[107]
Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 2013, 498(7452), 99-103.
[http://dx.doi.org/10.1038/nature12198] [PMID: 23719380]
[108]
de Leon, L.M.; Watson, J.B.; Kelly, C.R. Transient flare of ulcerative colitis after fecal microbiota transplantation for recurrent Clostridium difficile infection. Clin. Gastroenterol. Hepatol., 2013, 11(8), 1036-1038.
[http://dx.doi.org/10.1016/j.cgh.2013.04.045] [PMID: 23669309]
[109]
Arora, T.; Bäckhed, F. The gut microbiota and metabolic disease: Current understanding and future perspectives. J. Intern. Med., 2016, 280(4), 339-349.
[http://dx.doi.org/10.1111/joim.12508] [PMID: 27071815]
[110]
Chen, Z.; Guo, L.; Zhang, Y.; Walzem, R.L.; Pendergast, J.S.; Printz, R.L.; Morris, L.C.; Matafonova, E.; Stien, X.; Kang, L.; Coulon, D.; McGuinness, O.P.; Niswender, K.D.; Davies, S.S. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest., 2014, 124(8), 3391-3406.
[http://dx.doi.org/10.1172/JCI72517] [PMID: 24960158]
[111]
Tremaroli, V.; Karlsson, F.; Werling, M.; Ståhlman, M.; Kovatcheva-Datchary, P.; Olbers, T.; Fändriks, L.; le Roux, C.W.; Nielsen, J.; Bäckhed, F. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab., 2015, 22(2), 228-238.
[http://dx.doi.org/10.1016/j.cmet.2015.07.009] [PMID: 26244932]
[112]
Lemon, K.P.; Armitage, G.C.; Relman, D.A.; Fischbach, M.A. Microbiota-targeted therapies: An ecological perspective. Sci. Transl. Med., 2012, 4(137), 137rv5.
[http://dx.doi.org/10.1126/scitranslmed.3004183] [PMID: 22674555]
[113]
Scheithauer, T.P.M.; Rampanelli, E.; Nieuwdorp, M.; Vallance, B.A.; Verchere, C.B.; van Raalte, D.H.; Herrema, H. Gut microbiota as a trigger for metabolic inflammation in obesity and type 2 diabetes. Front. Immunol., 2020, 11, 571731.
[http://dx.doi.org/10.3389/fimmu.2020.571731] [PMID: 33178196]
[114]
Trøseid, M.; Andersen, G.Ø.; Broch, K.; Hov, J.R. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine, 2020, 52, 102649.
[http://dx.doi.org/10.1016/j.ebiom.2020.102649] [PMID: 32062353]
[115]
Mayerhofer, C.C.K.; Awoyemi, A.O.; Moscavitch, S.D.; Lappegård, K.T.; Hov, J.R.; Aukrust, P.; Hovland, A.; Lorenzo, A.; Halvorsen, S.; Seljeflot, I.; Gullestad, L.; Trøseid, M.; Broch, K. Design of the GutHeart-targeting gut microbiota to treat heart failure-trial: A Phase II, randomized clinical trial. ESC Heart Fail., 2018, 5(5), 977-984.
[http://dx.doi.org/10.1002/ehf2.12332] [PMID: 30088346]
[116]
Trasande, L.; Blustein, J.; Liu, M.; Corwin, E.; Cox, L.M.; Blaser, M.J. Infant antibiotic exposures and early-life body mass. Int. J. Obes., 2013, 37(1), 16-23.
[http://dx.doi.org/10.1038/ijo.2012.132] [PMID: 22907693]
[117]
Wong, A.C.; Levy, M. New approaches to microbiome-based therapies. mSystems, 2019, 4(3), e00122-e19.
[http://dx.doi.org/10.1128/mSystems.00122-19] [PMID: 31164406]
[118]
Thaiss, C.A.; Itav, S.; Rothschild, D.; Meijer, M.T.; Levy, M.; Moresi, C.; Dohnalová, L.; Braverman, S.; Rozin, S.; Malitsky, S.; Dori-Bachash, M.; Kuperman, Y.; Biton, I.; Gertler, A.; Harmelin, A.; Shapiro, H.; Halpern, Z.; Aharoni, A.; Segal, E.; Elinav, E. Persistent microbiome alterations modulate the rate of post-dieting weight regain. Nature, 2016, 540(7634), 544-551.
[http://dx.doi.org/10.1038/nature20796] [PMID: 27906159]
[119]
Levy, M.; Thaiss, C.A.; Elinav, E. Metabolites: Messengers between the microbiota and the immune system. Genes Dev., 2016, 30(14), 1589-1597.
[http://dx.doi.org/10.1101/gad.284091.116] [PMID: 27474437]
[120]
Wang, Z.; Roberts, A.B.; Buffa, J.A.; Levison, B.S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M.K.; DiDonato, A.J.; Fu, X.; Hazen, J.E.; Krajcik, D.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell, 2015, 163(7), 1585-1595.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]
[121]
Turpin, W.; Espin-Garcia, O.; Xu, W.; Silverberg, M.S.; Kevans, D.; Smith, M.I.; Guttman, D.S.; Griffiths, A.; Panaccione, R.; Otley, A.; Xu, L.; Shestopaloff, K.; Moreno-Hagelsieb, G.; Paterson, A.D.; Croitoru, K. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat. Genet., 2016, 48(11), 1413-1417.
[http://dx.doi.org/10.1038/ng.3693] [PMID: 27694960]
[122]
Power, R.A.; Parkhill, J.; de Oliveira, T. Microbial genome-wide association studies: Lessons from human GWAS. Nat. Rev. Genet., 2017, 18(1), 41-50.
[http://dx.doi.org/10.1038/nrg.2016.132] [PMID: 27840430]
[123]
Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: Integrating molecular ‘omics’ for microbial community profiling. Nat. Rev. Microbiol., 2015, 13(6), 360-372.
[http://dx.doi.org/10.1038/nrmicro3451] [PMID: 25915636]
[124]
Daliri, E.B.; Ofosu, F.K.; Chelliah, R.; Lee, B.H.; Oh, D.H. Challenges and perspective in integrated multi-omics in gut microbiota studies. Biomolecules, 2021, 11(2), 300.
[http://dx.doi.org/10.3390/biom11020300] [PMID: 33671370]
[125]
ElRakaiby, M.; Dutilh, B.E.; Rizkallah, M.R.; Boleij, A.; Cole, J.N.; Aziz, R.K. Pharmacomicrobiomics: The impact of human microbiome variations on systems pharmacology and personalized therapeutics. OMICS J Integr Biol., 2014, 18(7), 402-414.
[http://dx.doi.org/10.1089/omi.2014.0018] [PMID: 24785449]
[126]
Zhou, W.; Sailani, M.R.; Contrepois, K.; Zhou, Y.; Ahadi, S.; Leopold, S.R.; Zhang, M.J.; Rao, V.; Avina, M.; Mishra, T.; Johnson, J.; Lee-McMullen, B.; Chen, S.; Metwally, A.A.; Tran, T.D.B.; Nguyen, H.; Zhou, X.; Albright, B.; Hong, B.Y.; Petersen, L.; Bautista, E.; Hanson, B.; Chen, L.; Spakowicz, D.; Bahmani, A.; Salins, D.; Leopold, B.; Ashland, M.; Dagan-Rosenfeld, O.; Rego, S.; Limcaoco, P.; Colbert, E.; Allister, C.; Perelman, D.; Craig, C.; Wei, E.; Chaib, H.; Hornburg, D.; Dunn, J.; Liang, L.; Rose, S.M.S.; Kukurba, K.; Piening, B.; Rost, H.; Tse, D.; McLaughlin, T.; Sodergren, E.; Weinstock, G.M.; Snyder, M. Longitudinal multi-omics of host-microbe dynamics in prediabetes. Nature, 2019, 569(7758), 663-671.
[http://dx.doi.org/10.1038/s41586-019-1236-x] [PMID: 31142858]
[127]
The Integrative HMP (iHMP) research network consortium. the integrative human microbiome project. Nature, 2019, 569, 641-648.
[http://dx.doi.org/10.1038/s41586-019-1238-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy