Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

Overview of Drug Therapy of COVID-19 with Safety and the Potential Clinical Benefits

Author(s): Rajesh Basnet*, Sandhya Khadka, Buddha Bahadur Basnet, Til Bahadur Basnet and Sanjeep Sapkota

Volume 17, Issue 5, 2022

Published on: 27 July, 2022

Page: [327 - 333] Pages: 7

DOI: 10.2174/1574885517666220428095207

Price: $65

Abstract

The discovery and development of the drug/vaccine for Coronavirus Disease 2019 (COVID-19) is the process of developing a preventive vaccine or treatment drug to reduce the severity of COVID-19. Internationally, hundreds of pharmaceutical companies, biotechnology companies, university research groups, and the World Health Organization (WHO) have developed vaccines for the past few centuries. Currently, they are continuously putting effort into developing possible therapies for COVID-19 disease, which are now at various stages of the preclinical or clinical research stage. In addition, researchers are trying to accelerate the development of vaccines, antiviral drugs, and postinfection treatments. Many previously approved drug candidates are already studied to alleviate discomfort during the disease complication. In this paper, we reviewed the research progress of COVID- 19 therapeutic drugs.

Keywords: Antiviral drug, antibiotics, COVID-19, drug development, vaccine, drug therapy, clinical benefits.

Graphical Abstract
[1]
Li H, Liu S-M, Yu X-H, Tang S-L, Tang C-K. Coronavirus disease 2019 (COVID-19): Current status and future perspectives. Int J Antimicrob Agents 2020; 55(5): 105951-.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105951] [PMID: 32234466]
[2]
Freeman WM, Bixler GV, Brucklacher RM, et al. A multistep validation process of biomarkers for preclinical drug development. Pharmacogenomics J 2010; 10(5): 385-95.
[http://dx.doi.org/10.1038/tpj.2009.60] [PMID: 19997081]
[3]
Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther 2020; 14(1): 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[4]
Andersen PI, Ianevski A, Lysvand H, et al. Discovery and development of safe-in-man broad-spectrum antiviral agents. Int J Infect Dis 2020; 93: 268-76.
[http://dx.doi.org/10.1016/j.ijid.2020.02.018] [PMID: 32081774]
[5]
Parhizgar AR, Tahghighi A. Introducing new antimalarial analogues of chloroquine and amodiaquine: A narrative review. Iran J Med Sci 2017; 42(2): 115-28.
[PMID: 28360437]
[6]
Park T-Y, Jang Y, Kim W, et al. Chloroquine modulates inflammatory autoimmune responses through Nurr1 in autoimmune diseases. Sci Rep 2019; 9(1): 15559.
[http://dx.doi.org/10.1038/s41598-019-52085-w] [PMID: 31664129]
[7]
Colson P, Rolain J-M, Raoult D. Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 2020; 55(3): 105923.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105923] [PMID: 32070753]
[8]
Khan Z. Karataş Y, Rahman H. Anti COVID-19 drugs: Need for more clinical evidence and global action. Adv Ther 2020; 37(6): 2575-9.
[http://dx.doi.org/10.1007/s12325-020-01351-9] [PMID: 32350686]
[9]
Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: An old drug against today’s diseases? Lancet Infect Dis 2003; 3(11): 722-7.
[http://dx.doi.org/10.1016/S1473-3099(03)00806-5] [PMID: 14592603]
[10]
Rainsford KD, Parke AL, Clifford-Rashotte M, Kean WF. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology 2015; 23(5): 231-69.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[11]
Meyerowitz EA, Vannier AGL, Friesen MGN, et al. Rethinking the role of hydroxychloroquine in the treatment of COVID-19. FASEB J 2020; 34(5): 6027-37.
[http://dx.doi.org/10.1096/fj.202000919] [PMID: 32350928]
[12]
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res 2020; 30(3): 269-71.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[13]
Gautret P, Lagier J-C, Parola P, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020; 56(1): 105949.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[14]
Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Crit Care 2020; 57: 279-83.
[http://dx.doi.org/10.1016/j.jcrc.2020.03.005] [PMID: 32173110]
[15]
Croft AMJ, Garner P. WITHDRAWN: Mefloquine for preventing malaria in non-immune adult travellers. Cochrane Database Syst Rev 2008; 2000(1): CD000138.
[http://dx.doi.org/10.1002/14651858.CD000138] [PMID: 18253969]
[16]
Weston S, Coleman CM, Haupt R, Logue J, Matthews K, Frieman MB. Broad anti-coronaviral activity of FDA approved drugs against SARS-CoV-2 in vitro and SARS-CoV in vivo. bioRxiv 2020; 2020.2003.2025.008482.
[http://dx.doi.org/10.1101/2020.03.25.008482]
[17]
Du Y-X, Chen X-P. Favipiravir: Pharmacokinetics and concerns about clinical trials for 2019-nCoV infection. Clin Pharmacol Ther 2020; 108(2): 242-7.
[http://dx.doi.org/10.1002/cpt.1844] [PMID: 32246834]
[18]
Zhou P, Yang X-L, Wang X-G, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[19]
Cai Q, Yang M, Liu D, et al. Experimental treatment with favipiravir for Covid-19: An open-label control study. Engineering (Beijing) 2020; 6(10): 1192-8.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[20]
Lou Y, Liu L, Yao H, et al. Clinical outcomes and plasma concentrations of baloxavir marboxil and favipiravir in COVID-19 patients: An exploratory randomized, controlled trial. Eur J Pharm Sci 2021; 157: 105631.
[http://dx.doi.org/10.1016/j.ejps.2020.105631] [PMID: 33115675]
[21]
Chandwani A, Shuter J. Lopinavir/ritonavir in the treatment of HIV-1 infection: A review. Ther Clin Risk Manag 2008; 4(5): 1023-33.
[http://dx.doi.org/10.2147/TCRM.S3285] [PMID: 19209283]
[22]
Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382(19): 1787-99.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[23]
Lo MK, Jordan R, Arvey A, et al. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep 2017; 7(1): 43395-5.
[http://dx.doi.org/10.1038/srep43395] [PMID: 28262699]
[24]
Sheahan TP, Sims AC, Graham RL, et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci Transl Med 2017; 9(396): eaal3653.
[http://dx.doi.org/10.1126/scitranslmed.aal3653] [PMID: 28659436]
[25]
Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature 2016; 531(7594): 381-5.
[http://dx.doi.org/10.1038/nature17180] [PMID: 26934220]
[26]
Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun 2020; 11(1): 222-.
[http://dx.doi.org/10.1038/s41467-019-13940-6] [PMID: 31924756]
[27]
Pizzorno A, Padey B, Julien T, et al. Characterization and treatment of SARS-CoV-2 in nasal and bronchial human airway epithelia. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.31.017889]
[28]
Williamson BN, Feldmann F, Schwarz B, et al. Clinical benefit of remdesivir in rhesus macaques infected with SARS-CoV-2. bioRxiv 2020.
[http://dx.doi.org/10.1101/2020.04.15.043166]
[29]
Mulangu S, Dodd LE, Davey RT Jr, et al. A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med 2019; 381(24): 2293-303.
[http://dx.doi.org/10.1056/NEJMoa1910993] [PMID: 31774950]
[30]
Lian N, Xie H, Lin S, Huang J, Zhao J, Lin Q. Umifenovir treatment is not associated with improved outcomes in patients with coronavirus disease 2019: A retrospective study. Clin Microbiol Infect 2020; 26(7): 917-21.
[http://dx.doi.org/10.1016/j.cmi.2020.04.026]
[31]
Lu H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci Trends 2020; 14(1): 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[32]
Cohen J, Kupferschmidt K. ‘A very, very bad look’ for remdesivir. Science 2020; 370(6517): 642-3.
[http://dx.doi.org/10.1126/science.370.6517.642]
[33]
Kelleni MT. Nitazoxanide/azithromycin combination for COVID-19: A suggested new protocol for early management. Pharmacol Res 2020; 157: 104874.
[http://dx.doi.org/10.1016/j.phrs.2020.104874] [PMID: 32360581]
[34]
Reynolds PE. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur J Clin Microbiol Infect Dis 1989; 8(11): 943-50.
[http://dx.doi.org/10.1007/BF01967563] [PMID: 2532132]
[35]
Baron SA, Devaux C, Colson P, Raoult D, Rolain J-M. Teicoplanin: An alternative drug for the treatment of COVID-19? Int J Antimicrob Agents 2020; 55(4): 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[36]
Zhou N, Pan T, Zhang J, et al. Glycopeptide antibiotics potently inhibit cathepsin L in the late endosome/lysosome and block the entry of ebola virus, middle east respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus (SARS-CoV). J Biol Chem 2016; 291(17): 9218-32.
[http://dx.doi.org/10.1074/jbc.M116.716100] [PMID: 26953343]
[37]
Domenech O, Francius G, Tulkens PM, Van Bambeke F, Dufrêne Y, Mingeot-Leclercq M-P. Interactions of oritavancin, a new lipoglycopeptide derived from vancomycin, with phospholipid bilayers: Effect on membrane permeability and nanoscale lipid membrane organization. Biochim Biophys Acta 2009; 1788(9): 1832-40.
[http://dx.doi.org/10.1016/j.bbamem.2009.05.003] [PMID: 19450541]
[38]
Scheinfeld N. Dalbavancin: A review for dermatologists. Dermatol Online J 2006; 12(4): 6.
[http://dx.doi.org/10.5070/D30WN7D4Q9] [PMID: 17083861]
[39]
Malek AE, Granwehr B. Doxycycline as an alternative to azithromycin in elderly patients. Int J Antimicrob Agents 2021; 57(1): 106168.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106168] [PMID: 33408018]
[40]
Kollias A, Kyriakoulis KG, Dimakakos E, Poulakou G, Stergiou GS, Syrigos K. Thromboembolic risk and anticoagulant therapy in COVID-19 patients: Emerging evidence and call for action. Br J Haematol 2020; 189(5): 846-7.
[http://dx.doi.org/10.1111/bjh.16727]
[41]
Samuel CE. Antiviral actions of interferons. Clin Microbiol Rev 2001; 14(4): 778-809.
[http://dx.doi.org/10.1128/CMR.14.4.778-809.2001] [PMID: 11585785]
[42]
Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med 2006; 3(9): e343-.
[http://dx.doi.org/10.1371/journal.pmed.0030343] [PMID: 16968120]
[43]
Chan JF-W, Yao Y, Yeung M-L, et al. Treatment with Lopinavir/Ritonavir or interferon-β1b improves outcome of mers-cov infection in a nonhuman primate model of common marmoset. J Infect Dis 2015; 212(12): 1904-13.
[http://dx.doi.org/10.1093/infdis/jiv392] [PMID: 26198719]
[44]
Sallard E, Lescure F-X, Yazdanpanah Y, Mentre F, Peiffer-Smadja N. Type 1 interferons as a potential treatment against COVID-19. Antiviral Res 2020; 178: 104791-.
[http://dx.doi.org/10.1016/j.antiviral.2020.104791] [PMID: 32275914]
[45]
Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest 2011; 121(9): 3375-83.
[http://dx.doi.org/10.1172/JCI57158] [PMID: 21881215]
[46]
Rogosnitzky M, Berkowitz E, Jadad AR. Delivering benefits at speed through real-world repurposing of Off-patent drugs: The covid-19 pandemic as a case in point. JMIR Public Health Surveill 2020; 6(2): e19199.
[http://dx.doi.org/10.2196/19199] [PMID: 32374264]
[47]
Lythgoe M P, Middleton P. Ongoing clinical trials for the management of the Covid-19 pandemic. Trends Pharmacol Sci 2020; S0165-6147(0120): 30070-5.
[http://dx.doi.org/10.1016/j.tips.2020.03.006]
[48]
Brown DG, Wilkerson EC, Love WE. A review of traditional and novel oral anticoagulant and antiplatelet therapy for dermatologists and dermatologic surgeons. J Am Acad Dermatol 2015; 72(3): 524-34.
[http://dx.doi.org/10.1016/j.jaad.2014.10.027] [PMID: 25486915]
[49]
Chremos AN. Pharmacodynamics of famotidine in humans. Am J Med 1986; 81(4B): 3-7.
[http://dx.doi.org/10.1016/0002-9343(86)90593-0] [PMID: 2877572]
[50]
Borrell B. Borrell B New York clinical trial quietly tests heartburn remedy against coronavirus Science 2020 Available from:. https://www.science.org/content/article/new-york-clinical-trial-quietly-tests-heartburn-remedy-against-coronavirus
[51]
Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM. The antioxidant role of vitamin C. Adv Free Radic Biol Med 1986; 2(2): 419-44.
[http://dx.doi.org/10.1016/S8755-9668(86)80021-7]
[52]
Carr AC, Rosengrave PC, Bayer S, Chambers S, Mehrtens J, Shaw GM. Hypovitaminosis C and vitamin C deficiency in critically ill patients despite recommended enteral and parenteral intakes. Crit Care 2017; 21(1): 300-0.
[http://dx.doi.org/10.1186/s13054-017-1891-y] [PMID: 29228951]
[53]
Carr AC. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit Care 2020; 24(1): 133-3.
[http://dx.doi.org/10.1186/s13054-020-02851-4] [PMID: 32264963]
[54]
Crump A. Ōmura S. Ivermectin, ‘wonder drug’ from Japan: The human use perspective. Proc Jpn Acad, Ser B, Phys Biol Sci 2011; 87(2): 13-28.
[http://dx.doi.org/10.2183/pjab.87.13] [PMID: 21321478]
[55]
Jeon S, Ko M, Lee J, et al. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob Agents Chemother 2020; 64(7): e00819-20.
[http://dx.doi.org/10.1128/AAC.00819-20] [PMID: 32366720]
[56]
Keating GM. Fenofibrate: A review of its lipid-modifying effects in dyslipidemia and its vascular effects in type 2 diabetes mellitus. Am J Cardiovasc Drugs 2011; 11(4): 227-47.
[http://dx.doi.org/10.2165/11207690-000000000-00000] [PMID: 21675801]
[57]
Wong TY, Simó R, Mitchell P. Fenofibrate - a potential systemic treatment for diabetic retinopathy? Am J Ophthalmol 2012; 154(1): 6-12.
[http://dx.doi.org/10.1016/j.ajo.2012.03.013] [PMID: 22709833]
[58]
Joyce E, Fabre A, Mahon N. Hydroxychloroquine cardiotoxicity presenting as a rapidly evolving biventricular cardiomyopathy: Key diagnostic features and literature review. Eur Heart J Acute Cardiovasc Care 2013; 2(1): 77-83.
[http://dx.doi.org/10.1177/2048872612471215] [PMID: 24062937]
[59]
Naksuk N, Lazar S, Peeraphatdit TB. Cardiac safety of off-label COVID-19 drug therapy: A review and proposed monitoring protocol. Eur Heart J Acute Cardiovasc Care 2020; 9(3): 215-21.
[http://dx.doi.org/10.1177/2048872620922784] [PMID: 32372695]
[60]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[61]
Chen H, Du Q. Potential natural compounds for preventing SARS-CoV-2 (2019-nCoV) infection. Preprints 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy