Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Novel PARP Inhibitor DDPF-20 Induces DNA Damage and Inhibits Angiogenesis through the PI3K/Akt/VEGF Pathway

Author(s): Tian Wang, Dong Zhang, Chuanlong Guo and Wenyong Zhu*

Volume 22, Issue 13, 2022

Published on: 14 April, 2022

Page: [2468 - 2476] Pages: 9

DOI: 10.2174/1871520622666220221115007

Price: $65

Abstract

Background: Poly (ADP-ribose) polymerase (PARP) plays a key role in DNA damage repair. A novel compound (E)-N'-(2,3-dibromo-4,5-dihydroxyphenyl)-N-(phenylcarbamothioyl)formimidamide (DDPF-20) with excellent PARP inhibitory activity was synthesized.

Objective: In this study, we aimed to clarify the mechanism of the novel PARP inhibitor DDPF-20 against lung cancer by inducing DNA damage and inhibiting angiogenesis.

Methods: The cytotoxic effect of DDPF-20 on the A549 cell line was determined with an MTT assay. Cell cycle and apoptosis were determined by a flow cytometer. Moreover, the γH2AX foci were detected by immunofluorescence. Capillary-like tube formation assay and chick chorioallantoic membrane (CAM) assay were used to detect the angiogenesis inhibitory effect of DDPF-20. The expressions of related proteins were detected by western blot. The anticancer activity of DDPF-20 in vivo was also detected.

Results: With an IC50 value of 52.42 ± 15.13 nM, DDPF-20 inhibited the proliferation, induced G2/M cycle arrest, and induced apoptosis of human lung cancer A549 cells. Further research showed that DDPF-20 induced DNA doublestrand breaks (DSBs). Interestingly, DDPF-20 inhibited the tube formation of HUVEC cells, as well as inhibited the neovascularization of CAM, proving the angiogenesis inhibitory ability of DDPF-20. Mechanism studies proved that DDPF-20 inhibited the PI3K/Akt/VEGF signaling pathway. In an in vivo study, DDPF-20 inhibited tumor growth of an A549 xenograft. Analysis of the molecular mechanism underlying this effect revealed that the PI3K/Akt/VEGF pathway was involved in DDPF-20-induced cell death and inhibited angiogenesis in vivo.

Conclusion: This study suggested that the novel PARP inhibitor DDPF-20 may have therapeutic potential in treating lung cancer.

Keywords: PARP inhibitor, A549 cells, DNA damage, angiogenesis, PI3K/Akt/VEGF, novel compound.

Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[2]
Rami-Porta, R.; Asamura, H.; Travis, W.D.; Rusch, V.W. Lung cancer - major changes in the American joint committee on cancer eighth edition cancer staging manual. CA Cancer J. Clin., 2017, 67(2), 138-155.
[http://dx.doi.org/10.3322/caac.21390] [PMID: 28140453]
[3]
Reck, M.; Heigener, D.F.; Mok, T.; Soria, J-C.; Rabe, K.F. Management of non-small-cell lung cancer: Recent developments. Lancet, 2013, 382(9893), 709-719.
[http://dx.doi.org/10.1016/S0140-6736(13)61502-0] [PMID: 23972814]
[4]
Lord, C.J.; Ashworth, A. The DNA damage response and cancer therapy. Nature, 2012, 481(7381), 287-294.
[http://dx.doi.org/10.1038/nature10760] [PMID: 22258607]
[5]
Oza, A.M.; Cibula, D.; Benzaquen, A.O.; Poole, C.; Mathijssen, R.H.J.; Sonke, G.S.; Colombo, N. Špaček, J.; Vuylsteke, P.; Hirte, H.; Mahner, S.; Plante, M.; Schmalfeldt, B.; Mackay, H.; Rowbottom, J.; Lowe, E.S.; Dougherty, B.; Barrett, J.C.; Friedlander, M. Olaparib combined with chemotherapy for recurrent platinum-sensitive ovarian cancer: A randomised phase 2 trial. Lancet Oncol., 2015, 16(1), 87-97.
[http://dx.doi.org/10.1016/S1470-2045(14)71135-0] [PMID: 25481791]
[6]
Lok, B.H.; Gardner, E.E.; Schneeberger, V.E.; Ni, A.; Desmeules, P.; Rekhtman, N.; de Stanchina, E.; Teicher, B.A.; Riaz, N.; Powell, S.N.; Poirier, J.T.; Rudin, C.M. PARP inhibitor activity correlates with SLFN11 expression and demonstrates synergy with temozolomide in small cell lung cancer. Clin. Cancer Res., 2017, 23(2), 523-535.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1040] [PMID: 27440269]
[7]
Jiang, Y.; Dai, H.; Li, Y.; Yin, J.; Guo, S.; Lin, S.Y.; McGrail, D.J. PARP inhibitors synergize with gemcitabine by potentiating DNA damage in non-small-cell lung cancer. Int. J. Cancer, 2019, 144(5), 1092-1103.
[http://dx.doi.org/10.1002/ijc.31770] [PMID: 30152517]
[8]
Li, L.; Zhu, T.; Gao, Y.F.; Zheng, W.; Wang, C.J.; Xiao, L.; Huang, M.S.; Yin, J.Y.; Zhou, H.H.; Liu, Z.Q. Targeting DNA damage response in the radio(Chemo)therapy of non-small cell lung cancer. Int. J. Mol. Sci., 2016, 17(6), E839.
[http://dx.doi.org/10.3390/ijms17060839] [PMID: 27258253]
[9]
Cho, W.C.; Jour, G.; Aung, P.P. Role of angiogenesis in melanoma progression: Update on key angiogenic mechanisms and other associated components. Semin. Cancer Biol., 2019, 59, 175-186.
[http://dx.doi.org/10.1016/j.semcancer.2019.06.015] [PMID: 31255774]
[10]
Carmeliet, P.; Jain, R.K. Molecular mechanisms and clinical applications of angiogenesis. Nature, 2011, 473(7347), 298-307.
[http://dx.doi.org/10.1038/nature10144] [PMID: 21593862]
[11]
Tian, W.; Cao, C.; Shu, L.; Wu, F. Anti-Angiogenic Therapy in the treatment of non-small cell lung cancer. OncoTargets Ther., 2020, 13, 12113-12129.
[http://dx.doi.org/10.2147/OTT.S276150] [PMID: 33262610]
[12]
Hassan, M.; Watari, H.; AbuAlmaaty, A.; Ohba, Y.; Sakuragi, N. Apoptosis and molecular targeting therapy in cancer. BioMed Res. Int., 2014, 2014, 150845.
[http://dx.doi.org/10.1155/2014/150845] [PMID: 25013758]
[13]
Burz, C.; Berindan-Neagoe, I.; Balacescu, O.; Irimie, A. Apoptosis in cancer: Key molecular signaling pathways and therapy targets. Acta Oncol., 2009, 48(6), 811-821.
[http://dx.doi.org/10.1080/02841860902974175] [PMID: 19513886]
[14]
Anzell, A.R.; Maizy, R.; Przyklenk, K.; Sanderson, T.H. Mitochondrial quality control and disease: Insights into ischemia-reperfusion injury. Mol. Neurobiol., 2018, 55(3), 2547-2564.
[http://dx.doi.org/10.1007/s12035-017-0503-9] [PMID: 28401475]
[15]
Guo, C.; Zhang, F.; Wu, X.; Yu, X.; Wu, X.; Shi, D.; Wang, L. BTH-8, a novel poly (ADP-ribose) polymerase-1 (PARP-1) inhibitor, causes DNA double-strand breaks and exhibits anticancer activities in vitro and in vivo. Int. J. Biol. Macromol., 2020, 150, 238-245.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.069] [PMID: 32057845]
[16]
Jeyamohan, S.; Moorthy, R.K.; Kannan, M.K.; Arockiam, A.J.V. Parthenolide induces apoptosis and autophagy through the suppression of PI3K/Akt signaling pathway in cervical cancer. Biotechnol. Lett., 2016, 38(8), 1251-1260.
[http://dx.doi.org/10.1007/s10529-016-2102-7] [PMID: 27099069]
[17]
Guo, C.L.; Wang, L.J.; Zhao, Y.; Liu, H.; Li, X.Q.; Jiang, B.; Luo, J.; Guo, S.J.; Wu, N.; Shi, D.Y. A novel bromophenol derivative BOS-102 induces cell cycle arrest and apoptosis in human A549 lung cancer cells via ROS-mediated PI3K/Akt and the MAPK signaling pathway. Mar. Drugs, 2018, 16(2), E43.
[http://dx.doi.org/10.3390/md16020043] [PMID: 29370087]
[18]
Jiang, B.; Luo, J.; Guo, S.; Wang, L. Discovery of 5-(3-bromo-2-(2,3-dibromo-4,5-dimethoxybenzyl)-4,5-dimethoxybenzylidene)thiazolidine-2,4-dione as a novel potent protein tyrosine phosphatase 1B inhibitor with antidiabetic properties. Bioorg. Chem., 2021, 108, 104648.
[http://dx.doi.org/10.1016/j.bioorg.2021.104648] [PMID: 33493928]
[19]
Zhang, L.; Luo, J.; Li, X.; Guo, S.; Shi, D. 16S rRNA sequencing and metagenomics study of gut microbiota: Implications of BDB on Type 2 diabetes mellitus. Mar. Drugs, 2020, 18(9), E469.
[http://dx.doi.org/10.3390/md18090469] [PMID: 32957565]
[20]
Luo, J.; Zhang, R.; Wang, X.; Hou, Z.; Guo, S.; Jiang, B. Binding properties of marine bromophenols with human protein tyrosine phosphatase 1B: Molecular docking, surface plasmon resonance and cellular insulin resistance study. Int. J. Biol. Macromol., 2020, 163, 200-208.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.263] [PMID: 32619661]
[21]
Guo, C.; Wang, L.; Li, X.; Wang, S.; Yu, X.; Xu, K.; Zhao, Y.; Luo, J.; Li, X.; Jiang, B.; Shi, D. Discovery of novel bromophenol - thiosemicarbazone hybrids as potent selectve inhibitors of poly(ADP-ribose) polymerase-1 (PARP1) for use in cancer. J. Med. Chem., 2019, 62(6), 3051-3067.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01946] [PMID: 30844273]
[22]
Wang, L.; Zhang, S.; Yu, X.; Guo, C. Novel Poly(ADP-ribose) Polymerase-1 inhibitor DDHCB inhibits proliferation of BRCA mutant breast cancer cell in vitro and in vivo through a synthetic lethal mechanism. Chem. Res. Toxicol., 2020, 33(7), 1874-1881.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00087] [PMID: 32394702]
[23]
Yin, H.; Guo, C.; Wang, Y.; Liu, D.; Lv, Y.; Lv, F.; Lu, Z. Fengycin inhibits the growth of the human lung cancer cell line 95D through reactive oxygen species produc-tion and mitochondria-dependent apoptosis. Anticancer Drugs, 2013, 24(6), 587-598.
[http://dx.doi.org/10.1097/CAD.0b013e3283611395] [PMID: 23552471]
[24]
Guo, C.; Wang, L.; Jiang, B.; Shi, D. Bromophenol curcumin analog BCA-5 exerts an antiangiogenic effect through the HIF-1α/VEGF/Akt signaling pathway in human umbilical vein endothelial cells. Anticancer Drugs, 2018, 29(10), 965-974.
[http://dx.doi.org/10.1097/CAD.0000000000000671] [PMID: 30335638]
[25]
Ray Chaudhuri, A.; Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol., 2017, 18(10), 610-621.
[http://dx.doi.org/10.1038/nrm.2017.53] [PMID: 28676700]
[26]
Malyuchenko, N.V.; Kotova, E.Y.; Kulaeva, O.I.; Kirpichnikov, M.P.; Studitskiy, V.M. PARP1 Inhibitors: Antitumor drug design. Acta Nat. (Engl. Ed.), 2015, 7(3), 27-37.
[http://dx.doi.org/10.32607/20758251-2015-7-3-27-37] [PMID: 26483957]
[27]
Chen, X.; Huan, X.; Liu, Q.; Wang, Y.; He, Q.; Tan, C.; Chen, Y.; Ding, J.; Xu, Y.; Miao, Z.; Yang, C. Design and synthesis of 2-(4,5,6,7-tetrahydrothienopyridin-2-yl)-benzoimidazole carboxamides as novel orally efficacious Poly(ADP-ribose)polymerase (PARP) inhibitors. Eur. J. Med. Chem., 2018, 145, 389-403.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.018] [PMID: 29335205]
[28]
Wang, L-J.; Guo, C-L.; Li, X-Q.; Wang, S-Y.; Jiang, B.; Zhao, Y.; Luo, J.; Xu, K.; Liu, H.; Guo, S-J.; Wu, N.; Shi, D-Y. Discovery of novel bromophenol hybrids as potential anticancer agents through the Ros-mediated apoptotic pathway: Design, synthesis and biological evaluation. Mar. Drugs, 2017, 15(11), 343.
[http://dx.doi.org/10.3390/md15110343] [PMID: 29104274]
[29]
Liu, H.; Guo, C.; Guo, S.; Wang, L.; Shi, D. Design and synthesis of a fluorescent probe with a large stokes shift for detecting thiophenols and its application in water samples and living cells. Molecules, 2019, 24(2), E375.
[http://dx.doi.org/10.3390/molecules24020375] [PMID: 30669672]
[30]
Huang, X.; Zhou, W.; Zhang, Y.; Liu, Y. High expression of PTGR1 promotes NSCLC cell growth via positive regulation of cyclin-dependent protein kinase complex. BioMed Res. Int., 2016, 2016, 5230642.
[http://dx.doi.org/10.1155/2016/5230642] [PMID: 27429979]
[31]
Rajput, S.; Kumar, B.N.; Dey, K.K.; Pal, I.; Parekh, A.; Mandal, M. Molecular targeting of Akt by thymoquinone promotes G(1) arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci., 2013, 93(21), 783-790.
[http://dx.doi.org/10.1016/j.lfs.2013.09.009] [PMID: 24044882]
[32]
Kaminskyy, V.O.; Piskunova, T.; Zborovskaya, I.B.; Tchevkina, E.M.; Zhivotovsky, B. Suppression of basal autophagy reduces lung cancer cell proliferation and enhanc-es caspase-dependent and -independent apoptosis by stimulating ROS formation. Autophagy, 2012, 8(7), 1032-1044.
[http://dx.doi.org/10.4161/auto.20123] [PMID: 22562073]
[33]
Lee, K.C.; Chen, Y.L.; Lin, P.Y.; Chuang, W.L. Ursolic acid-induced apoptosis via regulation of the PI3K/Akt and MAPK signaling pathways in Huh-7 cells. Molecules, 2018, 23(8), E2016.
[http://dx.doi.org/10.3390/molecules23082016] [PMID: 30104508]
[34]
Zhao, X.; Ren, X.; Zhu, R.; Luo, Z.; Ren, B. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria-mediated apoptosis in zebrafish embryos. Aquat. Toxicol., 2016, 180, 56-70.
[http://dx.doi.org/10.1016/j.aquatox.2016.09.013] [PMID: 27658222]
[35]
Chuang, W.L.; Lin, P.Y.; Lin, H.C.; Chen, Y.L. The apoptotic effect of ursolic acid on SK-Hep-1 cells is regulated by the PI3K/Akt, p38 and JNK MAPK signaling path-ways. Molecules, 2016, 21(4), 460.
[http://dx.doi.org/10.3390/molecules21040460] [PMID: 27104510]
[36]
Dai, J.; Peng, L.; Fan, K.; Wang, H.; Wei, R.; Ji, G.; Cai, J.; Lu, B.; Li, B.; Zhang, D.; Kang, Y.; Tan, M.; Qian, W.; Guo, Y. Osteopontin induces angiogenesis through activation of PI3K/AKT and ERK1/2 in endothelial cells. Oncogene, 2009, 28(38), 3412-3422.
[http://dx.doi.org/10.1038/onc.2009.189] [PMID: 19597469]
[37]
Alevizakos, M.; Kaltsas, S.; Syrigos, K.N. The VEGF pathway in lung cancer. Cancer Chemother. Pharmacol., 2013, 72(6), 1169-1181.
[http://dx.doi.org/10.1007/s00280-013-2298-3] [PMID: 24085262]
[38]
Di Domenico, M.; Ricciardi, C.; Fusco, A.; Pierantoni, G.M. Anti-VEGF therapy in breast and lung mouse models of cancers. J. Biomed. Biotechnol., 2011, 2011, 947928.
[http://dx.doi.org/10.1155/2011/947928] [PMID: 21076538]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy