Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Aza-BODIPY-based Fluorescent and Colorimetric Sensors and Probes

Author(s): Ömer Sonkaya, Caner Soylukan*, Melek Pamuk Algi* and Fatih Algi*

Volume 20, Issue 1, 2023

Published on: 13 May, 2022

Page: [20 - 60] Pages: 41

DOI: 10.2174/1570179419666220216123033

Price: $65

Abstract

Aza-boron-dipyrromethenes (Aza-BODIPYs) represent an important class of chromophores absorbing and emitting in the near-infrared (NIR) region. They have unique optical and electronic features and higher physiological and photo stability than other NIR dyes. Especially after the development of facile synthetic routes, Aza-BODIPYs have become indispensable fluors that can find various applications ranging from chemosensors, bioimaging, phototherapy, solar energy materials, photocatalysis, photon upconversion, lasers, and optoelectronics. Herein, we review Aza-BODIPY based fluorescent and colorimetric chemosensors. We show the potential and untapped toolbox of Aza-BODIPY based fluorescent and colorimetric chemosensors. Hence, we divide the fluorescent and colorimetric chemosensors and probes into five sections according to the target analytes. The first section begins with the chemosensors developed for pH. Next, we discuss Aza-BODIPY based ion sensors, including metal ions and anions. Finally, we present the chemosensors and probes concerning reactive oxygen (ROS) and nitrogen species (RNS) along with biologically relevant species in the last two sections. We believe that Aza-BODIPYs are still in their infancy, and they have a promising future for translation from the bench to real biomedical and materials science applications. After two decades of intensive research, it seems that there are many more to come in this already fertile field. Overall, we hope that future work will further expand the applications of Aza-BODIPY in many areas.

Keywords: Aza-boron-dipyrromethene, near-infrared dye, fluorescence chemosensor, ion sensor, pH, reactive oxygen species (ROS).

Graphical Abstract
[1]
Rogers, M. Tetra-arylazadipyrromethines: a new class of synthetic colouring matter. Nature, 1943, 151(3835), 504-504.
[http://dx.doi.org/10.1038/151504a0]
[2]
Sathyamoorthi, G.; Soong, M.L.; Ross, T.W.; Boyer, J.H. Fluorescent tricyclic βazavinamidine–BF2 complexes. Heteroatom Chem., 1993, 4(6), 603-608.
[http://dx.doi.org/10.1002/hc.520040613]
[3]
Allik, T.H.; Hermes, R.E.; Sathyamoorthi, G.; Boyer, J.H. Spectroscopy and laser performance of new BF2-complex dyes in solution, Visible and UV Lasers; International Society for Optics and Photonics, 1994, pp. 240-248.
[4]
Killoran, J.; Allen, L.; Gallagher, J.F.; Gallagher, W.M.; Donal, F. Synthesis of BF 2 chelates of tetraarylazadipyrromethenes and evidence for their photodynamic therapeutic behaviour. Chem. Commun., 2002, (17), 1862-1863.
[http://dx.doi.org/10.1039/B204317C]
[5]
Gorman, A.; Killoran, J.; O’Shea, C.; Kenna, T.; Gallagher, W.M.; O’Shea, D.F. in vitro demonstration of the heavy-atom effect for photodynamic therapy. J. Am. Chem. Soc., 2004, 126(34), 10619-10631.
[http://dx.doi.org/10.1021/ja047649e] [PMID: 15327320]
[6]
McDonnell, S.O.; Hall, M.J.; Allen, L.T.; Byrne, A.; Gallagher, W.M.; O’Shea, D.F. Supramolecular photonic therapeutic agents. J. Am. Chem. Soc., 2005, 127(47), 16360-16361.
[http://dx.doi.org/10.1021/ja0553497] [PMID: 16305199]
[7]
Zhao, W.; Carreira, E.M. Conformationally restricted aza-BODIPY: highly fluorescent, stable near-infrared absorbing dyes. Chemistry, 2006, 12(27), 7254-7263.
[http://dx.doi.org/10.1002/chem.200600527] [PMID: 16850516]
[8]
Donyagina, V.F.; Shimizu, S.; Kobayashi, N.; Lukyanets, E.A. Synthesis of N, N-difluoroboryl complexes of 3, 3′-diarylazadiisoindolylmethenes. Tetrahedron Lett., 2008, 49(42), 6152-6154.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.026]
[9]
Fan, G.; Yang, L.; Chen, Z. Water-soluble BODIPY and aza-BODIPY dyes: synthetic progress and applications. Front. Chem. Sci. Eng., 2014, 8(4), 405-417.
[http://dx.doi.org/10.1007/s11705-014-1445-7]
[10]
Ge, Y.; O’Shea, D.F. Azadipyrromethenes: from traditional dye chemistry to leading edge applications. Chem. Soc. Rev., 2016, 45(14), 3846-3864.
[http://dx.doi.org/10.1039/C6CS00200E] [PMID: 27181703]
[11]
Jiang, X-D.; Li, S.; Guan, J.; Fang, T.; Liu, X.; Xiao, L-J. Recent advances of the near-infrared fluorescent aza-BODIPY dyes. Curr. Org. Chem., 2016, 20(16), 1736-1744.
[http://dx.doi.org/10.2174/1385272820666160229224354]
[12]
Antina, E.V.; Bumagina, N.A. Tetraaryl-substituted aza-BODIPY: synthesis, spectral properties, and possible applications (microreview). Chem. Heterocycl. Compd., 2017, 53(1), 39-41.
[http://dx.doi.org/10.1007/s10593-017-2018-8]
[13]
Bodio, E.; Goze, C. Investigation of BF substitution on BODIPY and aza-BODIPY dyes: Development of BO and BC BODIPYs. Dyes Pigments, 2019, 160, 700-710.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.062]
[14]
Shimizu, S. aza-BODIPY synthesis towards vis/NIR functional chromophores based on a Schiff base forming reaction protocol using lactams and heteroaromatic amines. Chem. Commun. (Camb.), 2019, 55(60), 8722-8743.
[http://dx.doi.org/10.1039/C9CC03365C] [PMID: 31310253]
[15]
Shi, Z.; Han, X.; Hu, W.; Bai, H.; Peng, B.; Ji, L.; Fan, Q.; Li, L.; Huang, W. Bioapplications of small molecule Aza-BODIPY: from rational structural design to in vivo investigations. Chem. Soc. Rev., 2020, 49(21), 7533-7567.
[http://dx.doi.org/10.1039/D0CS00234H] [PMID: 32996497]
[16]
Mueller, T.; Gresser, R.; Leo, K.; Riede, M. Organic solar cells based on a novel infrared absorbing aza-bodipy dye. Sol. Energy Mater. Sol. Cells, 2012, 99, 176-181.
[http://dx.doi.org/10.1016/j.solmat.2011.11.006]
[17]
Bodio, E.; Denat, F.; Goze, C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. JPP,, 2019, 23((11n12),), 1159-1159.
[http://dx.doi.org/10.1142/S1088424619501268]
[18]
Avellanal-Zaballa, E.; Gartzia-Rivero, L.; Bañuelos, J.; García-Moreno, I.; Agarrabeitia, R.A.; Peña-Cabrera, E.; Ortiz, M.J. A palette of efficient and stable Far-Red and NIR dye lasers. Appl. Sci. (Basel), 2020, 10(18), 6206.
[http://dx.doi.org/10.3390/app10186206]
[19]
Swamy, P.C.A.; Sivaraman, G.; Priyanka, R.N.; Raja, S.O.; Ponnuvel, K.; Shanmugpriya, J.; Gulyani, A. Near Infrared (NIR) absorbing dyes as promising photosensitizer for photo dynamic therapy. Coord. Chem. Rev., 2020, 411213233
[http://dx.doi.org/10.1016/j.ccr.2020.213233]
[20]
D’Alessandro, S.; Priefer, R. Non-porphyrin dyes used as photosensitizers in photodynamic therapy. J. Drug Deliv. Sci. Technol., 2020, 60101979
[http://dx.doi.org/10.1016/j.jddst.2020.101979]
[21]
[22]
Yu, Z.; Zhou, J.; Ji, X.; Lin, G.; Xu, S.; Dong, X.; Zhao, W. Discovery of a monoiodo Aza-BODIPY near-infrared photosensitizer: in vitro and in vivo evaluation for photodynamic therapy. J. Med. Chem., 2020, 63(17), 9950-9964.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00882] [PMID: 32787080]
[23]
Pliquett, J.; Dubois, A.; Racoeur, C.; Mabrouk, N.; Amor, S.; Lescure, R.; Bettaïeb, A.; Collin, B.; Bernhard, C.; Denat, F.; Bellaye, P.S.; Paul, C.; Bodio, E.; Goze, C. A promising family of fluorescent water-soluble aza-BODIPY dyes for in vivo molecular imaging. Bioconjug. Chem., 2019, 30(4), 1061-1066.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00795] [PMID: 30615430]
[24]
Zhang, J.; Huang, H.; Xue, L.; Zhong, L.; Ge, W.; Song, X.; Zhao, Y.; Wang, W.; Dong, X. On-demand drug release nanoplatform based on fluorinated aza-BODIPY for imaging-guided chemo-phototherapy. Biomaterials, 2020, 256120211
[http://dx.doi.org/10.1016/j.biomaterials.2020.120211] [PMID: 32634718]
[25]
Xu, Y.; Feng, T.; Yang, T.; Wei, H.; Yang, H.; Li, G.; Zhao, M.; Liu, S.; Huang, W.; Zhao, Q. Utilizing intramolecular photoinduced electron transfer to enhance photothermal tumor treatment of aza-BODIPY-Based near-infrared nanoparticles. ACS Appl. Mater. Interfaces, 2018, 10(19), 16299-16307.
[http://dx.doi.org/10.1021/acsami.8b03568] [PMID: 29676558]
[26]
Liu, Y.; Song, N.; Chen, L.; Liu, S.; Xie, Z. Synthesis of a nearinfrared BODIPY dye for bioimaging and photothermal therapy. Chem. Asian J., 2018, 13(8), 989-995.
[http://dx.doi.org/10.1002/asia.201701727] [PMID: 29377582]
[27]
Wu, C.; Huang, X.; Tang, Y.; Xiao, W.; Sun, L.; Shao, J.; Dong, X. Pyrrolopyrrole aza-BODIPY near-infrared photosensitizer for dual-mode imaging-guided photothermal cancer therapy. Chem. Commun.(Camb.), 2019, 55(6), 790-793.
[http://dx.doi.org/10.1039/C8CC07768A] [PMID: 30569923]
[28]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[29]
Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release, 2000, 65(1-2), 271-284.
[http://dx.doi.org/10.1016/S0168-3659(99)00248-5] [PMID: 10699287]
[30]
Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev., 2011, 63(3), 136-151.
[http://dx.doi.org/10.1016/j.addr.2010.04.009] [PMID: 20441782]
[31]
Wolfbeis, O.S. The click reaction in the luminescent probing of metal ions, and its implications on biolabeling techniques. Angew. Chem. Int. Ed., 2007, 46(17), 2980-2982.
[http://dx.doi.org/10.1002/anie.200604897] [PMID: 17340653]
[32]
Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer, 2004, 4(11), 891-899.
[http://dx.doi.org/10.1038/nrc1478] [PMID: 15516961]
[33]
Hall, M.J.; Allen, L.T.; O’Shea, D.F. PET modulated fluorescent sensing from the BF2 chelated azadipyrromethene platform. Org. Biomol. Chem., 2006, 4(5), 776-780.
[http://dx.doi.org/10.1039/b514788c] [PMID: 16493459]
[34]
Callan, J. F.; De Silva, A. P.; Magri, D. C. Luminescent sensors and switches in the early 21st century 2005.
[35]
Killoran, J.; O’Shea, D.F. Impact of a conformationally restricted receptor on the BF 2 chelated azadipyrromethene fluorosensing platform. Chem. Commun., 2006, (14), 1503-1505.
[http://dx.doi.org/10.1039/b513878g]
[36]
McDonnell, S.O.; O’Shea, D.F. Near-infrared sensing properties of dimethlyamino-substituted BF2-azadipyrromethenes. Org. Lett., 2006, 8(16), 3493-3496.
[http://dx.doi.org/10.1021/ol061171x] [PMID: 16869643]
[37]
Killoran, J.; McDonnell, S.O.; Gallagher, J.F.; O’Shea, D.F. A substituted BF 2-chelated tetraarylazadipyrromethene as an intrinsic dual chemosensor in the 650–850 nm spectral range. New J. Chem., 2008, 32(3), 483-489.
[http://dx.doi.org/10.1039/B713020A]
[38]
Murtagh, J.; Frimannsson, D.O.; O’Shea, D.F. Azide conjugatable and pH responsive near-infrared fluorescent imaging probes. Org. Lett., 2009, 11(23), 5386-5389.
[http://dx.doi.org/10.1021/ol902140v] [PMID: 19883098]
[39]
Lu, H.; Shimizu, S.; Mack, J.; Shen, Z.; Kobayashi, N. Synthesis and spectroscopic properties of fused-ring-expanded aza-boradiazaindacenes. Chem. Asian J., 2011, 6(4), 1026-1037.
[http://dx.doi.org/10.1002/asia.201000641] [PMID: 21381211]
[40]
Jokic, T.; Borisov, S.M.; Saf, R.; Nielsen, D.A.; Kühl, M.; Klimant, I. Highly photostable near-infrared fluorescent pH indicators and sensors based on BF2-chelated tetraarylazadipyrromethene dyes. Anal. Chem., 2012, 84(15), 6723-6730.
[http://dx.doi.org/10.1021/ac3011796] [PMID: 22738322]
[41]
Zhang, X-X.; Wang, Z.; Yue, X.; Ma, Y.; Kiesewetter, D.O.; Chen, X. pH-sensitive fluorescent dyes: are they really pH-sensitive in cells? Mol. Pharm., 2013, 10(5), 1910-1917.
[http://dx.doi.org/10.1021/mp3006903] [PMID: 23464828]
[42]
Salim, M.M.; Owens, E.A.; Gao, T.; Lee, J.H.; Hyun, H.; Choi, H.S.; Henary, M. Hydroxylated near-infrared BODIPY fluorophores as intracellular pH sensors. Analyst (Lond.), 2014, 139(19), 4862-4873.
[http://dx.doi.org/10.1039/C4AN01104J] [PMID: 25105177]
[43]
Strobl, M.; Rappitsch, T.; Borisov, S.M.; Mayr, T.; Klimant, I. NIR-emitting aza-BODIPY dyes--new building blocks for broad-range optical pH sensors. Analyst (Lond.), 2015, 140(21), 7150-7153.
[http://dx.doi.org/10.1039/C5AN01389E] [PMID: 26402484]
[44]
Schutting, S.; Jokic, T.; Strobl, M.; Borisov, S.M.; de Beer, D.; Klimant, I. NIR optical carbon dioxide sensors based on highly photostable dihydroxy-aza-BODIPY dyes. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2015, 3(21), 5474-5483.
[http://dx.doi.org/10.1039/C5TC00346F]
[45]
Moßhammer, M.; Strobl, M.; Kühl, M.; Klimant, I.; Borisov, S.M.; Koren, K. Design and application of an optical sensor for simultaneous imaging of pH and dissolved O2 with low cross-talk. ACS Sens., 2016, 1(6), 681-687.
[http://dx.doi.org/10.1021/acssensors.6b00071]
[46]
Ehgartner, J.; Strobl, M.; Bolivar, J.M.; Rabl, D.; Rothbauer, M.; Ertl, P.; Borisov, S.M.; Mayr, T. Simultaneous determination of oxygen and pH inside microfluidic devices using core–shell nanosensors. Anal. Chem., 2016, 88(19), 9796-9804.
[http://dx.doi.org/10.1021/acs.analchem.6b02849] [PMID: 27610829]
[47]
Strobl, M.; Mayr, T.; Klimant, I.; Borisov, S.M. Photostable upconverting and downconverting pH sensors based on combination of a colorimetric NIR indicator and stable inorganic phosphors as secondary emitters. Sens. Actuators B Chem., 2017, 245, 972-979.
[http://dx.doi.org/10.1016/j.snb.2017.01.189]
[48]
Shi, W-J.; Lo, P-C.; Ng, D.K. Synthesis and acid-responsive spectral properties of near-infrared-absorbing donor-π-donor-type aza boron dipyrromethenes. Dyes Pigments, 2018, 154, 314-319.
[http://dx.doi.org/10.1016/j.dyepig.2018.03.016]
[49]
Staudinger, C.; Breininger, J.; Klimant, I.; Borisov, S.M. Near-infrared fluorescent aza-BODIPY dyes for sensing and imaging of pH from the neutral to highly alkaline range. Analyst (Lond.), 2019, 144(7), 2393-2402.
[http://dx.doi.org/10.1039/C9AN00118B] [PMID: 30801584]
[50]
Obłoza, M.; Łapok, Ł.; Pędziński, T.; Stadnicka, K.M.; Nowakowska, M. Synthesis, photophysics and redox properties of azaBODIPY dyes with electrondonating groups. ChemPhysChem, 2019, 20(19), 2482-2497.
[http://dx.doi.org/10.1002/cphc.201900689] [PMID: 31390126]
[51]
Obłoza, M.; Łapok, Ł.; Pędziński, T.; Nowakowska, M. A beneficial effect of bromination on the photophysical and photochemical properties of AzaBODIPY dyes with electrondonating groups. Asian J. Org. Chem., 2019, 8(10), 1879-1892.
[http://dx.doi.org/10.1002/ajoc.201900385]
[52]
Jiang, X-D.; Jia, L.; Su, Y.; Li, C.; Sun, C.; Xiao, L. Synthesis and application of near-infrared absorbing morpholino-containing aza-BODIPYs. Tetrahedron, 2019, 75(33), 4556-4560.
[http://dx.doi.org/10.1016/j.tet.2019.06.046]
[53]
Kubheka, G.; Mack, J.; Nyokong, T.; Shen, Z. NIR Absorbing azabodipy dyes for pH sensing. Molecules, 2020, 25(16), 3689.
[http://dx.doi.org/10.3390/molecules25163689] [PMID: 32823576]
[54]
Liu, H.; Mack, J.; Guo, Q.; Lu, H.; Kobayashi, N.; Shen, Z. A selective colorimetric and fluorometric ammonium ion sensor based on the H-aggregation of an aza-BODIPY with fused pyrazine rings. Chem. Commun.(Camb.),, 2011, 47(44), 12092-12094.
[http://dx.doi.org/10.1039/c1cc15746a] [PMID: 22006224]
[55]
Coskun, A.; Yilmaz, M.D.; Akkaya, E.U. Bis(2-pyridyl)-substituted boratriazaindacene as an NIR-emitting chemosensor for Hg(II). Org. Lett., 2007, 9(4), 607-609.
[http://dx.doi.org/10.1021/ol062867t] [PMID: 17256867]
[56]
Algi, M.P. Öztaş Z.; Algi, F. Triple channel responsive Cu2+ probe. Chem. Commun.. (Camb.), 2012, 48(82), 10219-10221.
[http://dx.doi.org/10.1039/c2cc34842j] [PMID: 22965191]
[57]
Pamuk, M.; Algi, F. Incorporation of a 2, 3-dihydro-1H-pyrrolo [3, 4-d] pyridazine-1, 4 (6H)-dione unit into a donor–acceptor triad: synthesis and ion recognition features. Tetrahedron Lett., 2012, 53(52), 7117-7120.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.082]
[58]
Tachapermpon, Y.; Thavornpradit, S.; Charoenpanich, A.; Sirirak, J.; Burgess, K.; Wanichacheva, N. Near-infrared aza-BODIPY fluorescent probe for selective Cu2+ detection and its potential in living cell imaging. Dalton Trans., 2017, 46(46), 16251-16256.
[http://dx.doi.org/10.1039/C7DT03481D] [PMID: 29138771]
[59]
Praikaew, P.; Roongcharoen, T.; Charoenpanich, A.; Kungwan, N.; Wanichacheva, N. Near-IR aza-BODIPY-based probe for the selective simultaneous detection of Cu2+ in aqueous buffer solutions and its application in biological samples. J. Photochem. Photobiol. Chem., 2020, 400112641
[http://dx.doi.org/10.1016/j.jphotochem.2020.112641]
[60]
Piyanuch, P.; Patawanich, P.; Sirirak, J.; Suwatpipat, K.; Kamkaew, A.; Burgess, K.; Wanichacheva, N. Rapid and visual detection of Cd2+ based on aza-BODIPY near infrared dye and its application in real and biological samples for environmental contamination screening. J. Hazard. Mater., 2021, 409124487
[http://dx.doi.org/10.1016/j.jhazmat.2020.124487] [PMID: 33199148]
[61]
Pamuk, M.; Algi, F. Synthesis of a novel on/off fluorescent cadmium (II) probe. Tetrahedron Lett., 2012, 53(51), 7010-7012.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.081]
[62]
Yang, Y.; Cheng, T.; Zhu, W.; Xu, Y.; Qian, X. Highly selective and sensitive near-infrared fluorescent sensors for cadmium in aqueous solution. Org. Lett., 2011, 13(2), 264-267.
[http://dx.doi.org/10.1021/ol102692p] [PMID: 21141911]
[63]
Gui, R.; An, X.; Su, H.; Shen, W.; Chen, Z.; Wang, X. A near-infrared-emitting CdTe/CdS core/shell quantum dots-based OFF-ON fluorescence sensor for highly selective and sensitive detection of Cd2+. Talanta, 2012, 94, 257-262.
[http://dx.doi.org/10.1016/j.talanta.2012.03.036] [PMID: 22608445]
[64]
Li, H.; Zhang, P.; Smaga, L.P.; Hoffman, R.A.; Chan, J. Photoacoustic probes for ratiometric imaging of copper (II). J. Am. Chem. Soc., 2015, 137(50), 15628-15631.
[http://dx.doi.org/10.1021/jacs.5b10504] [PMID: 26652006]
[65]
Kim, J.J.; Hong, J.; Yu, S.; You, Y. Deep-red-fluorescent zinc probe with a membrane-targeting cholesterol unit. Inorg. Chem., 2020, 59(16), 11562-11576.
[http://dx.doi.org/10.1021/acs.inorgchem.0c01376] [PMID: 32799505]
[66]
Coord. Chem. Rev.,, 2006, 250((23-24)), 3094-3117..
[http://dx.doi.org/10.1016/j.ccr.2006.08.017]
[67]
Gale, P.A.; Caltagirone, C. Fluorescent and colorimetric sensors for anionic species. Coord. Chem. Rev., 2018, 354, 2-27.
[http://dx.doi.org/10.1016/j.ccr.2017.05.003]
[68]
Fatih, A.; Karakaya, S. Synthesis of cyclen bodipy dyad and its metal complexes: Evaluation of anion recognition features. Mugla J. Sci. Technol., 5(1), 69-99.
[69]
Udhayakumari, D. Chromogenic and fluorogenic chemosensors for lethal cyanide ion. A comprehensive review of the year 2016. Sens. Actuators B Chem., 2018, 259, 1022-1057.
[http://dx.doi.org/10.1016/j.snb.2017.12.006]
[70]
Wu, F.; Liu, H.; Zhong, C.; Zhu, L. Revealing a nucleophilic addition reaction between aza-BODIPY and cyanide anion. Tetrahedron Lett., 2016, 57(46), 5120-5123.
[http://dx.doi.org/10.1016/j.tetlet.2016.10.024]
[71]
Dvivedi, A.; Kumar, S.; Ravikanth, M. Nucleophilic addition of CN− ion to CN bond of aza-BODIPY leading to turn-on fluorescence sensor. Sens. Actuators B Chem., 2016, 224, 364-371.
[http://dx.doi.org/10.1016/j.snb.2015.10.045]
[72]
Piyanuch, P.; Sirirak, J.; Kamkaew, A.; Weeranantanapan, O.; Promarak, V.; Burgess, K.; Wanichacheva, N. A near-infrared fluorescence chemosensor based on isothiocyanate-Aza-BODIPY for cyanide detection at the parts per billion level: Applications in buffer media and living cell imaging. ChemPlusChem, 2019, 84(3), 252-259.
[http://dx.doi.org/10.1002/cplu.201800574] [PMID: 31950759]
[73]
Liu, C.; Ding, W.; Liu, Y.; Zhao, H.; Cheng, X. Self-assembled star-shaped aza-BODIPY mesogen affords white-light emission. New J. Chem., 2020, 44(1), 102-109.
[http://dx.doi.org/10.1039/C9NJ04755G]
[74]
Jali, B.R.; Barick, A.K.; Mohapatra, P.; Sahoo, S.K. A comprehensive review on quinones based fluoride selective colorimetric and fluorescence chemosensors. J. Fluor. Chem., 2021, 244109744
[http://dx.doi.org/10.1016/j.jfluchem.2021.109744]
[75]
Bilmez, M.; Degirmenci, A.; Algi, M.P.; Algi, F. A phosphorescent fluoride probe based on Eu (ııı)-DO3A clicked with a 2, 5-di (thien-2-yl) pyrrole scaffold. New J. Chem., 2018, 42(1), 450-457.
[http://dx.doi.org/10.1039/C7NJ03569A]
[76]
Swamy, P.C.A.; Priyanka, R.N.; Mukherjee, S.; Thilagar, P. Panchromatic borane–azaBODIPY conjugate: Synthesis, intriguing optical properties, and selective fluorescent sensing of fluoride anions. Eur. J. Inorg. Chem., 2015, 2015(13), 2338-2344.
[http://dx.doi.org/10.1002/ejic.201500089]
[77]
Zhang, L.; Zou, L-Y.; Guo, J-F.; Ren, A-M. Theoretical investigation on the one-and two-photon responsive behavior of fluoride ion probes based on diketopyrrolopyrrole and its π-expanded derivatives. New J. Chem., 2016, 40(6), 4899-4910.
[http://dx.doi.org/10.1039/C6NJ00432F]
[78]
Zhao, C.; Chen, J.; Zhong, R.; Chen, D.S.; Shi, J.; Song, J. Oxidativespeciesselective materials for diagnostic and therapeutic applications. Angewandte Chemie, Interna. Edi., 2020, 60(18), 9804-9827.
[79]
Algi, M.P. A highly selective dual channel hypochlorite probe based on fluorescein and 1, 10-phenanthroline. Tetrahedron, 2016, 72(12), 1558-1565.
[http://dx.doi.org/10.1016/j.tet.2016.02.004]
[80]
Algi, M.P. A fluorescent hypochlorite probe Built on 1, 10-phenanthroline scaffold and its ion recognition Features. J. Fluoresc., 2016, 26(2), 487-496.
[http://dx.doi.org/10.1007/s10895-015-1734-7] [PMID: 26670687]
[81]
Atılgan, N.; Algı F.; Önal, A.M.; Cihaner, A. Synthesis and properties of a novel redox driven chemiluminescent material built on a terthienyl system. Tetrahedron, 2009, 65(29-30), 5776-5781.
[http://dx.doi.org/10.1016/j.tet.2009.05.019]
[82]
Algi, M.P.; Oztas, Z. Tirkeş S.; Cihaner, A.; Algi, F. Atomistic engineering of chemiluminogens: synthesis, properties and polymerization of 2, 3-dihydro-pyrrolo [3, 4-d] pyridazine-1, 4-dione scaffolds. J. Fluoresc., 2017, 27(2), 509-519.
[http://dx.doi.org/10.1007/s10895-016-1978-x] [PMID: 27864701]
[83]
Degirmenci, A.; Algi, F. Synthesis, chemiluminescence and energy transfer efficiency of 2, 3-dihydrophthalazine-1, 4-dione and BODIPY dyad. Dyes Pigments, 2017, 140, 92-99.
[http://dx.doi.org/10.1016/j.dyepig.2017.01.037]
[84]
Degirmenci, A.; Sonkaya, O.m.; Soylukan, C.; Karaduman, T.e.; Algi, F. BODIPY and 2, 3-Dihydrophthalazine-1, 4-Dione conjugates as heavy atom-free chemiluminogenic photosensitizers. ACS Appl. Bio Mater., 2021, 4(6), 5090-5098.
[http://dx.doi.org/10.1021/acsabm.1c00328]
[85]
Asil, D.; Cihaner, A. Algı F.; Önal, A.M. A diversestimuli responsive chemiluminescent probe with luminol scaffold and its electropolymerization. Electroanalysis, 2010, 22(19), 2254-2260.
[http://dx.doi.org/10.1002/elan.201000141]
[86]
Peiró Cadahía, J.; Bondebjerg, J.; Hansen, C.A.; Previtali, V.; Hansen, A.E.; Andresen, T.L.; Clausen, M.H. Synthesis and evaluation of hydrogen peroxide sensitive prodrugs of methotrexate and aminopterin for the treatment of rheumatoid arthritis. J. Med. Chem., 2018, 61(8), 3503-3515.
[http://dx.doi.org/10.1021/acs.jmedchem.7b01775] [PMID: 29605999]
[87]
Wu, M.; Wu, L.; Li, J.; Zhang, D.; Lan, S.; Zhang, X.; Lin, X.; Liu, G.; Liu, X.; Liu, J. Self-luminescing theranostic nanoreactors with intraparticle relayed energy transfer for tumor microenvironment activated imaging and photodynamic therapy. Theranostics, 2019, 9(1), 20-33.
[http://dx.doi.org/10.7150/thno.28857] [PMID: 30662551]
[88]
Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet photosensitizers: from molecular design to applications. Chem. Soc. Rev., 2013, 42(12), 5323-5351.
[http://dx.doi.org/10.1039/c3cs35531d] [PMID: 23450221]
[89]
Gao, Y.; Pan, Y.; He, Y.; Chen, H.; Nemykin, V.N. A fast-response, red emission aza-BODIPY-hydrazone-based chemodosimeter for selective detection of HClO. Sens. Actuators B Chem., 2018, 269, 151-157.
[http://dx.doi.org/10.1016/j.snb.2018.04.135]
[90]
Gao, Y.; Pan, Y.; Chi, Y.; He, Y.; Chen, H.; Nemykin, V.N.A. “reactive” turn-on fluorescence probe for hypochlorous acid and its bioimaging application. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 206, 190-196.
[http://dx.doi.org/10.1016/j.saa.2018.07.090] [PMID: 30103085]
[91]
Shi, W-J.; Feng, L-X.; Wang, X.; Huang, Y.; Wei, Y-F.; Huang, Y-Y.; Ma, H-J.; Wang, W.; Xiang, M.; Gao, L. A near-infrared-emission aza-BODIPY-based fluorescent probe for fast, selective, and “turn-on” detection of HClO/ClO. Talanta, 2021, 233122581
[http://dx.doi.org/10.1016/j.talanta.2021.122581] [PMID: 34215073]
[92]
Liu, Y.; Zhu, J.; Xu, Y.; Qin, Y.; Jiang, D. Boronic acid functionalized aza-Bodipy (azaBDPBA) based fluorescence optodes for the analysis of glucose in whole blood. ACS Appl. Mater. Interfaces, 2015, 7(21), 11141-11145.
[http://dx.doi.org/10.1021/acsami.5b00265] [PMID: 25962342]
[93]
Xu, J.; Zhai, J.; Xu, Y.; Zhu, J.; Qin, Y.; Jiang, D. A near-infrared fluorescent aza-bodipy probe for dual-wavelength detection of hydrogen peroxide in living cells. Analyst (Lond.), 2016, 141(8), 2380-2383.
[http://dx.doi.org/10.1039/C6AN00262E] [PMID: 26990412]
[94]
Han, J.; Yoon, J. Supramolecular Nanozyme-Based Cancer Catalytic Therapy. ACS Appl. Bio Mater., 2020, 3(11), 7344-7351.
[http://dx.doi.org/10.1021/acsabm.0c01127]
[95]
Adarsh, N.; Shanmugasundaram, M.; Ramaiah, D. Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal. Chem., 2013, 85(21), 10008-10012.
[http://dx.doi.org/10.1021/ac4031303] [PMID: 24144080]
[96]
Jing, X.; Yu, F.; Chen, L. Visualization of nitroxyl (HNO) in vivovia a lysosome-targetable near-infrared fluorescent probe. Chem. Commun.(Camb.), 2014, 50(91), 14253-14256.
[http://dx.doi.org/10.1039/C4CC07561G] [PMID: 25283380]
[97]
Ping, L.; Xiao-Yue, H.; Fa-Biao, Y.; Ling-Xin, C. A near-infrared fluorescent probe for detection of nitroxyl in living cells. Chin. J. Anal. Chem., 2015, 43(12), 1829-1836.
[http://dx.doi.org/10.1016/S1872-2040(15)60883-0]
[98]
Liu, P.; Jing, X.; Yu, F.; Lv, C.; Chen, L. A near-infrared fluorescent probe for the selective detection of HNO in living cells and in vivo. Analyst (Lond.), 2015, 140(13), 4576-4583.
[http://dx.doi.org/10.1039/C5AN00759C] [PMID: 25997397]
[99]
Huang, Y.; Zhang, X.; He, N.; Wang, Y.; Kang, Q.; Shen, D.; Yu, F.; Chen, L. Imaging of anti-inflammatory effects of HNO via a near-infrared fluorescent probe in cells and in rat gouty arthritis model. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(2), 305-313.
[http://dx.doi.org/10.1039/C8TB02494D] [PMID: 32254555]
[100]
Lu, X.; Zhao, M.; Chen, P.; Fan, Q.; Wang, W.; Huang, W. Enhancing hydrophilicity of photoacoustic probes for effective ratiometric imaging of hydrogen peroxide. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(27), 4531-4538.
[http://dx.doi.org/10.1039/C8TB01158C] [PMID: 32254670]
[101]
Zhou, E.Y.; Knox, H.J.; Reinhardt, C.J.; Partipilo, G.; Nilges, M.J.; Chan, J. Near-infrared photoactivatable nitric oxide donors with integrated photoacoustic monitoring. J. Am. Chem. Soc., 2018, 140(37), 11686-11697.
[http://dx.doi.org/10.1021/jacs.8b05514] [PMID: 30198716]
[102]
Ma, D.; Hou, S.; Bae, C.; Pham, T.C.; Lee, S.; Zhou, X. Aza-BODIPY based probe for photoacoustic imaging of ONOO- in vivo. Chin. Chem. Lett., 2021, 32, 3886-3889.
[http://dx.doi.org/10.1016/j.cclet.2021.05.048]
[103]
Mao, W.; Zhu, M.; Yan, C.; Ma, Y.; Guo, Z.; Zhu, W. Rational design of ratiometric near-infrared aza-BODIPY-based fluorescent probe for in vivo imaging of endogenous hydrogen peroxide. ACS Appl. Bio Mater., 2019, 3(1), 45-52.
[http://dx.doi.org/10.1021/acsabm.9b00842]
[104]
Sangan, C.B.; Tosh, D. A new paradigm in cell therapy for diabetes: turning pancreatic α-cells into β-cells. BioEssays, 2010, 32(10), 881-884.
[http://dx.doi.org/10.1002/bies.201000074] [PMID: 20803505]
[105]
Valera, E.; Jankelow, A.; Lim, J.; Kindratenko, V.; Ganguli, A.; White, K.; Kumar, J.; Bashir, R. COVID-19 point-of-care diagnostics: Present and future. ACS Nano, 2021, 15(5), 7899-7906.
[http://dx.doi.org/10.1021/acsnano.1c02981] [PMID: 33984237]
[106]
Adarsh, N.; Krishnan, M.S.; Ramaiah, D. Sensitive naked eye detection of hydrogen sulfide and nitric oxide by aza-BODIPY dyes in aqueous medium. Anal. Chem., 2014, 86(18), 9335-9342.
[http://dx.doi.org/10.1021/ac502849d] [PMID: 25153924]
[107]
Jiang, X-D.; Zhang, J.; Shao, X.; Zhao, W. A selective fluorescent turn-on NIR probe for cysteine. Org. Biomol. Chem., 2012, 10(10), 1966-1968.
[http://dx.doi.org/10.1039/c2ob07046d] [PMID: 22302088]
[108]
Xiang, HJ; Tham, HP; Nguyen, MD; Phua, SZ; Lim, WQ; Liu, JG; Zhao, Y. An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells. Chem. Commun. (Camb.), 2017, 53(37), 5220-5223.
[http://dx.doi.org/10.1039/C7CC01814B] [PMID: 28443883]
[109]
Strobl, M.; Walcher, A.; Mayr, T.; Klimant, I.; Borisov, S.M. Trace ammonia sensors based on fluorescent near-infrared-emitting aza-BODIPY dyes. Anal. Chem., 2017, 89(5), 2859-2865.
[http://dx.doi.org/10.1021/acs.analchem.6b04045] [PMID: 28264569]
[110]
Li, L.; Li, W.; Ran, X.; Wang, L.; Tang, H.; Cao, D. A highly efficient, colorimetric and fluorescent probe for recognition of aliphatic primary amines based on a unique cascade chromophore reaction. Chem. Commun. (Camb.), 2019, 55(66), 9789-9792.
[http://dx.doi.org/10.1039/C9CC04961D] [PMID: 31360961]
[111]
Li, L.; Li, W.; Wang, L.; Tang, H.; Cao, D.; Ran, X. Pyrrolopyrrole aza-BODIPY dyes for ultrasensitive and highly selective biogenic diamine detection. Sens. Actuators B Chem., 2020, 312127953
[http://dx.doi.org/10.1016/j.snb.2020.127953]
[112]
Wang, L.; Ding, H.; Tang, H.; Cao, D.; Ran, X. A novel and efficient chromophore reaction based on a lactam-fused aza-BODIPY for polyamine detection. Anal. Chim. Acta, 2020, 1135, 38-46.
[http://dx.doi.org/10.1016/j.aca.2020.08.031] [PMID: 33070857]
[113]
Karan, S.; Cho, M.Y.; Lee, H.; Lee, H.; Park, H.S.; Sundararajan, M.; Sessler, J.L.; Hong, K.S. Near-infrared fluorescent probe activated by nitroreductase for in vitro and in vivo hypoxic tumor detection. J. Med. Chem., 2021, 64(6), 2971-2981.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02162] [PMID: 33711229]
[114]
De Marco, R.J.; Thiemann, T.; Groneberg, A.H.; Herget, U.; Ryu, S. Optogenetically enhanced pituitary corticotroph cell activity post-stress onset causes rapid organizing effects on behaviour. Nat. Commun., 2016, 7(1), 12620.
[http://dx.doi.org/10.1038/ncomms12620] [PMID: 27646867]
[115]
Daly, H.C.; Sampedro, G.; Bon, C.; Wu, D.; Ismail, G.; Cahill, R.A.; O’Shea, D.F. BF2-azadipyrromethene NIR-emissive fluorophores with research and clinical potential. Eur. J. Med. Chem., 2017, 135, 392-400.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.051] [PMID: 28460313]
[116]
Wu, D.; Daly, H.C.; Conroy, E.; Li, B.; Gallagher, W.M.; Cahill, R.A.; O’Shea, D.F. PEGylated BF2-Azadipyrromethene (NIR-AZA) fluorophores, for intraoperative imaging. Eur. J. Med. Chem., 2019, 161, 343-353.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.046] [PMID: 30368132]
[117]
Wu, D.; Daly, H.C.; Grossi, M.; Conroy, E.; Li, B.; Gallagher, W.M.; Elmes, R.; O’Shea, D.F. RGD conjugated cell uptake off to on responsive NIR-AZA fluorophores: applications toward intraoperative fluorescence guided surgery. Chem. Sci.(Camb.), 2019, 10(29), 6944-6956.
[http://dx.doi.org/10.1039/C9SC02197C] [PMID: 31588261]
[118]
Daly, H.C.; Conroy, E.; Todor, M.; Wu, D.; Gallagher, W.M.; O’Shea, D.F. An EPR strategy for bio-responsive fluorescence guided surgery with simulation of the benefit for imaging. Theranostics, 2020, 10(7), 3064-3082.
[http://dx.doi.org/10.7150/thno.42702] [PMID: 32194855]
[119]
Curtin, N.; Wu, D.; Cahill, R.; Sarkar, A.; Aonghusa, P.M.; Zhuk, S.; Barberio, M.; Al-Taher, M.; Marescaux, J.; Diana, M.; O’Shea, D.F. Dual color imaging from a single BF2-Azadipyrromethene fluorophore demonstrated in vivo for lymph node identification. Int. J. Med. Sci., 2021, 18(7), 1541-1553.
[http://dx.doi.org/10.7150/ijms.52816] [PMID: 33746570]
[120]
Top, S.; Tang, J.; Vessières, A.; Carrez, D.; Provot, C.; Jaouen, G. Ferrocenyl hydroxytamoxifen: A prototype for a new range of oestradiol receptor site-directed cytotoxics. Chem. Commun., 1996, (8), 955-956.
[http://dx.doi.org/10.1039/CC9960000955]
[121]
Ng, S.Y.; Kamkaew, A.; Fu, N.; Kue, C.S.; Chung, L.Y.; Kiew, L.V.; Wittayakun, J.; Burgess, K.; Lee, H.B. Active targeted ligand-aza-BODIPY conjugate for near-infrared photodynamic therapy in melanoma. Int. J. Pharm., 2020, 579119189
[http://dx.doi.org/10.1016/j.ijpharm.2020.119189] [PMID: 32126251]
[122]
Kamkaew, A.; Fu, N.; Cai, W.; Burgess, K. Novel small molecule probes for metastatic melanoma. ACS Med. Chem. Lett., 2016, 8(2), 179-184.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00368] [PMID: 28197308]
[123]
Cheng, M.H.Y.; Maruani, A.; Savoie, H.; Chudasama, V.; Boyle, R.W. Synthesis of a novel HER2 targeted aza-BODIPY-antibody conjugate: synthesis, photophysical characterisation and in vitro evaluation. Org. Biomol. Chem., 2018, 16(7), 1144-1149.
[http://dx.doi.org/10.1039/C7OB02957H] [PMID: 29364306]
[124]
Szalai, A.M.; Armando, N.G.; Barabas, F.M.; Stefani, F.D.; Giordano, L.; Bari, S.E.; Cavasotto, C.N.; Silberstein, S.; Aramendía, P.F. A fluorescence nanoscopy marker for corticotropin-releasing hormone type 1 receptor: computer design, synthesis, signaling effects, super-resolved fluorescence imaging, and in situ affinity constant in cells. Phys. Chem. Chem. Phys., 2018, 20(46), 29212-29220.
[http://dx.doi.org/10.1039/C8CP06196C] [PMID: 30427333]
[125]
Pewklang, T.; Chansaenpak, K.; Lai, R-Y.; Noisa, P.; Kamkaew, A. Aza-BODIPY probe for selective visualization of cyclooxygenase-2 in cancer cells. RSC Advances, 2019, 9(24), 13372-13377.
[http://dx.doi.org/10.1039/C9RA01948K]
[126]
Kalot, G.; Godard, A.; Busser, B.; Pliquett, J.; Broekgaarden, M.; Motto-Ros, V.; Wegner, K.D.; Resch-Genger, U.; Köster, U.; Denat, F.; Coll, J.L.; Bodio, E.; Goze, C.; Sancey, L. Aza-BODIPY: A new vector for enhanced theranostic boron neutron capture therapy applications. Cells, 2020, 9(9), 1953.
[http://dx.doi.org/10.3390/cells9091953] [PMID: 32854219]
[127]
Florès, O.; Pliquett, J.; Abad Galan, L.; Lescure, R.; Denat, F.; Maury, O.; Pallier, A.; Bellaye, P-S.; Collin, B.; Même, S.; Bonnet, C.S.; Bodio, E.; Goze, C. Aza-BODIPY platform: toward an efficient water-soluble bimodal imaging probe for MRI and near-infrared fluorescence. Inorg. Chem., 2020, 59(2), 1306-1314.
[http://dx.doi.org/10.1021/acs.inorgchem.9b03017] [PMID: 31909995]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy