Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Review Article

Recent Updates on Applications of Lipid-Based Nanoparticles for Site- Specific Drug Delivery

Author(s): Shivanshu Agrawal, Anuj Garg* and Vikas Varshney

Volume 10, Issue 1, 2022

Published on: 25 March, 2022

Page: [24 - 41] Pages: 18

DOI: 10.2174/2211738510666220304111848

Price: $65

Abstract

Background: Site-specific drug delivery is a widespread and demanding area nowadays. Lipid-based nanoparticulate drug delivery systems have shown promising effects for targeting drugs among lymphatic systems, brain tissues, lungs, and skin. Recently, lipid nanoparticles have been used for targeting the brain via the mucosal route for local therapeutic effects. Lipid nanoparticles (LNPs) can help in enhancing the efficacy and lowering the toxicities of anticancer drugs to treat the tumors, particularly in lymph after metastases of tumors. LNPs contain a nonpolar core that can improve the absorption of lipophilic drugs into the lymph node and treat tumors. Cellular uptake of drugs can also be enhanced using LNPs and therefore, LNPs are the ideal carrier for treating intracellular infections, such as leishmaniasis, tuberculosis and parasitic infection in the brain, etc. Furthermore, specific surface modifications with molecules like mannose, or PEG could improve the macrophage uptake and hence effectively eradicate parasites hiding in macrophages.

Methods: An electronic literature search was conducted to update the advancements in the field of site-specific drug delivery utilizing lipid-based nanoparticles. A search of the Scopus database (https://www.scopus.com/home.uri) was conducted using the following keywords: lipid-based nanoparticles; site-specific delivery.

Conclusion: Solid lipid nanoparticles have shown site-specific targeted delivery to various organs including the liver, oral mucosa, brain, epidermis, pulmonary and lymphatic systems. These lipidbased systems showed improved bioavailability as well as reduced side effects. Therefore, the focus of this article is to review the recent research studies on LNPs for site-specific or targeting drug delivery.

Keywords: Solid lipid nanoparticles, brain targeting, pulmonary targeting, epidermal targeting, liver targeting, metastases tumors.

Graphical Abstract
[1]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2019; 12(7): 908-31.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[2]
Müller Rainer H, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000; 50(1): 161-77.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[3]
Battaglia L, Ugazio E. Lipid nano- and microparticles: An overview of patent-related research. J Nanomater 2019; 2019: 1-22.
[http://dx.doi.org/10.1155/2019/2834941]
[4]
Mehnert W, Mäder K. Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 2001; 47(2-3): 165-96.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[5]
Dingler A, Gohla S. Production of solid lipid nanoparticles (SLN): Scaling up feasibilities. J Microencapsul 2002; 19(1): 11-6.
[http://dx.doi.org/10.1080/02652040010018056] [PMID: 11811752]
[6]
Marengo E, Cavalli R, Caputo O, Rodriguez L, Gasco MR. Scale-up of the preparation process of solid lipid nanospheres. Part I. Int J Pharm 2000; 205(1-2): 3-13.
[http://dx.doi.org/10.1016/S0378-5173(00)00471-3] [PMID: 11000537]
[7]
Parhi R, Suresh P. Preparation and characterization of solid lipid nanoparticles-a review. Curr Drug Discov Technol 2012; 9(1): 2-16.
[http://dx.doi.org/10.2174/157016312799304552] [PMID: 22235925]
[8]
Sahai N, Gogoi M, Ahmad N. Mathematical modeling and simulations for developing nanoparticle-based cancer drug delivery systems: A review. Curr Pathobiol Rep 2021; 9(1): 1-8.
[http://dx.doi.org/10.1007/s40139-020-00219-5]
[9]
Son G-H, Lee B-J, Cho C-W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig 2017; 47(4): 287-96.
[http://dx.doi.org/10.1007/s40005-017-0320-1]
[10]
Pourtalebi Jahromi L, Ghazali M, Ashrafi H, Azadi A. A comparison of models for the analysis of the kinetics of drug release from PLGA-based nanoparticles. Heliyon 2020; 6(2) ,e03451
[http://dx.doi.org/10.1016/j.heliyon.2020.e03451] [PMID: 32140583]
[11]
Mihaila R, Ruhela D, Keough E, et al. Mathematical modeling: A tool for optimization of lipid nanoparticle-mediated delivery of SiRNA. Mol Ther Nucleic Acids 2017; 7: 246-55.
[http://dx.doi.org/10.1016/j.omtn.2017.04.003]
[12]
Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: An insight. Chem Phys Lipids 2016; 201: 28-40.
[http://dx.doi.org/10.1016/j.chemphyslip.2016.10.005] [PMID: 27983957]
[13]
García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, et al. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials (Basel) 2019; 9(4): 1-23.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[14]
Morales-Bonilla S, Mota-Díaz II, Douda J, González-Vargas CR, Villalpando I, Torres-Torres C. Thermo-mechanical effects and photo-induced release of liposome-encapsulated nanodiamonds by polarization-resolved laser pulses. Optik (Stuttg) 2021; 245(August) ,167738
[http://dx.doi.org/10.1016/j.ijleo.2021.167738]
[15]
Kumar VV, Chandrasekar D, Ramakrishna S, Kishan V, Rao YM, Diwan PV. Development and evaluation of nitrendipine loaded solid lipid nanoparticles: Influence of wax and glyceride lipids on plasma pharmacokinetics. Int J Pharm 2007; 335(1-2): 167-75.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.004] [PMID: 17161566]
[16]
Mukherjee S, Ray S, Thakur RS. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J Pharm Sci 2009; 71(4): 349-58.
[http://dx.doi.org/10.4103/0250-474X.57282] [PMID: 20502539]
[17]
Chaturvedi S, Garg A, Verma A. Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol 2020; 59(July) ,101899
[http://dx.doi.org/10.1016/j.jddst.2020.101899]
[18]
Santos Maia C, Mehnert W, Schaller M, et al. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target 2002; 10(6): 489-95.
[http://dx.doi.org/10.1080/1061186021000038364] [PMID: 12575739]
[19]
Liu M, Wen J, Sharma M. Solid lipid nanoparticles for topical drug delivery: mechanisms, dosage form perspectives, and translational status. Curr Pharm Des 2020; 26(27): 3203-17.
[http://dx.doi.org/10.2174/1381612826666200526145706] [PMID: 32452322]
[20]
Garg A, Singh S. Targeting of eugenol-loaded solid lipid nanoparticles to the epidermal layer of human skin. Nanomedicine (Lond) 2014; 9(8): 1223-38.
[http://dx.doi.org/10.2217/nnm.13.33] [PMID: 23987096]
[21]
Sivaramakrishnan R, Nakamura C, Mehnert W, Korting HC, Kramer KD, Schäfer-Korting M. Glucocorticoid entrapment into lipid carriers--characterisation by parelectric spectroscopy and influence on dermal uptake. J Control Release 2004; 97(3): 493-502.
[http://dx.doi.org/10.1016/S0168-3659(04)00169-5] [PMID: 15212881]
[22]
Chen H, Chang X, Du D, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 2006; 110(2): 296-306.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.052] [PMID: 16325954]
[23]
Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm 2008; 348(1-2): 137-45.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.012] [PMID: 17714896]
[24]
Almeida PFF, Pokorny A, Hinderliter A. Thermodynamics of membrane domains. Biochim Biophys Acta 2005; 1720(1-2): 1-13.
[http://dx.doi.org/10.1016/j.bbamem.2005.12.004] [PMID: 16472555]
[25]
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: Characterization and design. Expert Opin Drug Deliv 2018; 15(8): 771-85.
[http://dx.doi.org/10.1080/17425247.2018.1504018] [PMID: 30064267]
[26]
Hosseini SM, Abbasalipourkabir R, Jalilian FA, et al. Doxycycline-encapsulated solid lipid nanoparticles as promising tool against Brucella melitensis enclosed in macrophage: A pharmacodynamics study on J774A.1 cell line. Antimicrob Resist Infect Control 2019; 8(1): 62.
[http://dx.doi.org/10.1186/s13756-019-0504-8] [PMID: 30988946]
[27]
Pires VC, Magalhães CP, Ferrante M, et al. Solid lipid nanoparticles as a novel formulation approach for tanespimycin (17-AAG) against leishmania infections: Preparation, characterization and macrophage uptake. Acta Trop 2020; 211 ,105595
[http://dx.doi.org/10.1016/j.actatropica.2020.105595] [PMID: 32585150]
[28]
Chae J, Choi Y, Tanaka M, Choi J. Inhalable nanoparticles delivery targeting alveolar macrophages for the treatment of pulmonary tuberculosis. J Biosci Bioeng 2021; 132(6): 543-51.
[http://dx.doi.org/10.1016/j.jbiosc.2021.08.009] [PMID: 34538591]
[29]
Ma C, Wu M, Ye W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res 2021; 11(3): 1218-35.
[http://dx.doi.org/10.1007/s13346-020-00849-7] [PMID: 32946043]
[30]
Smith T, Affram K, Nottingham EL, et al. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci Rep 2020; 10(1): 16989.
[http://dx.doi.org/10.1038/s41598-020-73218-6] [PMID: 33046724]
[31]
Gastaldi L, Battaglia L, Peira E, et al. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur J Pharm Biopharm 2014; 87(3): 433-44.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.004] [PMID: 24833004]
[32]
Zhang XG, Miao J, Li MW, Jiang SP, Hu FQ, Du YZ. Solid lipid nanoparticles loading adefovir dipivoxil for antiviral therapy. J Zhejiang Univ Sci B 2008; 9(6): 506-10.
[http://dx.doi.org/10.1631/jzus.B0820047] [PMID: 18543406]
[33]
Gupta Y, Jain A, Jain SK. Transferrin-conjugated solid lipid nanoparticles for enhanced delivery of quinine dihydrochloride to the brain. J Pharm Pharmacol 2007; 59(7): 935-40.
[http://dx.doi.org/10.1211/jpp.59.7.0004] [PMID: 17637187]
[34]
Esposito E, Fantin M, Marti M, et al. Solid lipid nanoparticles as delivery systems for bromocriptine. Pharm Res 2008; 25(7): 1521-30.
[http://dx.doi.org/10.1007/s11095-007-9514-y] [PMID: 18172580]
[35]
Date AA, Joshi MD, Patravale VB. Parasitic diseases: Liposomes and polymeric nanoparticles versus lipid nanoparticles. Adv Drug Deliv Rev 2007; 59(6): 505-21.
[http://dx.doi.org/10.1016/j.addr.2007.04.009] [PMID: 17574295]
[36]
Jain K, Sood S, Gowthamarajan K. Modulation of cerebral malaria by curcumin as an adjunctive therapy. Braz J Infect Dis 2013; 17(5): 579-91.
[http://dx.doi.org/10.1016/j.bjid.2013.03.004] [PMID: 23906771]
[37]
Ramteke S, Ubnare R, Dubey N, Singh A. Intranasal delivery of artemether for the treatment of cerebral malaria. Int J Pharm Pharm Sci 2018; 10(9): 9.
[http://dx.doi.org/10.22159/ijpps.2018v10i9.25408]
[38]
Carpio A, Romo ML, Parkhouse RME, Short B, Dua T. Parasitic diseases of the central nervous system: Lessons for clinicians and policy makers. Expert Rev Neurother 2016; 16(4): 401-14.
[http://dx.doi.org/10.1586/14737175.2016.1155454] [PMID: 26894629]
[39]
Teskač K, Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm 2010; 390(1): 61-9.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.011] [PMID: 19833178]
[40]
Goutayer M, Dufort S, Josserand V, et al. Tumor targeting of functionalized lipid nanoparticles: Assessment by in vivo fluorescence imaging. Eur J Pharm Biopharm 2010; 75(2): 137-47.
[http://dx.doi.org/10.1016/j.ejpb.2010.02.007] [PMID: 20149869]
[41]
Amerigos Daddy J C K, Chen M, Raza F, Xiao Y, Su Z, Ping Q. Co-encapsulation of mitoxantrone and β-elemene in solid lipid nanoparticles to overcome multidrug resistance in leukemia. Pharmaceutics 2020; 12(2): 1-19.
[http://dx.doi.org/10.3390/pharmaceutics12020191] [PMID: 32102214]
[42]
Lu B, Xiong S-B, Yang H, Yin X-D, Chao R-B. Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases. Eur J Pharm Sci 2006; 28(1-2): 86-95.
[http://dx.doi.org/10.1016/j.ejps.2006.01.001] [PMID: 16472996]
[43]
Scioli Montoto S, Muraca G, Ruiz ME. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020; 7 ,587997
[http://dx.doi.org/10.3389/fmolb.2020.587997] [PMID: 33195435]
[44]
Tekade RK, Maheshwari R, Tekade M, Chougule MB. Solid lipid nanoparticles for targeting and delivery of drugs and genes.In: Nanotechnology-based approaches for targeting and delivery of drugs and genes. Elsevier Inc. 2017; pp. 515-29.
[http://dx.doi.org/10.1016/B978-0-12-809717-5.00010-5]
[45]
Amasya G, Ergin AD, Erkan Cakirci O, Ozçelikay AT, Sezgin Bayindir Z, Yuksel N. A study to enhance the oral bioavailability of s-adenosyl-l-methionine (SAMe): SLN and SLN nanocomposite particles. Chem Phys Lipids 2021; 237 ,105086
[http://dx.doi.org/10.1016/j.chemphyslip.2021.105086] [PMID: 33930379]
[46]
da Rocha MCO, da Silva PB, Radicchi MA, et al. Docetaxel-loaded solid lipid nanoparticles prevent tumor growth and lung metastasis of 4T1 murine mammary carcinoma cells. J Nanobiotechnol 2020; 18(1): 43.
[http://dx.doi.org/10.1186/s12951-020-00604-7] [PMID: 32164731]
[47]
Clemente N, Ferrara B, Gigliotti CL, et al. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies. Int J Mol Sci 2018; 19(2): 255.
[http://dx.doi.org/10.3390/ijms19020255] [PMID: 29364157]
[48]
Bhagwat GS, Athawale RB, Gude RP, et al. Formulation and development of transferrin targeted solid lipid nanoparticles for breast cancer therapy. Front Pharmacol 2020; 11(November) ,614290
[http://dx.doi.org/10.3389/fphar.2020.614290] [PMID: 33329007]
[49]
Arduino I, Liu Z, Iacobazzi RM, et al. Microfluidic preparation and in vitro evaluation of iRGD-functionalized solid lipid nanoparticles for targeted delivery of paclitaxel to tumor cells. Int J Pharm 2021; 610 ,121246
[http://dx.doi.org/10.1016/j.ijpharm.2021.121246] [PMID: 34737115]
[50]
Saini S, Sharma T, Jain A, Kaur H, Katare OP, Singh B. Systematically designed chitosan-coated solid lipid nanoparticles of ferulic acid for effective management of Alzheimer’s disease: A preclinical evidence. Colloids Surf B Biointerfaces 2021; 205(April) ,111838
[http://dx.doi.org/10.1016/j.colsurfb.2021.111838] [PMID: 34022704]
[51]
Ak G, Ünal A, Karakayalı T, Özel B, Selvi GN, Hamarat ŞŞ. Brain-targeted, drug-loaded solid lipid nanoparticles against glioblastoma cells in culture. Colloids Surf B Biointerfaces 2021; 206(June) ,111946
[http://dx.doi.org/10.1016/j.colsurfb.2021.111946] [PMID: 34216850]
[52]
Wang L, Wang X, Shen L, et al. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed Pharmacother 2021; 138 ,111461
[http://dx.doi.org/10.1016/j.biopha.2021.111461] [PMID: 33706131]
[53]
Pandian SRK, Pavadai P, Vellaisamy S, et al. Formulation and evaluation of rutin-loaded solid lipid nanoparticles for the treatment of brain tumor. Naunyn Schmiedebergs Arch Pharmacol 2021; 394(4): 735-49.
[http://dx.doi.org/10.1007/s00210-020-02015-9] [PMID: 33156389]
[54]
Yasir M, Chauhan I, Zafar A, et al. Buspirone loaded solid lipid nanoparticles for amplification of nose to brain efficacy: Formulation development, optimization by box-behnken design, in-vitro characterization and in-vivo biological evaluation. J Drug Deliv Sci Technol 2021; 61 ,102164
[http://dx.doi.org/10.1016/j.jddst.2020.102164]
[55]
Akel H, Ambrus R, Bocsik A, et al. In vitro comparative study of solid lipid and plga nanoparticles designed to facilitate nose-to-brain delivery of insulin. Int J Mol Sci 2021; 22(24): 13258.
[56]
Akel H, Ismail R, Katona G, Sabir F, Ambrus R, Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int J Pharm 2021; 604 ,120724
[http://dx.doi.org/10.1016/j.ijpharm.2021.120724] [PMID: 34023443]
[57]
Uppuluri CT, Ravi PR, Dalvi AV. Design, optimization and pharmacokinetic evaluation of Piribedil loaded solid lipid nanoparticles dispersed in nasal in situ gelling system for effective management of Parkinson’s disease. Int J Pharm 2021; 606 ,120881
[http://dx.doi.org/10.1016/j.ijpharm.2021.120881] [PMID: 34273426]
[58]
Mohammadi R, Ebrahimi-Hosseinzadeh B, Khodagholi F, Hatamian-Zarmi A, Malekpour-Galogahi F. Preparation, characterization, and in vivo evaluation of Rose damascene extract loaded solid lipid nanoparticles for targeted brain delivery. J Environ Health Sci Eng 2021; 19(2): 1373-82.
[http://dx.doi.org/10.1007/s40201-021-00693-y] [PMID: 34900273]
[59]
Madan JR, Khude PA, Dua K. Development and evaluation of solid lipid nanoparticles of mometasone furoate for topical delivery. Int J Pharm Investig 2014; 4(2): 60-4.
[http://dx.doi.org/10.4103/2230-973X.133047] [PMID: 25006550]
[60]
El-Housiny S, Shams Eldeen MA, El-Attar YA, et al. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: Formulation and clinical study. Drug Deliv 2018; 25(1): 78-90.
[http://dx.doi.org/10.1080/10717544.2017.1413444] [PMID: 29239242]
[61]
El-Telbany DFA, El-Telbany RFA, Zakaria S, Ahmed KA, El-Feky YA. Formulation and assessment of hydroxyzine HCL solid lipid nanoparticles by dual emulsification technique for transdermal delivery. Biomed Pharmacother 2021; 143 ,112130
[http://dx.doi.org/10.1016/j.biopha.2021.112130] [PMID: 34560549]
[62]
Rapalli VK, Sharma S, Roy A, Alexander A, Singhvi G. Solid lipid nanocarriers embedded hydrogel for topical delivery of apremilast: in-vitro, ex-vivo, dermatopharmacokinetic and anti-psoriatic evaluation. J Drug Deliv Sci Technol 2021; 63 ,102442
[http://dx.doi.org/10.1016/j.jddst.2021.102442]
[63]
Boskabadi M, Saeedi M, Akbari J, Morteza-Semnani K, Hashemi SMH, Babaei A. Topical gel of vitamin A solid lipid nanoparticles: A hopeful promise as a dermal delivery system. Adv Pharm Bull 2021; 11(4): 663-74.
[http://dx.doi.org/10.34172/apb.2021.075] [PMID: 34888213]
[64]
Wang JL, Hanafy MS, Xu H, et al. Aerosolizable siRNA-encapsulated solid lipid nanoparticles prepared by thin-film freeze-drying for potential pulmonary delivery. Int J Pharm 2021; 596(596) ,120215
[http://dx.doi.org/10.1016/j.ijpharm.2021.120215] [PMID: 33486021]
[65]
Chokshi NV, Rawal S, Solanki D, et al. Fabrication and characterization of surface engineered rifampicin loaded lipid nanoparticulate systems for the potential treatment of tuberculosis: An in vitro and in vivo evaluation. J Pharm Sci 2021; 110(5): 2221-32.
[http://dx.doi.org/10.1016/j.xphs.2021.02.018] [PMID: 33610570]
[66]
Le-Vinh B, Steinbring C, Wibel R, Friedl JD, Bernkop-Schnürch A. Size shifting of solid lipid nanoparticle system triggered by alkaline phosphatase for site specific mucosal drug delivery. Eur J Pharm Biopharm 2021; 163(163): 109-19.
[http://dx.doi.org/10.1016/j.ejpb.2021.03.012] [PMID: 33775852]
[67]
Zhou K, Yan Y, Chen D, et al. Solid lipid nanoparticles for duodenum targeted oral delivery of tilmicosin. Pharmaceutics 2020; 12(8): 1-19.
[http://dx.doi.org/10.3390/pharmaceutics12080731] [PMID: 32759764]
[68]
Obinu A, Burrai GP, Cavalli R, et al. Transmucosal solid lipid nanoparticles to improve genistein absorption via intestinal lymphatic transport. Pharmaceutics 2021; 13(2): 1-17.
[http://dx.doi.org/10.3390/pharmaceutics13020267] [PMID: 33669306]
[69]
Rahat I, Rizwanullah M, Gilani SJ, et al. Thymoquinone loaded chitosan - solid lipid nanoparticles: Formulation optimization to oral bioavailability study. J Drug Deliv Sci Technol 2021; 64(April) ,102565
[http://dx.doi.org/10.1016/j.jddst.2021.102565]
[70]
Owuor JJ. Optimization and characterization of primaquine-loaded Solid Lipid Nanoparticles (SLN) for liver schinonticide targeting by freeze drying. MOJ Drug Des Dev Ther 2017; 1(3): 104-12.
[http://dx.doi.org/10.15406/mojddt.2017.01.00021]
[71]
Wang H, Wang H, Yang W, Yu M, Sun S, Xie B. Improved oral bioavailability and liver targeting of sorafenib solid lipid nanoparticles in rats. AAPS PharmSciTech 2018; 19(2): 761-8.
[http://dx.doi.org/10.1208/s12249-017-0901-3] [PMID: 28983849]
[72]
Yang B, Jiang J, Jiang L, et al. Chitosan mediated solid lipid nanoparticles for enhanced liver delivery of zedoary turmeric oil in vivo. Int J Biol Macromol 2020; 149: 108-15.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.222] [PMID: 31987952]
[73]
Iacobazzi RM, Vischio F, Arduino I, et al. Magnetic implants in vivo guiding sorafenib liver delivery by superparamagnetic solid lipid nanoparticles. J Colloid Interface Sci 2022; 608(Pt 1): 239-54.
[http://dx.doi.org/10.1016/j.jcis.2021.09.174] [PMID: 34626971]
[74]
Abdallah M, Müllertz OO, Styles IK, et al. Lymphatic targeting by albumin-hitchhiking: Applications and optimisation. J Control Release 2020; 327: 117-28.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.046] [PMID: 32771478]
[75]
Torchilin VP. Immunoliposomes and PEGylated immunoliposomes: Possible use for targeted delivery of imaging agents. Immunomethods 1994; 4(3): 244-58.
[http://dx.doi.org/10.1006/immu.1994.1027] [PMID: 7820455]
[76]
Kim C-K, Jeong EJ. Enhanced lymph node delivery and immunogenicity of hepatitis b surface antigen entrapped in galactosylated liposomes. Int J Pharm 1997; 147(2): 143-51.
[http://dx.doi.org/10.1016/S0378-5173(96)04798-9]
[77]
Hashida M, Egawa M, Muranishi S, Sezaki H. Role of intramuscular administration of water-in-oil emulsions as a method for increasing the delivery of anticancer agents to regional lymphatics. J Pharmacokinet Biopharm 1977; 5(3): 225-39.
[http://dx.doi.org/10.1007/BF01065397] [PMID: 881643]
[78]
Akamo Y, Mizuno I, Yotsuyanagi T, et al. Chemotherapy targeting regional lymph nodes by gastric submucosal injection of liposomal adriamycin in patients with gastric carcinoma. Jpn J Cancer Res 1994; 85(6): 652-8.
[http://dx.doi.org/10.1111/j.1349-7006.1994.tb02409.x] [PMID: 8063620]
[79]
Hawley AE, Illum L, Davis SS. Lymph node localisation of biodegradable nanospheres surface modified with poloxamer and poloxamine block co-polymers. FEBS Lett 1997; 400(3): 319-23.
[http://dx.doi.org/10.1016/S0014-5793(96)01408-1] [PMID: 9009222]
[80]
Pandey R, Khuller GK. Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb) 2005; 85(4): 227-34.
[http://dx.doi.org/10.1016/j.tube.2004.11.003] [PMID: 15922668]
[81]
Hassan H, Adam SK, Alias E, Meor MAMMR, Shamsuddin AF, Basir R. Central composite design for formulation and optimization of solid lipid nanoparticles to enhance oral bioavailability of acyclovir. molecules 2021; 26(18): 5432.
[http://dx.doi.org/10.3390/molecules26185432] [PMID: 34576904]
[82]
Kondel R, Shafiq N, Kaur IP, et al. Effect of acyclovir solid lipid nanoparticles for the treatment of Herpes Simplex Virus (HSV) infection in an animal model of HSV-1 infection. Pharm Nanotechnol 2019; 7(5): 389-403.
[http://dx.doi.org/10.2174/2211738507666190829161737] [PMID: 31465287]
[83]
Lai F, Sinico C, De Logu A, Zaru M, Müller RH, Fadda AM. SLN as a topical delivery system for Artemisia arborescens essential oil: in vitro antiviral activity and skin permeation study. Int J Nanomedicine 2007; 2(3): 419-25.
[PMID: 18019840]
[84]
Price LA. Book review: Rational basis for chemotherapy. J R Soc Med 1983; 76(11): 988-8.
[http://dx.doi.org/10.1177/014107688307601131]
[85]
Nemati E, Mokhtarzadeh A, Panahi-Azar V, et al. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech 2019; 20(3): 120.
[http://dx.doi.org/10.1208/s12249-019-1334-y] [PMID: 30796625]
[86]
Guorgui J, Wang R, Mattheolabakis G, Mackenzie GG. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice. Arch Biochem Biophys 2018; 648: 12-9.
[http://dx.doi.org/10.1016/j.abb.2018.04.012] [PMID: 29679536]
[87]
Kuo YC, Chung JF. Physicochemical properties of nevirapine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Colloids Surf B Biointerfaces 2011; 83(2): 299-306.
[http://dx.doi.org/10.1016/j.colsurfb.2010.11.037] [PMID: 21194902]
[88]
Phillips WT, Klipper R, Goins B. Novel method of greatly enhanced delivery of liposomes to lymph nodes. J Pharmacol Exp Ther 2000; 295(1): 309-13.
[PMID: 10991995]
[89]
Ji RC. Lymph nodes and cancermetastasis: New perspectives on the role of intranodal lymphatic sinuses. Int J Mol Sci 2017; 18(1): 51.
[http://dx.doi.org/10.3390/ijms18010051] [PMID: 28054974]
[90]
Nouh MA, Ismail H, El-Din NHA, El-Bolkainy MN. Lymph node metastasis in breast carcinoma: Clinicopathological correlations in 3747 patients. J Egypt Natl Canc Inst 2004; 16(1): 50-6.
[PMID: 15716998]
[91]
Nathanson SD, Krag D, Kuerer HM, et al. Breast cancer metastasis through the lympho-vascular system. Clin Exp Metastasis 2018; 35(5-6): 443-54.
[http://dx.doi.org/10.1007/s10585-018-9902-1] [PMID: 29796854]
[92]
Granja A, Lima-Sousa R, Alves CG, et al. Mitoxantrone-loaded lipid nanoparticles for breast cancer therapy - Quality-by-design approach and efficacy assessment in 2D and 3D in vitro cancer models. Int J Pharm 2021; 607 ,121044
[http://dx.doi.org/10.1016/j.ijpharm.2021.121044] [PMID: 34450227]
[93]
Huang G, Zhang N, Bi X, Dou M. Solid lipid nanoparticles of temozolomide: Potential reduction of cardial and nephric toxicity. Int J Pharm 2008; 355(1-2): 314-20.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.013] [PMID: 18255242]
[94]
Pakos EE, Ioannidis JPA. The association of P-glycoprotein with response to chemotherapy and clinical outcome in patients with osteosarcoma. A meta-analysis. Cancer 2003; 98(3): 581-9.
[http://dx.doi.org/10.1002/cncr.11546] [PMID: 12879476]
[95]
Alfarouk KO, Stock C-M, Taylor S, et al. Resistance to cancer chemotherapy: Failure in drug response from ADME to P-gp. Cancer Cell Int 2015; 15(1): 71.
[http://dx.doi.org/10.1186/s12935-015-0221-1] [PMID: 26180516]
[96]
Newton HB. Advances in strategies to improve drug delivery to brain tumors. Expert Rev Neurother 2006; 6(10): 1495-509.
[http://dx.doi.org/10.1586/14737175.6.10.1495] [PMID: 17078789]
[97]
Béduneau A, Saulnier P, Benoit J-P. Active targeting of brain tumors using nanocarriers. Biomaterials 2007; 28(33): 4947-67.
[http://dx.doi.org/10.1016/j.biomaterials.2007.06.011] [PMID: 17716726]
[98]
Satapathy MK, Yen TL, Jan JS, et al. Solid Lipid Nanoparticles (SLNs): An advanced drug delivery system targeting brain through BBB. Pharmaceutics 2021; 13(8): 1-36.
[http://dx.doi.org/10.3390/pharmaceutics13081183] [PMID: 34452143]
[99]
Battaglia L, Gallarate M, Peira E, et al. Solid lipid nanoparticles for potential doxorubicin delivery in glioblastoma treatment: Preliminary in vitro studies. J Pharm Sci 2014; 103(7): 2157-65.
[http://dx.doi.org/10.1002/jps.24002] [PMID: 24824141]
[100]
Bondì ML, Di Gesù R, Craparo EF. Lipid nanoparticles for drug targeting to the brain.In: Methods in Enzymology. London: Elsevier Inc. 2012; pp. 229-51.
[http://dx.doi.org/10.1016/B978-0-12-391860-4.00012-4]
[101]
Müller RH, Keck CM. Drug delivery to the brain-realization by novel drug carriers. J Nanosci Nanotechnol 2004; 4(5): 471-83.
[http://dx.doi.org/10.1166/jnn.2004.078] [PMID: 15503432]
[102]
Joseph E, Reddi S, Rinwa V, Balwani G, Saha R. Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects. Eur J Pharm Sci 2017; 104: 315-25.
[http://dx.doi.org/10.1016/j.ejps.2017.03.050] [PMID: 28408348]
[103]
Dwivedi P, Khatik R, Khandelwal K, et al. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: An improved oral bioavailability in rats. Int J Pharm 2014; 466(1-2): 321-7.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.036] [PMID: 24657144]
[104]
Khatri H, Chokshi N, Rawal S, Patel MM. Fabrication, characterization and optimization of artemether loaded PEGylated solid lipid nanoparticles for the treatment of lung cancer. Mater Res Express 2019; 6(4) ,045014
[http://dx.doi.org/10.1088/2053-1591/aaf8a3]
[105]
Schöler N, Krause K, Kayser O, et al. Atovaquone nanosuspensions show excellent therapeutic effect in a new murine model of reactivated toxoplasmosis. Antimicrob Agents Chemother 2001; 45(6): 1771-9.
[http://dx.doi.org/10.1128/AAC.45.6.1771-1779.2001] [PMID: 11353624]
[106]
Senthil Kumar C, Thangam R, Mary SA, Kannan PR, Arun G, Madhan B. Targeted delivery and apoptosis induction of trans-resveratrol-ferulic acid loaded chitosan coated folic acid conjugate solid lipid nanoparticles in colon cancer cells. Carbohydr Polym 2020; 231 ,115682
[http://dx.doi.org/10.1016/j.carbpol.2019.115682] [PMID: 31888816]
[107]
Lockman PR, Oyewumi MO, Koziara JM, Roder KE, Mumper RJ, Allen DD. Brain uptake of thiamine-coated nanoparticles. J Control Release 2003; 93(3): 271-82.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.006] [PMID: 14644577]
[108]
Olbrich C, Gessner A, Schröder W, Kayser O, Müller RH. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release 2004; 96(3): 425-35.
[http://dx.doi.org/10.1016/j.jconrel.2004.02.024] [PMID: 15120899]
[109]
De Gaetano F, Cristiano MC, Venuti V, et al. Rutin-loaded solid lipid nanoparticles: Characterization and in vitro evaluation. Molecules 2021; 26(4): 1-16.
[http://dx.doi.org/10.3390/molecules26041039] [PMID: 33669321]
[110]
Singh AV, Chandrasekar V, Janapareddy P, et al. Emerging application of nanorobotics and artificial intelligence to cross the BBB: Advances in design, controlled maneuvering, and targeting of the barriers. ACS Chem Neurosci 2021; 12(11): 1835-53.
[http://dx.doi.org/10.1021/acschemneuro.1c00087] [PMID: 34008957]
[111]
Schäfer-Korting M, Mehnert W, Korting HC. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007; 59(6): 427-43.
[http://dx.doi.org/10.1016/j.addr.2007.04.006] [PMID: 17544165]
[112]
Kumar N, Goindi S. Development and optimization of itraconazole-loaded solid lipid nanoparticles for topical administration using high shear homogenization process by design of experiments: In vitro, ex vivo and in vivo evaluation. AAPS PharmSciTech 2021; 22(7): 248.
[http://dx.doi.org/10.1208/s12249-021-02118-3] [PMID: 34647162]
[113]
Wissing S, Müller R. The influence of the crystallinity of lipid nanoparticles on their occlusive properties. Int J Pharm 2002; 242(1-2): 377-9.
[http://dx.doi.org/10.1016/S0378-5173(02)00220-X] [PMID: 12176283]
[114]
Khater D, Nsairat H, Odeh F, et al. Design, preparation, and characterization of effective dermal and transdermal lipid nanoparticles: A review. Cosmetics 2021; 8(2): 1-43.
[http://dx.doi.org/10.3390/cosmetics8020039]
[115]
Bhatia E, Kumari D, Sharma S, Ahamad N, Banerjee R. Nanoparticle platforms for dermal antiaging technologies: Insights in cellular and molecular mechanisms. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021. ,e1746
[http://dx.doi.org/10.1002/wnan.1746]
[116]
de Carvalho SM, Noronha CM, Floriani CL, et al. Optimization of α-tocopherol loaded solid lipid nanoparticles by central composite design. Ind Crops Prod 2013; 49: 278-85.
[http://dx.doi.org/10.1016/j.indcrop.2013.04.054]
[117]
Wissing SA, Müller RH. Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release 2002; 81(3): 225-33.
[http://dx.doi.org/10.1016/S0168-3659(02)00056-1] [PMID: 12044563]
[118]
Wissing SA, Müller RH. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int J Cosmet Sci 2001; 23(4): 233-43.
[http://dx.doi.org/10.1046/j.1467-2494.2001.00087.x] [PMID: 18498463]
[119]
Ricci M, Puglia C, Bonina F, Di Giovanni C, Giovagnoli S, Rossi C. Evaluation of indomethacin percutaneous absorption from nanostructured lipid carriers (NLC): in vitro and in vivo studies. J Pharm Sci 2005; 94(5): 1149-59.
[http://dx.doi.org/10.1002/jps.20335] [PMID: 15793804]
[120]
Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery. Int J Pharm 2007; 345(1-2): 163-71.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.061] [PMID: 17644288]
[121]
Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm 2007; 328(2): 191-5.
[http://dx.doi.org/10.1016/j.ijpharm.2006.08.007] [PMID: 16978810]
[122]
Ridolfi DM, Marcato PD, Justo GZ, Cordi L, Machado D, Durán N. Chitosan-solid lipid nanoparticles as carriers for topical delivery of tretinoin. Colloids Surf B Biointerfaces 2012; 93: 36-40.
[http://dx.doi.org/10.1016/j.colsurfb.2011.11.051] [PMID: 22244299]
[123]
Jenning V, Gysler A, Schäfer-Korting M, Gohla SH. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm 2000; 49(3): 211-8.
[http://dx.doi.org/10.1016/S0939-6411(99)00075-2] [PMID: 10799811]
[124]
Bhalekar M, Upadhaya P, Madgulkar A. Formulation and evaluation of Adapalene-loaded nanoparticulates for epidermal localization. Drug Deliv Transl Res 2015; 5(6): 585-95.
[http://dx.doi.org/10.1007/s13346-015-0261-z] [PMID: 26483036]
[125]
Bhalekar MR, Pokharkar V, Madgulkar A, Patil N, Patil N. Preparation and evaluation of miconazole nitrate-loaded solid lipid nanoparticles for topical delivery. AAPS PharmSciTech 2009; 10(1): 289-96.
[http://dx.doi.org/10.1208/s12249-009-9199-0] [PMID: 19294517]
[126]
Puglia C, Blasi P, Rizza L, et al. Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation. Int J Pharm 2008; 357(1-2): 295-304.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.045] [PMID: 18343059]
[127]
Anderson CF, Grimmett ME, Domalewski CJ, Cui H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2020; 12(1) ,e1586
[http://dx.doi.org/10.1002/wnan.1586] [PMID: 31602823]
[128]
Singh AV, Romeo A, Scott K, et al. Emerging technologies for in vitro inhalation toxicology. Adv Healthc Mater 2021; 10(18) ,e2100633
[http://dx.doi.org/10.1002/adhm.202100633] [PMID: 34292676]
[129]
Singh AV, Maharjan RS, Kromer C, et al. Advances in smoking related in vitro inhalation toxicology: A perspective case of challenges and opportunities from progresses in lung-on-chip technologies. Chem Res Toxicol 2021; 34(9): 1984-2002.
[http://dx.doi.org/10.1021/acs.chemrestox.1c00219] [PMID: 34397218]
[130]
Saralidze K, van Hooy-Corstjens CS, Koole LH, Knetsch ML. New acrylic microspheres for arterial embolization: combining radiopacity for precise localization with immobilized thrombin to trigger local blood coagulation. Biomaterials 2007; 28(15): 2457-64.
[http://dx.doi.org/10.1016/j.biomaterials.2006.12.031] [PMID: 17257667]
[131]
Hu J, Albadawi H, Chong BW, et al. Advances in biomaterials and technologies for vascular embolization. Adv Mater 2019; 31(33) ,e1901071
[http://dx.doi.org/10.1002/adma.201901071] [PMID: 31168915]
[132]
Duan Y, Dhar A, Patel C, et al. A brief review on solid lipid nanoparticles: Part and parcel of contemporary drug delivery systems. RSC Adv 2020; 10(45): 26777-91.
[http://dx.doi.org/10.1039/D0RA03491F]
[133]
Serpe L, Catalano MG, Cavalli R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm 2004; 58(3): 673-80.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.026] [PMID: 15451544]
[134]
Müller RH, Rühl D, Runge S, Schulze-Forster K, Mehnert W. Cytotoxicity of solid lipid nanoparticles as a function of the lipid matrix and the surfactant. Pharm Res 1997; 14(4): 458-62.
[http://dx.doi.org/10.1023/A:1012043315093] [PMID: 9144731]
[135]
Drobniewski F, Nikolayevsky V, Asmolov A, Bazhora Y, Servetsky S. Increasing trends in HIV and TB rates in Odessa and the Ukraine. Int J STD AIDS 2005; 16(5): 374-8.
[http://dx.doi.org/10.1258/0956462053888790] [PMID: 15949069]
[136]
Kristl J, Teskac K, Milek M, Mlinaric-Rascan I. Surface active stabilizer tyloxapol in colloidal dispersions exerts cytostatic effects and apoptotic dismissal of cells. Toxicol Appl Pharmacol 2008; 232(2): 218-25.
[http://dx.doi.org/10.1016/j.taap.2008.06.019] [PMID: 18657561]
[137]
Videira MA, Botelho MF, Santos AC, Gouveia LF, de Lima JJ, Almeida AJ. Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. J Drug Target 2002; 10(8): 607-13.
[http://dx.doi.org/10.1080/1061186021000054933] [PMID: 12683665]
[138]
Videira MA, Gano L, Santos C, Neves M, Almeida AJ. Lymphatic uptake of lipid nanoparticles following endotracheal administration. J Microencapsul 2006; 23(8): 855-62.
[http://dx.doi.org/10.1080/02652040600788221] [PMID: 17390627]
[139]
Reichmuth AM, Oberli MA, Ana J, Robert L, Daniel B. mRNA vaccine delivery using lipid nanoparticles. Ther Deliv 2016; 7: 319-34.
[http://dx.doi.org/10.4155/tde-2016-0006] [PMID: 27075952]
[140]
Al-Mutairi AA, Alkhatib MH, Gashlan HM. Antitumor activities of co-loading gemcitabine and oxaliplatin into oleic acid-based solid lipid nanoparticle against non-small cell lung cancer cells. Biointerface Res Appl Chem 2022; 12(1): 49-60.
[http://dx.doi.org/10.33263/BRIAC121.049060]
[141]
Bhati R, Nagrajan RK. A detailed review on oral mucosal drug delivery system. Int J Pharm Sci Res 2012; 3(03): 659-81.
[142]
Tangri P, Madhav NVS, Mucoadhesion B. Ijb oral mucoadhesive drug delivery systems : A review. Int J 2011; 2(1): 36-46.
[143]
Holpuch AS, Hummel GJ, Tong M, et al. Nanoparticles for local drug delivery to the oral mucosa: Proof of principle studies. Pharm Res 2010; 27(7): 1224-36.
[http://dx.doi.org/10.1007/s11095-010-0121-y] [PMID: 20354767]
[144]
Guilherme VA, Ribeiro LNM, Tofoli GR, Franz-Montan M, de Paula E, de Jesus MB. Current challenges and future of lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye. Curr Pharm Des 2017; 23(43): 6659-75.
[http://dx.doi.org/10.2174/1381612823666171122103849] [PMID: 29173149]
[145]
Bardelmeijer HA, Ouwehand M, Beijnen JH, Schellens JHM, van Tellingen O. Efficacy of novel P-glycoprotein inhibitors to increase the oral uptake of paclitaxel in mice. Invest New Drugs 2004; 22(3): 219-29.
[http://dx.doi.org/10.1023/B:DRUG.0000026248.45084.21] [PMID: 15122069]
[146]
Poovi G, Damodharan N. Lipid nanoparticles: A challenging approach for oral delivery of BCS class-II drugs. Futur J Pharm Sci 2018; 4(2): 191-205.
[http://dx.doi.org/10.1016/j.fjps.2018.04.001]
[147]
Purohit DK, Nandgude TD, Poddar SS. Nano-Lipid carriers for topical application: Current scenario. Asian J Pharm 2016; 10(1): S1-9.
[148]
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[149]
Üner M, Yener G. Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives. Int J Nanomedicine 2007; 2(3): 289-300.
[PMID: 18019829]
[150]
Andreani T, Macedo AS, Fangueiro JF, Santana MHA, Silva M, Souto EB. Current state-of-art and new trends on lipid nanoparticles ( SLN and NLC ) for oral drug delivery. 20122012;
[http://dx.doi.org/ 10.1155/2012/750891]
[151]
Anjwade BKN, Atel DJP. Sci pharm functions of lipids for enhancement of oral bioavailability of poorly water-soluble drugs. Sci Pharm 2011; 79(4): 705-28.
[http://dx.doi.org/10.3797/scipharm.1105-09]
[152]
Kalepu S, Manthina M, Padavala V. Oral lipid-based drug delivery systems – an overview. Acta Pharm Sin B 2013; 3(6): 361-72.
[http://dx.doi.org/10.1016/j.apsb.2013.10.001]
[153]
Böttger R, Pauli G, Chao PH, Al Fayez N, Hohenwarter L, Li SD. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev 2020; 154-155: 79-101.
[http://dx.doi.org/10.1016/j.addr.2020.06.017] [PMID: 32574575]
[154]
Moosavian SA, Sathyapalan T, Jamialahmadi T, Sahebkar A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorg Chem Appl 2021; 2021 ,4041415
[http://dx.doi.org/10.1155/2021/4041415] [PMID: 34659388]
[155]
Singh AV, Ansari MHD, Rosenkranz D, et al. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv Healthc Mater 2020; 9(17) ,e1901862
[http://dx.doi.org/10.1002/adhm.201901862] [PMID: 32627972]
[156]
Singh AV, Maharjan RS, Kanase A, et al. Machine-learning-based approach to decode the influence of nanomaterial properties on their interaction with cells. ACS Appl Mater Interfaces 2021; 13(1): 1943-55.
[http://dx.doi.org/10.1021/acsami.0c18470] [PMID: 33373205]
[157]
Singh AV, Maharjan RS, Jungnickel H, et al. Evaluating particle emissions and toxicity of 3d pen printed filaments with metal nanoparticles as additives: In vitro and in silico discriminant function analysis. ACS Sustain Chem& Eng 2021; 9(35): 11724-37.
[http://dx.doi.org/10.1021/acssuschemeng.1c02589]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy