Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

A Review on Structure-Activity Relationships of Glycyrrhetinic Acid Derivatives with Diverse Bioactivities

Author(s): Yuebin Liu, Ruilong Sheng, Junting Fan and Ruihua Guo*

Volume 22, Issue 15, 2022

Published on: 22 April, 2022

Page: [2024 - 2066] Pages: 43

DOI: 10.2174/1389557522666220126093033

Price: $65

Abstract

Pentacyclic triterpenoids, consisting of six isoprene units, are a kind of natural active substance. At present, numerous pentacyclic triterpenes have been identified and classified into four subgroups of oleanane, ursane, lupane, and xylene on the basis of the carbon skeleton. Among them, oleanane is the most popular due to its rich backbone and diverse bioactivities. 18β-Glycyrrhetinic acid (GA), an oleanane-type pentacyclic triterpene isolated from licorice roots, possesses diverse bioactivities, including antitumor, anti-inflammatory, antiviral, antimicrobial, enzyme inhibitor, hepatoprotective, and so on. It has received more attention in medicinal chemistry due to the advantages of easy access and rich bioactivity. Thus, numerous novel lead compounds have been synthesized using GA as a scaffold. Herein, we summarize the structure-activity relationship and synthetic methodologies of GA derivatives from 2010 to 2020, as well as the most active GA derivatives. Finally, we anticipate that this review can benefit future research on structural modifications of GA to enhance bioactivity and provide an example for developing pentacyclic triterpene-based novel drugs.

Keywords: Glycyrrhetinic acid, synthesis, structural modifications, bioactivities, structure-activity relationship, natural products.

« Previous
Graphical Abstract
[1]
Camp, D.; Davis, R.A.; Campitelli, M.; Ebdon, J.; Quinn, R.J. Drug-like properties: Guiding principles for the design of natural product libraries. J. Nat. Prod., 2012, 75(1), 72-81.
[http://dx.doi.org/10.1021/np200687v] [PMID: 22204643]
[2]
Hüter, O.F. Use of natural products in the crop protection industry. Phytochem. Rev., 2011, 10, 185-194.
[http://dx.doi.org/10.1007/s11101-010-9168-y]
[3]
Loiseleur, O. Natural products in the discovery of agrochemicals. Chimia (Aarau), 2017, 71(12), 810-822.
[http://dx.doi.org/10.2533/chimia.2017.810] [PMID: 29289242]
[4]
Butler, M.S. Natural products to drugs: Natural product-derived compounds in clinical trials. Nat. Prod. Rep., 2008, 25(3), 475-516.
[http://dx.doi.org/10.1039/b514294f] [PMID: 18497896]
[5]
Joo, Y.E. Natural product-derived drugs for the treatment of inflammatory bowel diseases. Intest. Res., 2014, 12(2), 103-109.
[http://dx.doi.org/10.5217/ir.2014.12.2.103] [PMID: 25349576]
[6]
Wang, Y.C.; Yang, Y.S. Simultaneous quantification of flavonoids and triterpenoids in licorice using HPLC. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 850(1-2), 392-399.
[http://dx.doi.org/10.1016/j.jchromb.2006.12.032] [PMID: 17224312]
[7]
Zhang, Q.; Ye, M. Chemical analysis of the Chinese herbal medicine Gan-Cao (licorice). J. Chromatogr. A, 2009, 1216(11), 1954-1969.
[http://dx.doi.org/10.1016/j.chroma.2008.07.072] [PMID: 18703197]
[8]
Yang, R.; Wang, L.Q.; Yuan, B.C.; Liu, Y. The pharmacological activities of licorice. Planta Med., 2015, 81(18), 1654-1669.
[http://dx.doi.org/10.1055/s-0035-1557893] [PMID: 26366756]
[9]
Lauren, D.R.; Jensen, D.J.; Douglas, J.A.; Follett, J.M. Efficient method for determining the glycyrrhizin content of fresh and dried roots, and root extracts, of Glycyrrhiza species. Phytochem. Anal., 2001, 12(5), 332-335.
[http://dx.doi.org/10.1002/pca.597] [PMID: 11705261]
[10]
Baltina, L.A. Chemical modification of glycyrrhizic acid as a route to new bioactive compounds for medicine. Curr. Med. Chem., 2003, 10(2), 155-171.
[http://dx.doi.org/10.2174/0929867033368538] [PMID: 12570715]
[11]
Asl, M.N.; Hosseinzadeh, H. Review of pharmacological effects of Glycyrrhiza sp. and its bioactive compounds. Phytother. Res., 2008, 22(6), 709-724.
[http://dx.doi.org/10.1002/ptr.2362] [PMID: 18446848]
[12]
Agarwal, M.K.; Iqbal, M.; Athar, M. Inhibitory effect of 18 β -glycyrrhetinic acid on 12- O -tetradecanoyl phorbol-13-acetate-induced cutaneous oxidative stress and tumor promotion in mice. Redox Rep., 2005, 10(3), 151-157.
[http://dx.doi.org/10.1179/135100005X57346] [PMID: 16156954]
[13]
Kowsalya, R.; Vishwanathan, P.; Manoharan, S. Chemopreventive potential of 18 β -glycyrrhetinic acid: An active constituent of liquorice, in 7,12-dimethylbenz(a)anthracene induced hamster buccal pouch carcinogenesis. Pak. J. Biol. Sci., 2011, 14(11), 619-626.
[http://dx.doi.org/10.3923/pjbs.2011.619.626] [PMID: 22235502]
[14]
Huang, R.Y.; Chu, Y.L.; Huang, Q.C.; Chen, X.M.; Jiang, Z.B.; Zhang, X.; Zeng, X. 18 β -Glycyrrhetinic acid suppresses cell proliferation through inhibiting thromboxane synthase in non-small cell lung cancer. PLoS One, 2014, 9(4), e93690.
[http://dx.doi.org/10.1371/journal.pone.0093690] [PMID: 24695790]
[15]
Hasan, S.K.; Khan, R.; Ali, N.; Khan, A.Q.; Rehman, M.U.; Tahir, M.; Lateef, A.; Nafees, S.; Mehdi, S.J.; Rashid, S.; Shahid, A.; Sultana, S. 18- β Glycyrrhetinic acid alleviates 2-acetylaminofluorene-induced hepatotoxicity in Wistar rats: Role in hyperproliferation, inflammation and oxidative stress. Hum. Exp. Toxicol., 2015, 34(6), 628-641.
[http://dx.doi.org/10.1177/0960327114554045] [PMID: 25352648]
[16]
Hasan, S.K.; Siddiqi, A.; Nafees, S.; Ali, N.; Rashid, S.; Ali, R.; Shahid, A.; Sultana, S. Chemopreventive effect of 18 β -glycyrrhetinic acid via modulation of inflammatory markers and induction of apoptosis in human hepatoma cell line (HepG2). Mol. Cell. Biochem., 2016, 416(1-2), 169-177.
[http://dx.doi.org/10.1007/s11010-016-2705-2] [PMID: 27116616]
[17]
Huang, Y.C.; Kuo, C.L.; Lu, K.W.; Lin, J.J.; Yang, J.L.; Wu, R.S.C.; Wu, P.P.; Chung, J.G. 18 α -glycyrrhetinic acid induces apoptosis of HL-60 human leukemia cells through caspases-and mitochondria-dependent signaling pathways. Molecules, 2016, 21, 872.
[http://dx.doi.org/10.3390/molecules21070872]
[18]
Wang, C.Y.; Kao, T.C.; Lo, W.H.; Yen, G.C. Glycyrrhizic acid and 18 β -glycyrrhetinic acid modulate lipopolysaccharide-induced inflammatory response by suppression of NF- κ B through PI3K p110 δ and p110γ inhibitions. J. Agric. Food Chem., 2011, 59(14), 7726-7733.
[http://dx.doi.org/10.1021/jf2013265] [PMID: 21644799]
[19]
Kao, T.C.; Shyu, M.H.; Yen, G.C. Glycyrrhizic acid and 18 β -glycyrrhetinic acid inhibit inflammation via PI3K/Akt/GSK3 β signaling and glucocorticoid receptor activation. J. Agric. Food Chem., 2010, 58(15), 8623-8629.
[http://dx.doi.org/10.1021/jf101841r] [PMID: 20681651]
[20]
Hardy, M.E.; Hendricks, J.M.; Paulson, J.M.; Faunce, N.R. 18 β -glycyrrhetinic acid inhibits rotavirus replication in culture. Virol. J., 2012, 9, 96.
[http://dx.doi.org/10.1186/1743-422X-9-96] [PMID: 22616823]
[21]
Wang, L.J.; Geng, C.A.; Ma, Y.B.; Huang, X.Y.; Luo, J.; Chen, H.; Zhang, X.M.; Chen, J.J. Synthesis, biological evaluation and structure-activity relationships of glycyrrhetinic acid derivatives as novel anti-hepatitis B virus agents. Bioorg. Med. Chem. Lett., 2012, 22(10), 3473-3479.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.081] [PMID: 22520261]
[22]
Yang, Y.; Zhu, Q.; Zhong, Y.; Cui, X.; Jiang, Z.; Wu, P.; Zheng, X.; Zhang, K.; Zhao, S. Synthesis, anti-microbial and anti-inflammatory activities of 18 β -glycyrrhetinic acid derivatives. Bioorg. Chem., 2020, 101, 103985.
[http://dx.doi.org/10.1016/j.bioorg.2020.103985] [PMID: 32544739]
[23]
Huang, L.R.; Hao, X.J.; Li, Q.J.; Wang, D.P.; Zhang, J.X.; Luo, H.; Yang, X.S. 18 β -Glycyrrhetinic acid derivatives possessing a trihydroxylated A ring are potent Gram-positive antibacterial agents. J. Nat. Prod., 2016, 79(4), 721-731.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00641] [PMID: 26928299]
[24]
Xiang, M.; Zhou, X.; Luo, T.R.; Wang, P.Y.; Liu, L.W.; Li, Z.; Wu, Z.B.; Yang, S. Design, synthesis, antibacterial evaluation, and induced apoptotic behaviors of novel epimeric and chiral 18 β -glycyrrhetinic acid ester derivatives with an isopropanolamine bridge against phytopathogens. J. Agric. Food Chem., 2019, 67(48), 13212-13220.
[http://dx.doi.org/10.1021/acs.jafc.9b06147] [PMID: 31702905]
[25]
Kalani, K.; Kushwaha, V.; Verma, R.; Murthy, P.K.; Srivastava, S.K. Glycyrrhetinic acid and its analogs: A new class of antifilarial agents. Bioorg. Med. Chem. Lett., 2013, 23(9), 2566-2570.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.115] [PMID: 23541646]
[26]
Schwarz, S.; Lucas, S.D.; Sommerwerk, S.; Csuk, R. Amino derivatives of glycyrrhetinic acid as potential inhibitors of cholinesterases. Bioorg. Med. Chem., 2014, 22(13), 3370-3378.
[http://dx.doi.org/10.1016/j.bmc.2014.04.046] [PMID: 24853320]
[27]
Makino, T.; Okajima, K.; Uebayashi, R.; Ohtake, N.; Inoue, K.; Mizukami, H. 3-Monoglucuronyl-glycyrrhretinic acid is a substrate of organic anion transporters expressed in tubular epithelial cells and plays important roles in licorice-induced pseudoaldosteronism by inhibiting 11 β -hydroxysteroid dehydrogenase 2. J. Pharmacol. Exp. Ther., 2012, 342(2), 297-304.
[http://dx.doi.org/10.1124/jpet.111.190009] [PMID: 22543032]
[28]
Tian, Q.; Wang, X.H.; Wang, W.; Zhang, C.N.; Wang, P.; Yuan, Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine, 2012, 8(6), 870-879.
[http://dx.doi.org/10.1016/j.nano.2011.11.002] [PMID: 22100756]
[29]
Dai, L.H.; Li, J.; Yang, J.G.; Men, Y.; Zeng, Y.; Cai, Y.; Sun, Y.X. Enzymatic synthesis of novel glycyrrhizic acid glucosides using a promiscuous bacillus glycosyltransferase. Catalysts, 2018, 8, 615.
[http://dx.doi.org/10.3390/catal8120615]
[30]
Lei, Y.; Kong, Y.; Sui, H.; Feng, J.; Zhu, R.; Wang, W. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation. Drug Deliv. Transl. Res., 2016, 6(5), 519-525.
[http://dx.doi.org/10.1007/s13346-016-0300-4] [PMID: 27206446]
[31]
Lallemand, B.; Gelbcke, M.; Dubois, J.; Prévost, M.; Jabin, I.; Kiss, R. Structure-activity relationship analyses of glycyrrhetinic acid derivatives as anticancer agents. Mini Rev. Med. Chem., 2011, 11(10), 881-887.
[http://dx.doi.org/10.2174/138955711796575443] [PMID: 21762107]
[32]
Roohbakhsh, A.; Iranshahy, M.; Iranshahi, M. Glycyrrhetinic acid and its derivatives: Anti-cancer and cancer chemopreventive properties, mechanisms of action and structure-cytotoxic activity relationship. Curr. Med. Chem., 2016, 23(5), 498-517.
[http://dx.doi.org/10.2174/0929867323666160112122256] [PMID: 26758798]
[33]
Xu, B.; Wu, G.R.; Zhang, X.Y.; Yan, M.M.; Zhao, R.; Xue, N.N.; Fang, K.; Wang, H.; Chen, M.; Guo, W.B.; Wang, P.L.; Lei, H.M. An overview of structurally modified glycyrrhetinic acid derivatives as antitumor agents. Molecules, 2017, 22(6), 924.
[http://dx.doi.org/10.3390/molecules22060924] [PMID: 28574470]
[34]
Gao, C.; Dai, F.J.; Cui, H.W.; Peng, S.H.; He, Y.; Wang, X.; Yi, Z.F.; Qiu, W.W. Synthesis of novel heterocyclic ring-fused 18 β -glycyrrhetinic acid derivatives with antitumor and antimetastatic activity. Chem. Biol. Drug Des., 2014, 84(2), 223-233.
[http://dx.doi.org/10.1111/cbdd.12308] [PMID: 24612785]
[35]
Alho, D.P.S.; Salvador, J.A.R.; Cascante, M.; Marin, S. Synthesis and antiproliferative activity of novel A-Ring cleaved glycyrrhetinic acid derivatives. Molecules, 2019, 24(16), 2938.
[http://dx.doi.org/10.3390/molecules24162938] [PMID: 31416117]
[36]
Gaware, R.; Khunt, R.; Czollner, L.; Stanetty, C.; Da Cunha, T.; Kratschmar, D.V.; Odermatt, A.; Kosma, P.; Jordis, U.; Classen-Houben, D. Synthesis of new glycyrrhetinic acid derived ring A azepanone, 29-urea and 29-hydroxamic acid derivatives as selective 11 β -hydroxysteroid dehydrogenase 2 inhibitors. Bioorg. Med. Chem., 2011, 19(6), 1866-1880.
[http://dx.doi.org/10.1016/j.bmc.2011.02.005] [PMID: 21376605]
[37]
Gao, Y.; Guo, X.; Li, X.; Liu, D.; Song, D.; Xu, Y.; Sun, M.; Jing, Y.; Zhao, L. The synthesis of glycyrrhetinic acid derivatives containing a nitrogen heterocycle and their antiproliferative effects in human leukemia cells. Molecules, 2010, 15(6), 4439-4449.
[http://dx.doi.org/10.3390/molecules15064439] [PMID: 20657452]
[38]
Gao, Z.B.; Hu, J.; Kang, X.; Xu, C.L.; Ju, Y. Synthesis of A-ring functional derivatives of 18β-glycyrrhetinic acid and their antiproliferative effect in tumor cells. Chem. J. Chin. Univ., 2012, 33, 750-754.
[39]
Hu, J.; Wu, Y.; Zhao, C.Q.; Ju, Y. Synthesis and anti-tumor activity of opening A-ring 18β-glycyrrhetinic acid A derivatives. Chem. J. Chin. Univ., 2010, 31, 1762-1768.
[40]
Alho, D.P.S.; Salvador, J.A.R.; Cascante, M.; Marin, S. Synthesis and antiproliferative activity of novel heterocyclic glycyrrhetinic acid derivatives. Molecules, 2019, 24(4), 766.
[http://dx.doi.org/10.3390/molecules24040766] [PMID: 30791593]
[41]
Csuk, R.; Schwarz, S.; Kluge, R.; Ströhl, D. Does one keto group matter? Structure-activity relationships of glycyrrhetinic acid derivatives modified at position C-11. Arch. Pharm. (Weinheim), 2012, 345(1), 28-32.
[http://dx.doi.org/10.1002/ardp.201000327] [PMID: 22076975]
[42]
Li, X.J.; Liu, Y.H.; Wang, N.; Liu, Y.Y.; Wang, S.; Wang, H.M.; Li, A.H.; Ren, S.D. Synthesis and discovery of 18 β -glycyrrhetinic acid derivatives inhibiting cancer stem cell properties in ovarian cancer cells. RSC Advances, 2019, 9, 27294-27304.
[http://dx.doi.org/10.1039/C9RA04961D]
[43]
Chen, C.X.; Li, X.Q.; Li, T.C.; Zhou, X.Z. Synthesis and anti-tumor activities of novel 18 β -glycyrrhetinic acid derivatives attaching dithiocarbamate units. Acta Chimi. Sin., 2012, 70, 852-858.
[http://dx.doi.org/10.6023/A1111051]
[44]
Stanetty, C.; Czollner, L.; Koller, I.; Shah, P.; Gaware, R.; Cunha, T.D.; Odermatt, A.; Jordis, U.; Kosma, P.; Classen-Houben, D. Synthesis of novel 3-amino and 29-hydroxamic acid derivatives of glycyrrhetinic acid as selective 11 β -hydroxysteroid dehydrogenase 2 inhibitors. Bioorg. Med. Chem., 2010, 18(21), 7522-7541.
[http://dx.doi.org/10.1016/j.bmc.2010.08.046] [PMID: 20851614]
[45]
Markov, A.V. Sen′kova, A.V.; Popadyuk, I.I.; Salomatina, O.V.; Logashenko, E.B.; Komarova, N.I.; IIyina, A.A.; Salakhutdinov, N.F.; Zenkova, M.A. Novel 3′-Substituted-1′,2′,4′-Oxadiazole derivatives of 18β H-glycyrrhetinic acid and their O-acylated amidoximes: Synthesis and evaluation of antitumor and anti-inflammatory potential in vitro and in vivo. Int. J. Mol. Sci., 2020, 21, 3511.
[http://dx.doi.org/10.3390/ijms21103511]
[46]
Csuk, R.; Schwarz, S.; Siewert, B.; Kluge, R.; Ströhl, D. Synthesis and antitumor activity of ring A modified glycyrrhetinic acid derivatives. Eur. J. Med. Chem., 2011, 46(11), 5356-5369.
[http://dx.doi.org/10.1016/j.ejmech.2011.08.038] [PMID: 21959232]
[47]
Gao, Z.; Kang, X.; Hu, J.; Ju, Y.; Xu, C. Induction of apoptosis with mitochondrial membrane depolarization by a glycyrrhetinic acid derivative in human leukemia K562 cells. Cytotechnology, 2012, 64(4), 421-428.
[http://dx.doi.org/10.1007/s10616-011-9419-9] [PMID: 22274625]
[48]
Guo, W.B.; Yan, M.M.; Xu, B.; Chu, F.H.; Wang, W.; Zhang, C.Z.; Jia, X.H.; Han, Y.T.; Xiang, H.J.; Zhang, Y.Z.; Wang, P.L.; Lei, H.M. Design, synthesis, and biological evaluation of the novel glycyrrhetinic acid-cinnamoyl hybrids as anti-tumor agents. Chem. Cent. J., 2016, 10, 78.
[http://dx.doi.org/10.1186/s13065-016-0222-8]
[49]
Cai, D.; Zhang, Z.H.; Chen, Y.; Zhang, Y.Y.; Sun, Y.Q.; Gong, Y.X. Exploring New Structural features of the 18 β -glycyrrhetinic acid scaffold for the inhibition of anaplastic lymphoma kinase. Molecules, 2019, 24, 3631.
[http://dx.doi.org/10.3390/molecules24193631]
[50]
Chen, C.X.; Wei, M.X.; Li, X.Q.; Li, T.C.; Zhou, X.Z. Rational synthesis and preliminary anti-cancer activities of 18-Glycyrrhetinic acid derivatives containing pyridinecarboxamide. Youji Huaxue, 2015, 35, 835-842.
[http://dx.doi.org/10.6023/cjoc201410013]
[51]
Cai, D.; Zhang, Z.H.; Chen, Y.; Ruan, C.; Li, S.Q.; Chen, S.Q.; Chen, L.S. Design, synthesis and biological evaluation of novel amide-linked 18 β -glycyrrhetinic acid derivatives as novel ALK inhibitors. RSC Advances, 2020, 10, 11694-11706.
[http://dx.doi.org/10.1039/D0RA00681E]
[52]
Mocellin, S. Nitric oxide: Cancer target or anticancer agent? Curr. Cancer Drug Targets, 2009, 9(2), 214-236.
[http://dx.doi.org/10.2174/156800909787581015] [PMID: 19275761]
[53]
Fukuto, J.M.; Wink, D.A. Nitric oxide (NO): Formation and biological roles in mammalian systems. Met. Ions Biol. Syst., 1999, 36, 547-595.
[PMID: 10093936]
[54]
Hirst, D.; Robson, T. Nitric oxide in cancer therapeutics: Interaction with cytotoxic chemotherapy. Curr. Pharm. Des., 2010, 16(4), 411-420.
[http://dx.doi.org/10.2174/138161210790232185] [PMID: 20236069]
[55]
Wink, D.A.; Ridnour, L.A.; Hussain, S.P.; Harris, C.C. The reemergence of nitric oxide and cancer. Nitric Oxide, 2008, 19(2), 65-67.
[http://dx.doi.org/10.1016/j.niox.2008.05.003] [PMID: 18638716]
[56]
Cerecetto, H.; Porcal, W. Pharmacological properties of furoxans and benzofuroxans: Recent developments. Mini Rev. Med. Chem., 2005, 5(1), 57-71.
[http://dx.doi.org/10.2174/1389557053402864] [PMID: 15638792]
[57]
Maksimovic-Ivanic, D.; Mijatovic, S.; Harhaji, L.; Miljkovic, D.; Dabideen, D.; Fan, Cheng K.; Mangano, K.; Malaponte, G.; Al-Abed, Y.; Libra, M.; Garotta, G.; Nicoletti, F.; Stosic-Grujicic, S. Anticancer properties of the novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide in vitro and in vivo. Mol. Cancer Ther., 2008, 7(3), 510-520.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2037] [PMID: 18347138]
[58]
Moharram, S.; Zhou, A.; Wiebe, L.I.; Knaus, E.E. Design and synthesis of 3′- and 5′- O -(3-benzenesulfonylfuroxan-4-yl)-2′-deoxyuridines: Biological evaluation as hybrid nitric oxide donor-nucleoside anticancer agents. J. Med. Chem., 2004, 47(7), 1840-1846.
[http://dx.doi.org/10.1021/jm030544m] [PMID: 15027876]
[59]
Boiani, M.; Cerecetto, H.; González, M.; Risso, M.; Olea-Azar, C.; Piro, O.E.; Castellano, E.E.; López de Ceráin, A.; Ezpeleta, O.; Monge-Vega, A. 1,2,5-Oxadiazole N -oxide derivatives as potential anti-cancer agents: Synthesis and biological evaluation. Part IV. Eur. J. Med. Chem., 2001, 36(10), 771-782.
[http://dx.doi.org/10.1016/S0223-5234(01)01265-X] [PMID: 11738485]
[60]
Lai, Y.; Shen, L.; Zhang, Z.; Liu, W.; Zhang, Y.; Ji, H.; Tian, J. Synthesis and biological evaluation of furoxan-based nitric oxide-releasing derivatives of glycyrrhetinic acid as anti-hepatocellular carcinoma agents. Bioorg. Med. Chem. Lett., 2010, 20(22), 6416-6420.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.070] [PMID: 20932754]
[61]
Lallemand, B.; Chaix, F.; Bury, M.; Bruyère, C.; Ghostin, J.; Becker, J.P.; Delporte, C.; Gelbcke, M.; Mathieu, V.; Dubois, J.; Prévost, M.; Jabin, I.; Kiss, R. N -(2-{3-[3,5-Bis(trifluoromethyl)phenyl] ureido} ethyl)-glycyrrhetinamide (6b): A novel anticancer glycyrrhetinic acid derivative that targets the proteasome and displays anti-kinase activity. J. Med. Chem., 2011, 54, 6501-6513.
[http://dx.doi.org/10.1021/jm200285z] [PMID: 21888390]
[62]
Lallemand, B.; Ouedraogo, M.; Wauthoz, N.; Lamkami, T.; Mathieu, V.; Jabin, I.; Amighi, K.; Kiss, R.; Dubois, J.; Goole, J. Synthesis and plasma pharmacokinetics in CD-1 mice of a 18 β -glycyrrhetinic acid derivative displaying anti-cancer activity. J. Pharm. Pharmacol., 2013, 65(3), 402-410.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01603.x] [PMID: 23356849]
[63]
Liu, Y.; Qian, K.; Wang, C.Y.; Chen, C.H.; Yang, X.; Lee, K.H. Synthesis and biological evaluation of novel spin labeled 18 β -glycyrrhetinic acid derivatives. Bioorg. Med. Chem. Lett., 2012, 22(24), 7530-7533.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.041] [PMID: 23122524]
[64]
Schwarz, S.; Csuk, R. Synthesis and antitumour activity of glycyrrhetinic acid derivatives. Bioorg. Med. Chem., 2010, 18(21), 7458-7474.
[http://dx.doi.org/10.1016/j.bmc.2010.08.054] [PMID: 20932766]
[65]
Csuk, R.; Schwarz, S.; Kluge, R.; Ströhl, D. Synthesis and biological activity of some antitumor active derivatives from glycyrrhetinic acid. Eur. J. Med. Chem., 2010, 45(12), 5718-5723.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.028] [PMID: 20884085]
[66]
Cusk, R.; Schwarz, S.; Kluge, R.; Ströhl, D. Improvement of the cytotoxicity and tumor selectivity of glycyrrhetinic acid by derivatization with bifunctional aminoacids. Arch. Pharm. Chem. Life Sci., 2011, 344, 505-513.
[http://dx.doi.org/10.1002/ardp.201100030]
[67]
Sun, J.; Liu, H.Y.; Lv, C.Z.; Qin, J.; Wu, Y.F. Modification, antitumor activity, and targeted PPAR γ study of 18 β -glycyrrhetinic acid, an important active ingredient of licorice. J. Agric. Food Chem., 2019, 67(34), 9643-9651.
[http://dx.doi.org/10.1021/acs.jafc.9b03442] [PMID: 31390199]
[68]
Wang, R.; Li, Y.; Huai, X.D.; Zheng, Q.X.; Wang, W.; Li, H.J.; Huai, Q.Y. Design and preparation of derivatives of oleanolic and glycyrrhetinic acids with cytotoxic properties. Drug Des. Devel. Ther., 2018, 12, 1321-1336.
[http://dx.doi.org/10.2147/DDDT.S166051] [PMID: 29861624]
[69]
Zhou, F.; Wu, G.R.; Cai, D.S.; Xu, B.; Yan, M.M.; Ma, T.; Guo, W.B.; Zhang, W.X.; Huang, X.M.; Jia, X.H.; Yang, Y.Q.; Gao, F.; Wang, P.L.; Lei, H.M.; Lei, H.M. Synthesis and biological activity of glycyrrhetinic acid derivatives as antitumor agents. Eur. J. Med. Chem., 2019, 178, 623-635.
[http://dx.doi.org/10.1016/j.ejmech.2019.06.029] [PMID: 31226654]
[70]
Song, D.; Gao, Y.; Wang, R.; Liu, D.; Zhao, L.; Jing, Y. Downregulation of c-FLIP, XIAP and Mcl-1 protein as well as depletion of reduced glutathione contribute to the apoptosis induction of glycyrrhetinic acid derivatives in leukemia cells. Cancer Biol. Ther., 2010, 9(2), 96-108.
[http://dx.doi.org/10.4161/cbt.9.2.10287] [PMID: 19949310]
[71]
Lin, K.W.; Huang, A.M.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. 18 β -Glycyrrhetinic acid derivatives induced mitochondrial-mediated apoptosis through reactive oxygen species-mediated p53 activation in NTUB1 cells. Bioorg. Med. Chem., 2011, 19(14), 4274-4285.
[http://dx.doi.org/10.1016/j.bmc.2011.05.054] [PMID: 21696969]
[72]
Parida, P.K.; Sau, A.; Ghosh, T.; Jana, K.; Biswas, K.; Raha, S.; Misra, A.K. Synthesis and evaluation of triazole linked glycosylated 18 β -glycyrrhetinic acid derivatives as anticancer agents. Bioorg. Med. Chem. Lett., 2014, 24(16), 3865-3868.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.054] [PMID: 25027936]
[73]
Zou, L.W.; Li, Y.G.; Wang, P.; Zhou, K.; Hou, J.; Jin, Q.; Hao, D.C.; Ge, G.B.; Yang, L. Design, synthesis, and structure-activity relationship study of glycyrrhetinic acid derivatives as potent and selective inhibitors against human carboxylesterase 2. Eur. J. Med. Chem., 2016, 112, 280-288.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.020] [PMID: 26900660]
[74]
Headland, S.E.; Norling, L.V. The resolution of inflammation: Principles and challenges. Semin. Immunol., 2015, 27(3), 149-160.
[http://dx.doi.org/10.1016/j.smim.2015.03.014] [PMID: 25911383]
[75]
Ishida, T.; Yoshida, M.; Arita, M.; Nishitani, Y.; Nishiumi, S.; Masuda, A.; Mizuno, S.; Takagawa, T.; Morita, Y.; Kutsumi, H.; Inokuchi, H.; Serhan, C.N.; Blumberg, R.S.; Azuma, T. Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflamm. Bowel Dis., 2010, 16(1), 87-95.
[http://dx.doi.org/10.1002/ibd.21029] [PMID: 19572372]
[76]
Hasturk, H.; Kantarci, A.; Ohira, T.; Arita, M.; Ebrahimi, N.; Chiang, N.; Petasis, N.A.; Levy, B.D.; Serhan, C.N.; Van Dyke, T.E. RvE1 protects from local inflammation and osteoclast- mediated bone destruction in periodontitis. FASEB J., 2006, 20(2), 401-403.
[http://dx.doi.org/10.1096/fj.05-4724fje] [PMID: 16373400]
[77]
Levy, B.D.; Kohli, P.; Gotlinger, K.; Haworth, O.; Hong, S.; Kazani, S.; Israel, E.; Haley, K.J.; Serhan, C.N. Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness. J. Immunol., 2007, 178(1), 496-502.
[http://dx.doi.org/10.4049/jimmunol.178.1.496] [PMID: 17182589]
[78]
Haworth, O.; Cernadas, M.; Yang, R.; Serhan, C.N.; Levy, B.D. Resolvin E1 regulates interleukin 23, interferon- γ and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat. Immunol., 2008, 9(8), 873-879.
[http://dx.doi.org/10.1038/ni.1627] [PMID: 18568027]
[79]
Keyes, K.T.; Ye, Y.; Lin, Y.; Zhang, C.; Perez-Polo, J.R.; Gjorstrup, P.; Birnbaum, Y. Resolvin E1 protects the rat heart against reperfusion injury. Am. J. Physiol. Heart Circ. Physiol., 2010, 299(1), H153-H164.
[http://dx.doi.org/10.1152/ajpheart.01057.2009] [PMID: 20435846]
[80]
LeMieux, M.J.; Kalupahana, N.S.; Scoggin, S.; Moustaid-Moussa, N. Eicosapentaenoic acid reduces adipocyte hypertrophy and inflammation in diet-induced obese mice in an adiposity-independent manner. J. Nutr., 2015, 145(3), 411-417.
[http://dx.doi.org/10.3945/jn.114.202952] [PMID: 25733455]
[81]
Su, X.; Lawrence, H.; Ganeshapillai, D.; Cruttenden, A.; Purohit, A.; Reed, M.J.; Vicker, N.; Potter, B.V.L. Novel 18 β -glycyrrhetinic acid analogues as potent and selective inhibitors of 11 β -hydroxysteroid dehydrogenases. Bioorg. Med. Chem., 2004, 12(16), 4439-4457.
[http://dx.doi.org/10.1016/j.bmc.2004.06.008] [PMID: 15265495]
[82]
Kratschmar, D.V.; Vuorinen, A.; Da Cunha, T.; Wolber, G.; Classen-Houben, D.; Doblhoff, O.; Schuster, D.; Odermatt, A. Characterization of activity and binding mode of glycyrrhetinic acid derivatives inhibiting 11 β -hydroxysteroid dehydrogenase type 2. J. Steroid Biochem. Mol. Biol., 2011, 125(1-2), 129-142.
[http://dx.doi.org/10.1016/j.jsbmb.2010.12.019] [PMID: 21236343]
[83]
Kim, H.K.; Park, Y.; Kim, H.N.; Choi, B.H.; Jeong, H.G.; Lee, D.G.; Hahm, K.S. Antimicrobial mechanism of β -glycyrrhetinic acid isolated from licorice, Glycyrrhiza glabra. Biotechnol. Lett., 2002, 24, 1899-1902.
[http://dx.doi.org/10.1023/A:1020900124997]
[84]
Baltina, L.A.; Zarubaev, V.V.; Baltina, L.A.; Orshanskaya, I.A.; Fairushina, A.I.; Kiselev, O.I.; Yunusov, M.S. Glycyrrhizic acid derivatives as influenza A/H1N1 virus inhibitors. Bioorg. Med. Chem. Lett., 2015, 25(8), 1742-1746.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.074] [PMID: 25801933]
[85]
Baltina, L.A.; Tasi, Y.T.; Huang, S.H.; Lai, H.C.; Baltina, L.A.; Petrova, S.F.; Yunusov, M.S.; Lin, C.W. Glycyrrhizic acid derivatives as Dengue virus inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(20), 126645.
[http://dx.doi.org/10.1016/j.bmcl.2019.126645] [PMID: 31519375]
[86]
Zhong, Y.Y.; Chen, H.S.; Wu, P.P.; Zhang, B.J.; Yang, Y.; Zhu, Q.Y.; Zhang, C.G.; Zhao, S.Q. Synthesis and biological evaluation of novel oleanolic acid analogues as potential α -glucosidase inhibitors. Eur. J. Med. Chem., 2019, 164, 706-716.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.046] [PMID: 30677669]
[87]
Li, H.E.; Qiu, J.Z.; Yang, Z.Q.; Dong, J.; Wang, J.F.; Luo, M.J.; Pan, J.; Dai, X.H.; Zhang, Y.; Song, B.L.; Deng, X.M. Glycyrrhetinic acid protects mice from Staphylococcus aureus pneumonia. Fitoterapia, 2012, 83(1), 241-248.
[http://dx.doi.org/10.1016/j.fitote.2011.10.018] [PMID: 22085765]
[88]
Baltina, L.A.; Kondratenko, R.M.; Bulgakov, A.K. Synthesis and anti-microbial activity of benzylidenhydrazides of glycyrrethic acid. Russ. J. Bioorganic Chem., 2020, 46, 246-251.
[http://dx.doi.org/10.1134/S1068162020020065]
[89]
Zígolo, M.A.; Salinas, M.; Alché, L.; Baldessari, A.; Liñares, G.G. Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg. Chem., 2018, 78, 210-219.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.018] [PMID: 29602045]
[90]
Markov, A.V.; Sen’kova, A.V.; Warszycki, D.; Salomatina, O.V.; Salakhutdinov, N.F.; Zenkova, M.A.; Logashenko, E.B. Soloxolone methyl inhibits influenza virus replication and reduces virus-induced lung inflammation. Sci. Rep., 2017, 7(1), 13968.
[http://dx.doi.org/10.1038/s41598-017-14029-0] [PMID: 29070858]
[91]
Liang, S.; Li, M.; Yu, X.; Jin, H.; Zhang, Y.; Zhang, L.; Zhou, D.; Xiao, S. Synthesis and structure-activity relationship studies of water-soluble β -cyclodextrin-glycyrrhetinic acid conjugates as potential anti-influenza virus agents. Eur. J. Med. Chem., 2019, 166, 328-338.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.074] [PMID: 30731401]
[92]
Lin, A.; Liu, Y.; Huang, Y.; Sun, J.; Wu, Z.; Zhang, X.; Ping, Q. Glycyrrhizin surface-modified chitosan nanoparticles for hepatocyte-targeted delivery. Int. J. Pharm., 2008, 359(1-2), 247-253.
[http://dx.doi.org/10.1016/j.ijpharm.2008.03.039] [PMID: 18457928]
[93]
Jeong, H.G.; You, H.J.; Park, S.J.; Moon, A.R.; Chung, Y.C.; Kang, S.K.; Chun, H.K. Hepatoprotective effects of 18 β -glycyrrhetinic acid on carbon tetrachloride-induced liver injury: Inhibition of cytochrome P450 2E1 expression. Pharmacol. Res., 2002, 46(3), 221-227.
[http://dx.doi.org/10.1016/S1043-6618(02)00121-4] [PMID: 12220964]
[94]
Chen, S.; Zou, L.; Li, L.; Wu, T. The protective effect of glycyrrhetinic acid on carbon tetrachloride-induced chronic liver fibrosis in mice via upregulation of Nrf2. PLoS One, 2013, 8(1), e53662.
[http://dx.doi.org/10.1371/journal.pone.0053662] [PMID: 23341968]
[95]
Wu, S.Y.; Cui, S.C.; Wang, L.; Zhang, Y.T.; Yan, X.X.; Lu, H.L.; Xing, G.Z.; Ren, J.; Gong, L.K. 18 β -Glycyrrhetinic acid protects against alpha-naphthylisothiocyanate-induced cholestasis through activation of the Sirt1/FXR signaling pathway. Acta Pharmacol. Sin., 2018, 39(12), 1865-1873.
[http://dx.doi.org/10.1038/s41401-018-0110-y] [PMID: 30061734]
[96]
Mahmoud, A.M.; Al Dera, H.S. 18 β -Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: Potential role of PPARγ and Nrf2 upregulation. Genes Nutr., 2015, 10(6), 41.
[http://dx.doi.org/10.1007/s12263-015-0491-1] [PMID: 26386843]
[97]
Mahmoud, A.M.; Hussein, O.E.; Hozayen, W.G.; Abd El-Twab, S.M. Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARγ and Nrf2: Protective effect of 18 β -Glycyrrhetinic acid. Chem. Biol. Interact., 2017, 270, 59-72.
[http://dx.doi.org/10.1016/j.cbi.2017.04.009] [PMID: 28414158]
[98]
Huo, T.G.; Fang, Y.; Zhang, Y.H.; Feng, C.; Jiang, H. Liver metabonomics study on the protective effect of glycyrrhetinic acid against realgar-induced liver injury. Chin. J. Nat. Med., 2020, 18(2), 138-147.
[http://dx.doi.org/10.1016/S1875-5364(20)30014-5] [PMID: 32172949]
[99]
Yang, Y.; Yang, L.; Han, Y.; Wu, Z.; Chen, P.; Zhang, H.; Zhou, J. Protective effects of hepatocyte-specific glycyrrhetic derivatives against carbon tetrachloride-induced liver damage in mice. Bioorg. Chem., 2017, 72, 42-50.
[http://dx.doi.org/10.1016/j.bioorg.2017.03.009] [PMID: 28346874]
[100]
Ablise, M.; Leininger-Muller, B.; Wong, C.D.; Siest, G.; Loppinet, V.; Visvikis, S. Synthesis and in vitro antioxidant activity of glycyrrhetinic acid derivatives tested with the cytochrome P450/NADPH system. Chem. Pharm. Bull. (Tokyo), 2004, 52(12), 1436-1439.
[http://dx.doi.org/10.1248/cpb.52.1436] [PMID: 15577240]
[101]
Maitraie, D.; Hung, C.F.; Tu, H.Y.; Liou, Y.T.; Wei, B.L.; Yang, S.C.; Wang, J.P.; Lin, C.N. Synthesis, anti-inflammatory, and antioxidant activities of 18 β -glycyrrhetinic acid derivatives as chemical mediators and xanthine oxidase inhibitors. Bioorg. Med. Chem., 2009, 17(7), 2785-2792.
[http://dx.doi.org/10.1016/j.bmc.2009.02.025] [PMID: 19278854]
[102]
Huang, L.; Yu, D.; Ho, P.; Qian, K.; Lee, K.H.; Chen, C.H. Synthesis and proteasome inhibition of glycyrrhetinic acid derivatives. Bioorg. Med. Chem., 2008, 16(14), 6696-6701.
[http://dx.doi.org/10.1016/j.bmc.2008.05.078] [PMID: 18562200]
[103]
Li, X.L.; Zhou, A.G. Evaluation of the immunity activity of glycyrrhizin in AR mice. Molecules, 2012, 17(1), 716-727.
[http://dx.doi.org/10.3390/molecules17010716] [PMID: 22241467]
[104]
Lu, K.P. Pinning down cell signaling, cancer and Alzheimer’s disease. Trends Biochem. Sci., 2004, 29(4), 200-209.
[http://dx.doi.org/10.1016/j.tibs.2004.02.002] [PMID: 15082314]
[105]
Lu, K.P.; Hanes, S.D.; Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature, 1996, 380(6574), 544-547.
[http://dx.doi.org/10.1038/380544a0] [PMID: 8606777]
[106]
Lu, K.P.; Zhou, X.Z. The prolyl isomerase PIN1: A pivotal new twist in phosphorylation signalling and disease. Nat. Rev. Mol. Cell Biol., 2007, 8(11), 904-916.
[http://dx.doi.org/10.1038/nrm2261] [PMID: 17878917]
[107]
Li, K.; Ma, T.; Cai, J.; Huang, M.; Guo, H.; Zhou, D.; Luan, S.; Yang, J.; Liu, D.; Jing, Y.; Zhao, L. Conjugates of 18β-glycyrrhetinic acid derivatives with 3-(1H-benzo[d]imidazol-2-yl)propanoic acid as Pin1 inhibitors displaying anti-prostate cancer ability. Bioorg. Med. Chem., 2017, 25(20), 5441-5451.
[http://dx.doi.org/10.1016/j.bmc.2017.08.002] [PMID: 28838831]
[108]
Khaksa, G.; Zolfaghari, M.E.; Dehpour, A.R.; Samadian, T. Anti-inflammatory and anti-nociceptive activity of disodium glycyrrhetinic acid hemiphthalate. Planta Med., 1996, 62(4), 326-328.
[http://dx.doi.org/10.1055/s-2006-957894] [PMID: 8792664]
[109]
Inoue, H.; Kurosu, S.; Takeuchi, T.; Mori, T.; Shibata, S. Glycyrrhetinic acid derivatives: Anti-nociceptive activity of deoxoglycyrrhetol dihemiphthalate and the related compounds. J. Pharm. Pharmacol., 1990, 42(3), 199-200.
[http://dx.doi.org/10.1111/j.2042-7158.1990.tb05386.x] [PMID: 1974618]
[110]
Tyagi, R.; Verma, S.; Mishra, S.; Srivastava, M.; Alam, S.; Khan, F.; Srivastava, S.K. In vitro and in silico studies of glycyrrhetinic acid derivatives as anti-filarial agents. Curr. Top. Med. Chem., 2019, 19(14), 1191-1200.
[http://dx.doi.org/10.2174/1568026619666190618141450] [PMID: 31210109]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy