Mini-Review Article

Amyloid-beta Targeted Therapeutic Approaches for Alzheimer’s Disease: Long Road Ahead

Author(s): Yuxuan Dai*, Chenyi Lei*, Zhenhao Zhang, Yan Qi, Kejing Lao and Xingchun Gou

Volume 23, Issue 11, 2022

Published on: 08 June, 2022

Page: [1040 - 1056] Pages: 17

DOI: 10.2174/1389450123666220421124030

Price: $65

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment and cognitive decline. The obvious pathological features of AD are still amyloid plaques and neurofibrillary tangles. Development of disease-modifying treatments for AD has been challenging, with almost all drugs aborted. The amyloid cascade concept has been questioned due to the failures of various amyloid-targeting prospects. Despite this, targeting amyloid-β (Aβ) active immunotherapy provided some positive results to support this hypothesis and clinical trials of these candidates are ongoing. In this review, we describe the latest advance in therapeutic strategies based on amyloidogenic processing and evaluate the pros and cons of each treatment strategy. We also highlight the current status of the hottest immunotherapy and discuss the future development direction.

Keywords: Alzheimer’s disease, amyloid beta, clinical research, immunotherapy, and drug development, neurodegenerative disorder.

Graphical Abstract
[1]
Scheltens P, Blennow K, Breteler MM, et al. Alzheimer’s disease. Lancet 2016; 388(10043): 505-17.
[http://dx.doi.org/10.1016/S0140-6736(15)01124-1] [PMID: 26921134]
[2]
Matthews KA, Xu W, Gaglioti AH, et al. Racial and ethnic estimates of Alzheimer’s disease and related dementias in the United States (2015-2060) in adults aged ≥65 years. Alzheimers Dement 2019; 15(1): 17-24.
[http://dx.doi.org/10.1016/j.jalz.2018.06.3063] [PMID: 30243772]
[3]
World Alzheimer Report 2018. Available from: https://www. alzint.org/resource/world-alzheimer-report-2018/ Accessed on September 27, 2021.
[4]
Long JM, Holtzman DM. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019; 179(2): 312-39.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[5]
Elmaleh DR, Farlow MR, Conti PS, Tompkins RG, Kundakovic L, Tanzi RE. Developing effective alzheimer’s disease therapies: Clinical experience and future directions. J Alzheimers Dis 2019; 71(3): 715-32.
[http://dx.doi.org/10.3233/JAD-190507] [PMID: 31476157]
[6]
Cline EN, Bicca MA, Viola KL, Klein WL. The Amyloid-β oligomer hypothesis: Beginning of the third decade. J Alzheimers Dis 2018; 64(s1): S567-610.
[http://dx.doi.org/10.3233/JAD-179941] [PMID: 29843241]
[7]
Syed YY. Sodium oligomannate: First approval. Drugs 2020; 80(4): 441-4.
[http://dx.doi.org/10.1007/s40265-020-01268-1] [PMID: 32020555]
[8]
Vaz M, Silvestre S. Alzheimer’s disease: Recent treatment strategies. Eur J Pharmacol 2020; 887: 173554.
[http://dx.doi.org/10.1016/j.ejphar.2020.173554] [PMID: 32941929]
[9]
Becker RE, Greig NH. Can we prevent dementia and not prevent neurons from dying? J Alzheimers Dis 2019; 68(2): 489-92.
[http://dx.doi.org/10.3233/JAD-181300] [PMID: 30814363]
[10]
Imbimbo BP, Ippati S, Watling M. Should drug discovery scientists still embrace the amyloid hypothesis for Alzheimer’s disease or should they be looking elsewhere? Expert Opin Drug Discov 2020; 15(11): 1241-51.
[http://dx.doi.org/10.1080/17460441.2020.1793755] [PMID: 32686970]
[11]
Mullane K, Williams M. Alzheimer’s disease (AD) therapeutics - 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158: 359-75.
[http://dx.doi.org/10.1016/j.bcp.2018.09.026] [PMID: 30273553]
[12]
Alexander GC, Emerson S, Kesselheim AS. Evaluation of aducanumab for alzheimer disease: Scientific evidence and regulatory review involving efficacy, safety, and futility. JAMA 2021; 325(17): 1717-8.
[http://dx.doi.org/10.1001/jama.2021.3854] [PMID: 33783469]
[13]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science 2002; 297(5580): 353-6.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[14]
Faustino C, Rijo P, Reis CP. Nanotechnological strategies for nerve growth factor delivery: Therapeutic implications in Alzheimer’s disease. Pharmacol Res 2017; 120: 68-87.
[http://dx.doi.org/10.1016/j.phrs.2017.03.020] [PMID: 28351757]
[15]
Jan A, Gokce O, Luthi-Carter R, Lashuel HA. The ratio of monomeric to aggregated forms of Abeta40 and Abeta42 is an important determinant of amyloid-beta aggregation, fibrillogenesis, and toxicity. J Biol Chem 2008; 283(42): 28176-89.
[http://dx.doi.org/10.1074/jbc.M803159200] [PMID: 18694930]
[16]
Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG. Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci 2015; 9: 191.
[http://dx.doi.org/10.3389/fncel.2015.00191] [PMID: 26074767]
[17]
Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: Sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 2013; 33(s1)(Suppl. 1): S123-39.
[http://dx.doi.org/10.3233/JAD-2012-129031] [PMID: 22710920]
[18]
Selkoe DJ. Treatments for Alzheimer’s disease emerge. Science 2021; 373(6555): 624-6.
[http://dx.doi.org/10.1126/science.abi6401] [PMID: 34353940]
[19]
Kumar D, Ganeshpurkar A, Kumar D, Modi G, Gupta SK, Singh SK. Secretase inhibitors for the treatment of Alzheimer’s disease: Long road ahead. Eur J Med Chem 2018; 148: 436-52.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.035] [PMID: 29477076]
[20]
Miranda A, Montiel E, Ulrich H, Paz C. Selective secretase targeting for alzheimer’s disease therapy. J Alzheimers Dis 2021; 81(1): 1-17.
[http://dx.doi.org/10.3233/JAD-201027] [PMID: 33749645]
[21]
Hampel H, Vassar R, De Strooper B, et al. The β-secretase BACE1 in alzheimer’s disease. Biol Psychiatry 2021; 89(8): 745-56.
[http://dx.doi.org/10.1016/j.biopsych.2020.02.001] [PMID: 32223911]
[22]
May PC, Dean RA, Lowe SL, et al. Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J Neurosci 2011; 31(46): 16507-16.
[http://dx.doi.org/10.1523/JNEUROSCI.3647-11.2011] [PMID: 22090477]
[23]
Barão S, Moechars D, Lichtenthaler SF, De Strooper B. BACE1 physiological functions may limit its use as therapeutic target for alzheimer’s disease. Trends Neurosci 2016; 39(3): 158-69.
[http://dx.doi.org/10.1016/j.tins.2016.01.003] [PMID: 26833257]
[24]
May PC, Willis BA, Lowe SL, et al. The potent BACE1 inhibitor LY2886721 elicits robust central Aβ pharmacodynamic responses in mice, dogs, and humans. J Neurosci 2015; 35(3): 1199-210.
[http://dx.doi.org/10.1523/JNEUROSCI.4129-14.2015] [PMID: 25609634]
[25]
Bernier F, Sato Y, Matijevic M, et al. Clinical study of E2609, a novel BACE1 inhibitor, demonstrates target engagement and inhibition of BACE1 activity in CSF. Alzheimers Dement 2013; 9(4): 886.
[http://dx.doi.org/10.1016/j.jalz.2013.08.244]
[26]
Panza F, Lozupone M, Solfrizzi V, et al. BACE inhibitors in clinical development for the treatment of Alzheimer’s disease. Expert Rev Neurother 2018; 18(11): 847-57.
[http://dx.doi.org/10.1080/14737175.2018.1531706] [PMID: 30277096]
[27]
Moussa-Pacha NM, Abdin SM, Omar HA, Alniss H, Al-Tel TH. BACE1 inhibitors: Current status and future directions in treating Alzheimer’s disease. Med Res Rev 2020; 40(1): 339-84.
[http://dx.doi.org/10.1002/med.21622] [PMID: 31347728]
[28]
Dobrowolska Zakaria JA, Vassar RJ. A promising, novel, and unique BACE1 inhibitor emerges in the quest to prevent Alzheimer’s disease. EMBO Mol Med 2018; 10(11): e9717.
[http://dx.doi.org/10.15252/emmm.201809717] [PMID: 30322841]
[29]
Neumann U, Ufer M, Jacobson LH, et al. The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer’s disease. EMBO Mol Med 2018; 10(11): e9316.
[http://dx.doi.org/10.15252/emmm.201809316] [PMID: 30224383]
[30]
Neumann U, Jacobson LH, Perrot L, Beltz K, Shimshek DR. Preclinical pharmacology of bace inhibitor CNP520. Alzhmer’s & dementia. J Alzhmer’s Assoc 2016; 12(7): 433-4.
[31]
Lopez Lopez C, Tariot PN, Caputo A, et al. The Alzheimer’s Prevention Initiative Generation Program: Study design of two randomized controlled trials for individuals at risk for clinical onset of Alzheimer’s disease. Alzheimers Dement (N Y) 2019; 5(1): 216-27.
[http://dx.doi.org/10.1016/j.trci.2019.02.005] [PMID: 31211217]
[32]
Yagishita S, Morishima-Kawashima M, Ishiura S, Ihara Y. Abeta46 is processed to Abeta40 and Abeta43, but not to Abeta42, in the low density membrane domains. J Biol Chem 2008; 283(2): 733-8.
[http://dx.doi.org/10.1074/jbc.M707103200] [PMID: 18024430]
[33]
Henley DB, May PC, Dean RA, Siemers ER. Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer’s disease. Expert Opin Pharmacother 2009; 10(10): 1657-64.
[http://dx.doi.org/10.1517/14656560903044982] [PMID: 19527190]
[34]
Siemers E, Skinner M, Dean RA, et al. Safety, tolerability, and changes in amyloid beta concentrations after administration of a gamma-secretase inhibitor in volunteers. Clin Neuropharmacol 2005; 28(3): 126-32.
[http://dx.doi.org/10.1097/01.wnf.0000167360.27670.29] [PMID: 15965311]
[35]
Fleisher AS, Raman R, Siemers ER, et al. Phase 2 safety trial targeting amyloid beta production with a gamma-secretase inhibitor in Alzheimer disease. Arch Neurol 2008; 65(8): 1031-8.
[http://dx.doi.org/10.1001/archneur.65.8.1031] [PMID: 18695053]
[36]
Doody RS, Raman R, Farlow M, et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N Engl J Med 2013; 369(4): 341-50.
[http://dx.doi.org/10.1056/NEJMoa1210951] [PMID: 23883379]
[37]
De Strooper B. Lessons from a failed γ-secretase Alzheimer trial. Cell 2014; 159(4): 721-6.
[http://dx.doi.org/10.1016/j.cell.2014.10.016] [PMID: 25417150]
[38]
Albright CF, Dockens RC, Meredith JE Jr, et al. Pharmacodynamics of selective inhibition of γ-secretase by avagacestat. J Pharmacol Exp Ther 2013; 344(3): 686-95.
[http://dx.doi.org/10.1124/jpet.112.199356] [PMID: 23275065]
[39]
Coric V, Salloway S, van Dyck CH, et al. Targeting prodromal alzheimer disease with avagacestat: A randomized clinical trial. JAMA Neurol 2015; 72(11): 1324-33.
[http://dx.doi.org/10.1001/jamaneurol.2015.0607] [PMID: 26414022]
[40]
Cummings J, Lee G, Ritter A, Sabbagh M, Zhong K. Alzheimer’s disease drug development pipeline: 2020. Alzheimers Dement (N Y) 2020; 6(1): e12050.
[http://dx.doi.org/10.1002/trc2.12050] [PMID: 32695874]
[41]
Bursavich MG, Harrison BA, Blain JF. Gamma secretase modulators: New alzheimer’s drugs on the horizon? J Med Chem 2016; 59(16): 7389-409.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01960] [PMID: 27007185]
[42]
Zheng D, Shuai X, Li Y, et al. Novel flurbiprofen derivatives with improved brain delivery: Synthesis, in vitro and in vivo evaluations. Drug Deliv 2016; 23(7): 2183-92.
[http://dx.doi.org/10.3109/10717544.2014.954165] [PMID: 25182481]
[43]
Green RC, Schneider LS, Amato DA, et al. Effect of tarenflurbil on cognitive decline and activities of daily living in patients with mild Alzheimer disease: A randomized controlled trial. JAMA 2009; 302(23): 2557-64.
[http://dx.doi.org/10.1001/jama.2009.1866] [PMID: 20009055]
[44]
Imbimbo BP, Frigerio E, Breda M, et al. Pharmacokinetics and pharmacodynamics of CHF5074 after short-term administration in healthy subjects. Alzheimer Dis Assoc Disord 2013; 27(3): 278-86.
[http://dx.doi.org/10.1097/WAD.0b013e3182622ace] [PMID: 22922591]
[45]
Lichtenthaler SF, Haass C. Amyloid at the cutting edge: Activation of alpha-secretase prevents amyloidogenesis in an Alzheimer disease mouse model. J Clin Invest 2004; 113(10): 1384-7.
[http://dx.doi.org/10.1172/JCI21746] [PMID: 15146234]
[46]
Woodward MC. Drug treatments in development for alzheimer’s disease. J Pharm Pract Res 2012; 42(1): 58-65.
[http://dx.doi.org/10.1002/j.2055-2335.2012.tb00133.x]
[47]
Mangialasche F, Solomon A, Winblad B, Mecocci P, Kivipelto M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol 2010; 9(7): 702-16.
[http://dx.doi.org/10.1016/S1474-4422(10)70119-8] [PMID: 20610346]
[48]
Marcade M, Bourdin J, Loiseau N, et al. Etazolate, a neuroprotective drug linking GABA(A) receptor pharmacology to amyloid precursor protein processing. J Neurochem 2008; 106(1): 392-404.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05396.x] [PMID: 18397369]
[49]
Drott J, Desire L, Drouin D, Pando M, Haun F. Etazolate improves performance in a foraging and homing task in aged rats. Eur J Pharmacol 2010; 634(1-3): 95-100.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.036] [PMID: 20223232]
[50]
Vellas B, Sol O, Snyder PJ, et al. EHT0202 in Alzheimer’s disease: A 3-month, randomized, placebo-controlled, double-blind study. Curr Alzheimer Res 2011; 8(2): 203-12.
[http://dx.doi.org/10.2174/156720511795256053] [PMID: 21222604]
[51]
Holthoewer D, Endres K, Schuck F, Hiemke C, Schmitt U, Fahrenholz F. Acitretin, an enhancer of alpha-secretase expression, crosses the blood-brain barrier and is not eliminated by P-glycoprotein. Neurodegener Dis 2012; 10(1-4): 224-8.
[http://dx.doi.org/10.1159/000334300] [PMID: 22301853]
[52]
Endres K, Fahrenholz F, Lotz J, et al. Increased CSF APPs-α levels in patients with Alzheimer disease treated with acitretin. Neurology 2014; 83(21): 1930-5.
[http://dx.doi.org/10.1212/WNL.0000000000001017] [PMID: 25344383]
[53]
Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009; 457(7232): 981-9.
[http://dx.doi.org/10.1038/nature07767] [PMID: 19225519]
[54]
Lahiri DK, Chen D, Maloney B, et al. The experimental Alzheimer’s disease drug posiphen [(+)-phenserine] lowers amyloid-beta peptide levels in cell culture and mice. J Pharmacol Exp Ther 2007; 320(1): 386-96.
[http://dx.doi.org/10.1124/jpet.106.112102] [PMID: 17003227]
[55]
Teich AF, Sharma E, Barnwell E, et al. Translational inhibition of APP by Posiphen: Efficacy, pharmacodynamics, and pharmacokinetics in the APP/PS1 mouse. Alzheimers Dement (N Y) 2018; 4(1): 37-45.
[http://dx.doi.org/10.1016/j.trci.2017.12.001] [PMID: 29955650]
[56]
Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: The way forward. Expert Rev Clin Immunol 2014; 10(3): 405-19.
[http://dx.doi.org/10.1586/1744666X.2014.883921] [PMID: 24490853]
[57]
Orgogozo JM, Gilman S, Dartigues JF, et al. Subacute meningoencephalitis in a subset of patients with AD after Abeta42 immunization. Neurology 2003; 61(1): 46-54.
[http://dx.doi.org/10.1212/01.WNL.0000073623.84147.A8] [PMID: 12847155]
[58]
Wiessner C, Wiederhold KH, Tissot AC, et al. The second-generation active Aβ immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 2011; 31(25): 9323-31.
[http://dx.doi.org/10.1523/JNEUROSCI.0293-11.2011] [PMID: 21697382]
[59]
Malonis RJ, Lai JR, Vergnolle O. Peptide-based vaccines: Current progress and future challenges. Chem Rev 2020; 120(6): 3210-29.
[http://dx.doi.org/10.1021/acs.chemrev.9b00472] [PMID: 31804810]
[60]
Davtyan H, Ghochikyan A, Petrushina I, et al. Immunogenicity, efficacy, safety, and mechanism of action of epitope vaccine (Lu AF20513) for Alzheimer’s disease: Prelude to a clinical trial. J Neurosci 2013; 33(11): 4923-34.
[http://dx.doi.org/10.1523/JNEUROSCI.4672-12.2013] [PMID: 23486963]
[61]
Vandenberghe R, Riviere ME, Caputo A, et al. Active Aβ immunotherapy CAD106 in Alzheimer’s disease: A phase 2b study. Alzheimers Dement (N Y) 2016; 3(1): 10-22.
[http://dx.doi.org/10.1016/j.trci.2016.12.003] [PMID: 29067316]
[62]
Farlow MR, Andreasen N, Riviere ME, et al. Long-term treatment with active Aβ immunotherapy with CAD106 in mild Alzheimer’s disease. Alzheimers Res Ther 2015; 7(1): 23.
[http://dx.doi.org/10.1186/s13195-015-0108-3] [PMID: 25918556]
[63]
Wang CY, Finstad CL, Walfield AM, et al. Site-specific UBITh amyloid-beta vaccine for immunotherapy of Alzheimer’s disease. Vaccine 2007; 25(16): 3041-52.
[http://dx.doi.org/10.1016/j.vaccine.2007.01.031] [PMID: 17287052]
[64]
Wang CY, Wang PN, Chiu MJ, et al. UB-311, a novel UBITh® amyloid β peptide vaccine for mild Alzheimer’s disease. Alzheimers Dement (N Y) 2017; 3(2): 262-72.
[http://dx.doi.org/10.1016/j.trci.2017.03.005] [PMID: 29067332]
[65]
Yiannopoulou KG, Papageorgiou SG. Current and future treatments in alzheimer disease: An update. J Cent Nerv Syst Dis 2020; 12: 1179573520907397.
[http://dx.doi.org/10.1177/1179573520907397] [PMID: 32165850]
[66]
Lacosta AM, Insua D, Badi H, Pesini P, Sarasa M. Neurofibrillary tangles of Aβx-40 in alzheimer’s disease brains. J Alzheimers Dis 2017; 58(3): 661-7.
[http://dx.doi.org/10.3233/JAD-170163] [PMID: 28453491]
[67]
Lacosta AM, Pascual-Lucas M, Pesini P, et al. Safety, tolerability and immunogenicity of an active anti-Aβ40 vaccine (ABvac40) in patients with Alzheimer’s disease: A randomised, double-blind, placebo-controlled, phase I trial. Alzheimers Res Ther 2018; 10(1): 12.
[http://dx.doi.org/10.1186/s13195-018-0340-8] [PMID: 29378651]
[68]
Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res 2013; 36(4): 375-99.
[http://dx.doi.org/10.1007/s12272-013-0036-3] [PMID: 23435942]
[69]
van Dyck CH. Anti-amyloid-β monoclonal antibodies for alzheimer’s disease: Pitfalls and promise. Biol Psychiatry 2018; 83(4): 311-9.
[http://dx.doi.org/10.1016/j.biopsych.2017.08.010] [PMID: 28967385]
[70]
Farlow M, Arnold SE, van Dyck CH, et al. Safety and biomarker effects of solanezumab in patients with Alzheimer’s disease. Alzheimers Dement 2012; 8(4): 261-71.
[http://dx.doi.org/10.1016/j.jalz.2011.09.224] [PMID: 22672770]
[71]
Siemers ER, Sundell KL, Carlson C, et al. Phase 3 solanezumab trials: Secondary outcomes in mild Alzheimer’s disease patients. Alzheimers Dement 2016; 12(2): 110-20.
[http://dx.doi.org/10.1016/j.jalz.2015.06.1893] [PMID: 26238576]
[72]
Tarrant SD, Bardach SH, Bates K, et al. The effectiveness of small-group community-based information sessions on clinical trial recruitment for secondary prevention of alzheimer’s disease. Alzheimer Dis Assoc Disord 2017; 31(2): 141-5.
[http://dx.doi.org/10.1097/WAD.0000000000000151] [PMID: 27213625]
[73]
Zhao J, Nussinov R, Ma B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 2017; 292(44): 18325-43.
[http://dx.doi.org/10.1074/jbc.M117.801514] [PMID: 28924036]
[74]
Adolfsson O, Pihlgren M, Toni N, et al. An effector-reduced anti-β-amyloid (Aβ) antibody with unique aβ binding properties promotes neuroprotection and glial engulfment of Aβ. J Neurosci 2012; 32(28): 9677-89.
[http://dx.doi.org/10.1523/JNEUROSCI.4742-11.2012] [PMID: 22787053]
[75]
Salloway S, Honigberg LA, Cho W, et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phase II study in mild-to-moderate Alzheimer’s disease (BLAZE). Alzheimers Res Ther 2018; 10(1): 96.
[http://dx.doi.org/10.1186/s13195-018-0424-5] [PMID: 30231896]
[76]
Cummings JL, Cohen S, van Dyck CH, et al. ABBY: A phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease. Neurology 2018; 90(21): e1889-97.
[http://dx.doi.org/10.1212/WNL.0000000000005550] [PMID: 29695589]
[77]
Ghisays V, Lopera F, Goradia DD, et al. PET evidence of preclinical cerebellar amyloid plaque deposition in autosomal dominant Alzheimer’s disease-causing Presenilin-1 E280A mutation carriers. Neuroimage Clin 2021; 31: 102749.
[http://dx.doi.org/10.1016/j.nicl.2021.102749] [PMID: 34252876]
[78]
Ostrowitzki S, Lasser RA, Dorflinger E, et al. A phase III randomized trial of gantenerumab in prodromal Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 95.
[http://dx.doi.org/10.1186/s13195-017-0318-y] [PMID: 29221491]
[79]
Mukhopadhyay S, Banerjee D. A primer on the evolution of aducanumab: The first antibody approved for treatment of alzheimer’s disease. J Alzheimers Dis 2021; 83(4): 1537-52.
[http://dx.doi.org/10.3233/JAD-215065] [PMID: 34366359]
[80]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[81]
Loureiro JC, Pais MV, Stella F, et al. Passive antiamyloid immunotherapy for Alzheimer’s disease. Curr Opin Psychiatry 2020; 33(3): 284-91.
[http://dx.doi.org/10.1097/YCO.0000000000000587] [PMID: 32040044]
[82]
BIIB037 in Prodromal or Mild Alzheimer’s Disease Available from: https://www.nia.nih.gov/alzheimers/clinical-trials/biib037-prodromal-or-mild-alzheimers-disease Accessed on September 27, 2021.
[83]
FDA accepts biogen’s aducanumab biologics license application for alzheimer’s disease with priority review. Available from: https://investors.biogen.com/news-releases/news-release-details/fda-accepts-biogens-aducanumab-biologics-license-application Accessed on September 27, 2021.
[84]
Logovinsky V, Satlin A, Lai R, et al. Safety and tolerability of BAN2401--a clinical study in Alzheimer’s disease with a protofibril selective Aβ antibody. Alzheimers Res Ther 2016; 8(1): 14.
[http://dx.doi.org/10.1186/s13195-016-0181-2] [PMID: 27048170]
[85]
Swanson CJ, Zhang Y, Dhadda S, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther 2021; 13(1): 80.
[http://dx.doi.org/10.1186/s13195-021-00813-8] [PMID: 33865446]
[86]
Investigational Alzheimer’s Disease Therapy Lecanemab Granted FDA Fast Track Designation. Available from: http://media.biogen.com/news-releases/news-release-details/investigational-alzheimers-disease-therapy-lecanemab-granted-fda Accessed on February 22 2022.
[87]
Lowe SL, Willis BA, Hawdon A, et al. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement (N Y) 2021; 7(1): e12112.
[http://dx.doi.org/10.1002/trc2.12112] [PMID: 33614890]
[88]
Lowe SL, Duggan Evans C, Shcherbinin S, et al. Donanemab (LY3002813) phase 1b study in alzheimer’s disease: rapid and sustained reduction of brain amyloid measured by florbetapir F18 imaging. J Prev Alzheimers Dis 2021; 8(4): 414-24.
[PMID: 34585215]
[89]
Espay AJ. Donanemab in early alzheimer’s disease. N Engl J Med 2021; 385(7): 666-7.
[http://dx.doi.org/10.1056/NEJMc2109455] [PMID: 34379933]
[90]
Lilly's donanemab receives U.S. FDA's Breakthrough Therapy designation for treatment of Alzheimer's disease. Available from: https://investor.lilly.com/news-releases/news-release-details/lillys-donanemab-receives-us-fdas-breakthrough-therapy Accessed on February 22, 2022.
[91]
Kroth H, Sreenivasachary N, Hamel A, et al. Synthesis and structure-activity relationship of 2,6-disubstituted pyridine derivatives as inhibitors of β-amyloid-42 aggregation. Bioorg Med Chem Lett 2016; 26(14): 3330-5.
[http://dx.doi.org/10.1016/j.bmcl.2016.05.040] [PMID: 27256911]
[92]
Manzano S, Agüera L, Aguilar M, Olazarán J. A review on tramiprosate (homotaurine) in alzheimer’s disease and other neurocognitive disorders. Front Neurol 2020; 11: 614.
[http://dx.doi.org/10.3389/fneur.2020.00614] [PMID: 32733362]
[93]
Gervais F, Paquette J, Morissette C, et al. Targeting soluble Abeta peptide with Tramiprosate for the treatment of brain amyloidosis. Neurobiol Aging 2007; 28(4): 537-47.
[http://dx.doi.org/10.1016/j.neurobiolaging.2006.02.015] [PMID: 16675063]
[94]
Aisen PS, Saumier D, Briand R, et al. A Phase II study targeting amyloid-beta with 3APS in mild-to-moderate Alzheimer disease. Neurology 2006; 67(10): 1757-63.
[http://dx.doi.org/10.1212/01.wnl.0000244346.08950.64] [PMID: 17082468]
[95]
Gauthier S, Aisen PS, Ferris SH, et al. Effect of tramiprosate in patients with mild-to-moderate Alzheimer’s disease: Exploratory analyses of the MRI sub-group of the Alphase study. J Nutr Health Aging 2009; 13(6): 550-7.
[http://dx.doi.org/10.1007/s12603-009-0106-x] [PMID: 19536424]
[96]
Hey JA, Yu JY, Versavel M, et al. Clinical pharmacokinetics and safety of ALZ-801, a novel prodrug of tramiprosate in development for the treatment of alzheimer’s disease. Clin Pharmacokinet 2018; 57(3): 315-33.
[http://dx.doi.org/10.1007/s40262-017-0608-3] [PMID: 29063518]
[97]
Kocis P, Tolar M, Yu J, et al. Elucidating the Aβ42 anti-aggregation mechanism of action of tramiprosate in alzheimer’s disease: integrating molecular analytical methods, pharmacokinetic and clinical data. CNS Drugs 2017; 31(6): 495-509.
[http://dx.doi.org/10.1007/s40263-017-0434-z] [PMID: 28435985]
[98]
Hey JA, Kocis P, Hort J, et al. Discovery and identification of an endogenous metabolite of tramiprosate and its prodrug ALZ-801 that inhibits beta amyloid oligomer formation in the human brain. CNS Drugs 2018; 32(9): 849-61.
[http://dx.doi.org/10.1007/s40263-018-0554-0] [PMID: 30076539]
[99]
Jawhar S, Wirths O, Bayer TA. Pyroglutamate amyloid-β (Aβ): A hatchet man in Alzheimer disease. J Biol Chem 2011; 286(45): 38825-32.
[http://dx.doi.org/10.1074/jbc.R111.288308] [PMID: 21965666]
[100]
Hoffmann T, Rahfeld JU, Schenk M, et al. Combination of the glutaminyl cyclase inhibitor PQ912 (varoglutamstat) and the murine monoclonal antibody PBD-C06 (m6) shows additive effects on brain Aβ pathology in transgenic mice. Int J Mol Sci 2021; 22(21): 11791.
[http://dx.doi.org/10.3390/ijms222111791] [PMID: 34769222]
[101]
Scheltens P, Hallikainen M, Grimmer T, et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: Results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res Ther 2018; 10(1): 107.
[http://dx.doi.org/10.1186/s13195-018-0431-6] [PMID: 30309389]
[102]
Wang S, Li J, Xia W, Geng M. A marine-derived acidic oligosaccharide sugar chain specifically inhibits neuronal cell injury mediated by beta-amyloid-induced astrocyte activation in vitro. Neurol Res 2007; 29(1): 96-102.
[http://dx.doi.org/10.1179/174313206X152483] [PMID: 17427283]
[103]
Wang X, Sun G, Feng T, et al. Sodium oligomannate therapeutically remodels gut microbiota and suppresses gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res 2019; 29(10): 787-803.
[http://dx.doi.org/10.1038/s41422-019-0216-x] [PMID: 31488882]
[104]
Wang T, Kuang W, Chen W, et al. A phase II randomized trial of sodium oligomannate in Alzheimer’s dementia. Alzheimers Res Ther 2020; 12(1): 110.
[http://dx.doi.org/10.1186/s13195-020-00678-3] [PMID: 32928279]
[105]
China approves seaweed sugar as first new alzheimer’s drug in 17 Years. Available from: https://www.alzforum.org/news/research-news/china-approves-seaweed-sugar-first-new-alzheimers-drug-17-years Accessed on September 27, 2021.
[106]
Zhang Z, Miah M, Culbreth M, Aschner M. Autophagy in neurodegenerative diseases and metal neurotoxicity. Neurochem Res 2016; 41(1-2): 409-22.
[http://dx.doi.org/10.1007/s11064-016-1844-x] [PMID: 26869037]
[107]
Matlack KE, Tardiff DF, Narayan P, et al. Clioquinol promotes the degradation of metal-dependent amyloid-β (Aβ) oligomers to restore endocytosis and ameliorate Aβ toxicity. Proc Natl Acad Sci USA 2014; 111(11): 4013-8.
[http://dx.doi.org/10.1073/pnas.1402228111] [PMID: 24591589]
[108]
Prajakta Deshpande, Neha Gogia, Amit Singh. Exploring the efficacy of natural products in alleviating Alzheimer’s disease. Neural Regen Res 2019; 14(08): 35-43.
[109]
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34(11): 2867-88.
[http://dx.doi.org/10.1002/ptr.6732] [PMID: 32491273]
[110]
Karuppagounder SS, Pinto JT, Xu H, Chen HL, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 2009; 54(2): 111-8.
[http://dx.doi.org/10.1016/j.neuint.2008.10.008] [PMID: 19041676]
[111]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 2012; 18(1): 27-33.
[http://dx.doi.org/10.2174/138161212798919075] [PMID: 22211686]
[112]
Sun XY, Dong QX, Zhu J, et al. Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr Alzheimer Res 2019; 16(8): 710-22.
[http://dx.doi.org/10.2174/1567205016666190801153751] [PMID: 31368873]
[113]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[114]
Fu X, Zhang J, Guo L, et al. Protective role of luteolin against cognitive dysfunction induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 2014; 126: 122-30.
[http://dx.doi.org/10.1016/j.pbb.2014.09.005] [PMID: 25220684]
[115]
Zhou F, Chen S, Xiong J, Li Y, Qu L. Luteolin reduces zinc-induced tau phosphorylation at Ser262/356 in an ROS-dependent manner in SH-SY5Y cells. Biol Trace Elem Res 2012; 149(2): 273-9.
[http://dx.doi.org/10.1007/s12011-012-9411-z] [PMID: 22528780]
[116]
Liu R, Meng F, Zhang L, et al. Luteolin isolated from the medicinal plant Elsholtzia rugulosa (Labiatae) prevents copper-mediated toxicity in β-amyloid precursor protein Swedish mutation overexpressing SH-SY5Y cells. Molecules 2011; 16(3): 2084-96.
[http://dx.doi.org/10.3390/molecules16032084] [PMID: 21368720]
[117]
Khan H, Ullah H, Aschner M, Cheang WS, Akkol EK. Neuroprotective effects of quercetin in alzheimer’s disease. Biomolecules 2019; 10(1): E59.
[http://dx.doi.org/10.3390/biom10010059] [PMID: 31905923]
[118]
Zaplatic E, Bule M, Shah SZA, Uddin MS, Niaz K. Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sci 2019; 224: 109-19.
[http://dx.doi.org/10.1016/j.lfs.2019.03.055] [PMID: 30914316]
[119]
Li YL, Guo H, Zhao YQ, Li AF, Ren YQ, Zhang JW. Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid β-peptide treatment. Mol Med Rep 2017; 16(2): 1573-7.
[http://dx.doi.org/10.3892/mmr.2017.6704] [PMID: 28586024]
[120]
Reddy PH, Manczak M, Yin X, et al. Protective effects of Indian spice curcumin against amyloid-β in alzheimer’s disease. J Alzheimers Dis 2018; 61(3): 843-66.
[http://dx.doi.org/10.3233/JAD-170512] [PMID: 29332042]
[121]
Su IJ, Chang HY, Wang HC, Tsai KJ. A curcumin analog exhibits multiple biologic effects on the pathogenesis of alzheimer’s disease and improves behavior, inflammation, and β-amyloid accumulation in a mouse model. Int J Mol Sci 2020; 21(15): E5459.
[http://dx.doi.org/10.3390/ijms21155459] [PMID: 32751716]
[122]
Wang HY, Bakshi K, Frankfurt M, et al. Reducing amyloid-related Alzheimer’s disease pathogenesis by a small molecule targeting filamin A. J Neurosci 2012; 32(29): 9773-84.
[http://dx.doi.org/10.1523/JNEUROSCI.0354-12.2012] [PMID: 22815492]
[123]
Wang HY, Lee KC, Pei Z, Khan A, Bakshi K, Burns LH. PTI-125 binds and reverses an altered conformation of filamin A to reduce Alzheimer’s disease pathogenesis. Neurobiol Aging 2017; 55: 99-114.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.016] [PMID: 28438486]
[124]
Wang HY, Pei Z, Lee KC, et al. PTI-125 reduces biomarkers of alzheimer’s disease in patients. J Prev Alzheimers Dis 2020; 7(4): 256-64.
[PMID: 32920628]
[125]
Álvarez X, Linares C, Masliah E. Combination drug therapy for the treatment of alzheimer’s disease. Eur Neurol Rev 2012; 7(2): 92-101.
[http://dx.doi.org/10.17925/ENR.2012.07.02.92]
[126]
Gavrilova SI, Alvarez A. Cerebrolysin in the therapy of mild cognitive impairment and dementia due to Alzheimer’s disease: 30 years of clinical use. Med Res Rev 2021; 41(5): 2775-803.
[http://dx.doi.org/10.1002/med.21722] [PMID: 32808294]
[127]
Cummings J, Fox N. Defining disease modifying therapy for alzheimer’s disease. J Prev Alzheimers Dis 2017; 4(2): 109-15.
[http://dx.doi.org/10.14283/jpad.2017.12] [PMID: 29071250]
[128]
Salloway SP, Sevingy J, Budur K, et al. Advancing combination therapy for Alzheimer’s disease. Alzheimers Dement (N Y) 2020; 6(1): e12073.
[http://dx.doi.org/10.1002/trc2.12073] [PMID: 33043108]
[129]
Cummings JL, Tong G, Ballard C. Treatment combinations for alzheimer’s disease: Current and future pharmacotherapy options. J Alzheimers Dis 2019; 67(3): 779-94.
[http://dx.doi.org/10.3233/JAD-180766] [PMID: 30689575]
[130]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[131]
Tolar M, Abushakra S, Sabbagh M. The path forward in Alzheimer’s disease therapeutics: Reevaluating the amyloid cascade hypothesis. Alzheimers Dement 2020; 16(11): 1553-60.
[http://dx.doi.org/10.1016/j.jalz.2019.09.075] [PMID: 31706733]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy