Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

An Update on the Synthesis and Pharmacological Properties of Pyrazoles Obtained from Chalcone

Author(s): Jaqueline E. Queiroz, Lucas D. Dias, Giuliana M. Vila Verde, Gilberto L.B. Aquino* and Ademir J. Camargo

Volume 26, Issue 2, 2022

Published on: 31 January, 2022

Page: [81 - 90] Pages: 10

DOI: 10.2174/1385272826666220119110347

Price: $65

Abstract

A review concerning the synthesis and pharmacological properties of pyrazoles obtained from Chalcone described in the literature over the last 5 years (2016-2020) was presented and discussed. Among the synthetic approaches for pyrazoles described so far, the cyclization and acetylation method of α,β-unsaturated chalcones, and substituted hydrazine were selected and analyzed. 105 pyrazole derivatives (3-107) were evaluated as well as their pharmacological activities, namely, antineoplastic, anti-inflammatory, antioxidant, antibacterial, antifungal, antimycobacterial, antiplasmodial, Alzheimer's disease, enzymes inhibition (like acetylcholinesterase, carbonic anhydrase, and malonyl CoA decarboxylase), anticonvulsant, among others. Pyrazolic compounds are widely used in the design of the new drug with a wide spectrum of pharmacological approaches. Therefore, it is relevant to research the synthetic methods and therapeutic properties of different pyrazole derivatives.

Keywords: Synthesis, chalcones, pyrazoles, biological activities, antimicrobial, antineoplastic.

« Previous
Graphical Abstract
[1]
Araújo, R.S.; Alcântara, A.M.; Abegão, L.M.G.; Souza, Y.P.; Brandão Silva, A.C.; Machado, R.; Joatan Rodrigues, J.; Rodriguez Pliego, J.; d’Errico, F.; Siqueira Valle, M.; Alencar, M.A.R.C. Second harmonic generation in pyrazoline derivatives of dibenzylideneacetones and chalcone: A combined experimental and theoretical approach. J. Photochem. Photobiol. Chem., 2013, 2020(388), 112147.
[2]
Xiong, W.; Chen, J.X.; Liu, M.C.; Ding, J.C.; Wu, H.Y.; Su, W.K. A general and efficient synthesis of pyrazoles catalyzed by Sc(OTf)3 under solvent-free conditions. J. Braz. Chem. Soc., 2009, 20(2), 367-347.
[http://dx.doi.org/10.1590/S0103-50532009000200023]
[3]
Fustero, S.; Sánchez-Roselló, M.; Barrio, P.; Simón-Fuentes, A. From 2000 to mid-2010: A fruitful decade for the synthesis of pyrazoles. Chem. Rev., 2011, 111(11), 6984-7034.
[http://dx.doi.org/10.1021/cr2000459] [PMID: 21806021]
[4]
Wang, S.; Zhang, B.; Chen, J.; Zheng, Y.; Feng, N.; Ma, A.; Xu, X.; Abdullah, M.A. Recent progress in synthesis of polysubstituted pyrazoles. Youji Huaxue, 2020, 40(1), 15-27.
[http://dx.doi.org/10.6023/cjoc201906007]
[5]
Cacchi, S.; Fabrizi, G.; Carangio, A. Functionalised pyrazoles through a facile one-pot procedure from N-Tosyl-N-Propargylhydrazine and aryl iodides or vinyl triflates. Synlett, 1997, 1997(8), 959-961.
[http://dx.doi.org/10.1055/s-1997-936]
[6]
Takfaoui, A.; Zhao, L.; Touzani, R.; Dixneuf, P.H.; Doucet, H. Palladium-catalysed direct diarylations of pyrazoles with aryl bromides: A one step access to 4,5-Diarylpyrazoles. Tetrahedron Lett., 2014, 55(10), 1697-1701.
[http://dx.doi.org/10.1016/j.tetlet.2014.01.079]
[7]
Shao, J.; Shu, K.; Liu, S.; Zhu, H.; Zhang, J.; Zhang, C.; Zeng, L.H.; Chen, W. Palladium-catalyzed synthesis of polysubstituted pyrazoles by ring-opening reactions of 2 H -Azirines with hydrazones. Synlett, 2021, 32(3), 316-320.
[http://dx.doi.org/10.1055/s-0040-1707262]
[8]
Almirante, N.; Cerri, A.; Fedrizzi, G.; Marazzi, G.; Santagostino, M.A. General, [1+4] approach to the synthesis of 3(5)-substituted pyrazoles from aldehydes. Tetrahedron Lett., 1998, 39(20), 3287-3290.
[http://dx.doi.org/10.1016/S0040-4039(98)00472-9]
[9]
Aggarwal, V.K.; de Vicente, J.; Bonnert, R.V. A novel one-pot method for the preparation of pyrazoles by 1,3-dipolar cycloadditions of diazo compounds generated in situ. J. Org. Chem., 2003, 68(13), 5381-5383.
[http://dx.doi.org/10.1021/jo0268409] [PMID: 12816503]
[10]
Feng, G.; Xu, S.; Chen, R.; Chen, W.; Wang, K.K.; Wang, S. Facile synthesis of pyrazoles via [3 + 2] cycloaddition of diazocarbonyl compounds and enones. Tetrahedron Lett., 2020, 61(49), 152622.
[http://dx.doi.org/10.1016/j.tetlet.2020.152622]
[11]
Deng, X.; Mani, N.S. Reaction of N-monosubstituted hydrazones with nitroolefins: A novel regioselective pyrazole synthesis. Org. Lett., 2006, 8(16), 3505-3508.
[http://dx.doi.org/10.1021/ol061226v] [PMID: 16869646]
[12]
Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Synthesis of pyrazoles through catalyst-free cycloaddition of diazo compounds to alkynes. Green Chem., 2009, 11(2), 156-159.
[http://dx.doi.org/10.1039/B812242C]
[13]
Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Vélez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem., 2013, 67, 252-262.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.049] [PMID: 23871905]
[14]
Bhat, B.A.; Dhar, K.L.; Puri, S.C.; Saxena, A.K.; Shanmugavel, M.; Qazi, G.N. Synthesis and biological evaluation of chalcones and their derived pyrazoles as potential cytotoxic agents. Bioorg. Med. Chem. Lett., 2005, 15(12), 3177-3180.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.121] [PMID: 15893928]
[15]
Nagendra Chowdary, B.; Umashankara, M.; Dinesh, B.; Girish, K.; Ramesha Baba, A. Development of 5-(Aryl)-3-Phenyl-1H-pyrazole derivatives as potent antimicrobial compounds. Asian J. Chem., 2019, 31(1), 45-50.
[http://dx.doi.org/10.14233/ajchem.2019.21455]
[16]
Chaudhari, P.P.; Dhivare, R.S.; Rajput, S.S. Microwave assisted synthesis of heterocycles accompanied by antimicrobial screening. J. Adv. Scholar. Res. Allied Educ., 2018, 15(2), 324-329.
[http://dx.doi.org/10.29070/15/56840]
[17]
Fustero, S.; Antonio, S.F.; Sanz-Cervera, J.F. Recent advances in the synthesis of pyrazoles. A review. Org. Prep. Proced. Int., 2009, 21(4), 253-290.
[http://dx.doi.org/10.1080/00304940903077832]
[18]
Patil, C.B.; Mahajan, S.K.; Katti, S.A. Chalcone: A versatile molecule. J. Pharm. Sci. Res., 2009, 1(3), 11-22.
[19]
Queiroz, J.E.; Vila Verde, G.M.; Pereira, M.M.; Ramos Silva, M.; Aquino, G.L.B. 4-(4-Methoxyphenyl)-5,7-Dimethylchroman-2-One. IUCrdata, 2016, 1(3), x160430.
[http://dx.doi.org/10.1107/S2414314616004302]
[20]
Rammohan, A.; Reddy, J.S.; Sravya, G.; Rao, C.N.; Zyryanov, G.V. Chalcone synthesis, properties and medicinal applications: A review. Environ. Chem. Lett., 2020, 18, 433-458.
[http://dx.doi.org/10.1007/s10311-019-00959-w]
[21]
Al-Karawi, A.J.M.; Hammood, A.J.; Awad, A.A. OmarAli, A.A.B.; Khudhaier, S.R.; Al- Heetimi, D.T.A.; Majeed, S.G. Synthesis and mesomorphism behaviour of chalcones and pyrazoles type compounds as photo-luminescent materials. Liq. Cryst., 2018, 45(11), 1603-1619.
[http://dx.doi.org/10.1080/02678292.2018.1446553]
[22]
Hassan, A.H.; Mohammed, H.H. Synthesis and biological evaluation of schiff bases and pyrazole derivatives derive from chalcones, (2e)-1-(4- Aminophenyl)-3-(2-Furyl)Prop-2-En-1-one. Intern. J. Pharm. Res., 2020, 12(1)
[23]
Banpurkar, A.R.; Wazalwar, S.S.; Perdih, F. Single-Crystal X-Ray diffraction study of novel pyrazole chalcone derived from 1-Phenyl-3-p-Tolyl-1H-Pyrazole-4-Carbaldehyde. Indian J. Chem., 2020, 59B(1), 143-146.
[24]
Tala, S.D.; Vekariya, P.B.; Ghetiya, R.M.; Dodiya, B.L.; Joshi, H.S. Synthesis and biological study of some new chalcone and pyrazole derivatives. Indian J. Chem., 2013, 52(6), 807-809.
[25]
Kedar, M.S.; Shirbhate, M.P.; Chauhan, R.; Sharma, S.; Verma, A. Design synthesis and evaluation of anticancer pyrazole derivatives of chalcone scaffold. Res. J. Pharm. Technol., 2020, 13(1), 342-346.
[http://dx.doi.org/10.5958/0974-360X.2020.00069.4]
[26]
Aziz, H.; Zahoor, A.F.; Ahmad, S. Pyrazole bearing molecules as bioactive scaffolds: A review. J. Chil. Chem. Soc., 2020, 65(1), 4743-4753.
[http://dx.doi.org/10.4067/S0717-97072020000104746]
[27]
Jagdale, D.M.; Ramaa, C.S. Design, synthesis and in vitro evaluation of some small molecules malonyl coa decarboxylase inhibitors containing pyrazoline scaffold and study of their binding interactions with malonyl coa decarboxylase via preliminary docking simulation. Med. Chem. Res., 2017, 26(9), 2127-2140.
[http://dx.doi.org/10.1007/s00044-017-1917-7]
[28]
Mishra, V.K.; Mishra, M.; Kashaw, V.; Kashaw, S.K. Synthesis of 1,3,5-trisubstituted pyrazolines as potential antimalarial and antimicrobial agents. Bioorg. Med. Chem., 2017, 25(6), 1949-1962.
[http://dx.doi.org/10.1016/j.bmc.2017.02.025] [PMID: 28237557]
[29]
Kumar, S.; Kumar, G.; Kapoor, M.; Surolia, A.; Surolia, N. Synthesis and evaluation of substituted pyrazoles: potential antimalarials targeting the enoyl-acp reductase of plasmodium falciparum. Synth. Commun., 2006, 36(2), 215-226.
[http://dx.doi.org/10.1080/00397910500334561]
[30]
Yamali, C.; Gul, H.I.; Kazaz, C.; Levent, S.; Gulcin, I. Synthesis, structure elucidation, and in vitro pharmacological evaluation of novel polyfluoro substituted pyrazoline type sulfonamides as multi-target agents for inhibition of acetylcholinesterase and carbonic anhydrase I and II enzymes. Bioorg. Chem., 2020, 96(01), 103627.
[http://dx.doi.org/10.1016/j.bioorg.2020.103627] [PMID: 32058104]
[31]
Kostopoulou, I.; Diassakou, A.; Kavetsou, E.; Kritsi, E.; Zoumpoulakis, P.; Pontiki, E.; Hadjipavlou-Litina, D.; Detsi, A. Novel quinolinone-pyrazoline hybrids: synthesis and evaluation of antioxidant and lipoxygenase inhibitory activity. Mol. Divers., 2021, 25(2), 723-740.
[http://dx.doi.org/10.1007/s11030-020-10045-x] [PMID: 32065346]
[32]
Farooq, S.; Ngaini, Z. One pot and two pot synthetic strategies and biological applications of epoxy-chalcones. Chem. Africa, 2020, 3(2), 291-302.
[http://dx.doi.org/10.1007/s42250-020-00128-5]
[33]
El Shehry, M.F.; Ewies, E.F.; Zayed, E.M. Synthesis of new pyrazole derivatives, their anti-inflammatory and analgesic activities, and molecular docking studies. Russ. J. Gen. Chem., 2019, 89(3), 492-498.
[http://dx.doi.org/10.1134/S1070363219030216]
[34]
Fioravanti, R.; Desideri, N.; Carta, A.; Atzori, E.M.; Delogu, I.; Collu, G.; Loddo, R. Inhibitors of yellow fever virus replication based on 1,3,5-triphenyl-4,5-dihydropyrazole scaffold: design, synthesis and antiviral evaluation. Eur. J. Med. Chem., 2017, 141, 15-25.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.060] [PMID: 29028528]
[35]
Fichez, J.; Busca, P. Chapter 6: Pyrazoles as Antiviral Agents. In: Pyrazole: Preparation and Uses; Pal, D., Ed.; Chemistry Research and Applications. Nova Science Publishers: New York, 2020.
[36]
Ramírez-Prada, J.; Robledo, S.M.; Vélez, I.D.; Crespo, M.D.P.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline-based 4,5-dihydro-1H-pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur. J. Med. Chem., 2017, 131, 237-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.016] [PMID: 28329730]
[37]
Mohamed, T.K.; Batran, R.Z.; Elseginy, S.A.; Ali, M.M.; Mahmoud, A.E. Synthesis, anticancer effect and molecular modeling of new thiazolylpyrazolyl coumarin derivatives targeting VEGFR-2 kinase and inducing cell cycle arrest and apoptosis. Bioorg. Chem., 2019, 85, 253-273.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.040] [PMID: 30641320]
[38]
Kumar, S.; Saini, A.; Gut, J.; Rosenthal, P.J.; Raj, R.; Kumar, V. 4-Aminoquinoline-chalcone/-N-acetylpyrazoline conjugates: Synthesis and antiplasmodial evaluation. Eur. J. Med. Chem., 2017, 138, 993-1001.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.041] [PMID: 28756265]
[39]
Deohate, P.P.; Mulani, R.S. Microwave irradiative synthesis of triazine substituted pyrazoles and study of antitubercular and antimicrobial activities. Asian J. Chem., 2019, 31(5), 1087-1090.
[http://dx.doi.org/10.14233/ajchem.2019.21826]
[40]
Sowmya, P.V.; Poojary, B.; Revanasiddappa, B.C.; Vijayakumar, M.; Nikil, P.; Kumar, V. Novel 2-Methyl-6-Arylpyridines carrying active pharmacophore 4,5-dihydro 2-pyrazolines: synthesis, antidepressant, and anti-tuberculosis evaluation. Res. Chem. Intermed., 2017, 43(12), 7399-7422.
[http://dx.doi.org/10.1007/s11164-017-3083-4]
[41]
Sravanthi, T.V.; Sajitha Lulu, S.; Vino, S.; Jayasri, M.A.; Mohanapriya, A.; Manju, S.L. Synthesis, docking, and evaluation of novel thiazoles for potent antidiabetic activity. Med. Chem. Res., 2017, 26(6), 1306-1315.
[http://dx.doi.org/10.1007/s00044-017-1851-8]
[42]
Prabhudeva, M.G.; Bharath, S.; Kumar, A.D.; Naveen, S.; Lokanath, N.K.; Mylarappa, B.N.; Kumar, K.A. Design and environmentally benign synthesis of novel thiophene appended pyrazole analogues as anti-inflammatory and radical scavenging agents: Crystallographic, in silico modeling, docking and SAR characterization. Bioorg. Chem., 2017, 73, 109-120.
[http://dx.doi.org/10.1016/j.bioorg.2017.06.004] [PMID: 28648923]
[43]
Fatahala, S.S.; Nofal, S.; Mahmoud, E.; Abd El-Hameed, R.H. Pyrrolopyrazoles: Synthesis, evaluation and pharmacological screening as antidepressant agents. Med. Chem., 2019, 15(8), 911-922.
[http://dx.doi.org/10.2174/1573406414666181108090321] [PMID: 30406741]
[44]
Beyhan, N.; Kocyigit-Kaymakcioglu, B.; Gümrü, S.; Aricioglu, F. Synthesis and anticonvulsant activity of some 2-pyrazolines derived from chalcones. Arab. J. Chem., 2017, 10, S2073-S2081.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.037]
[45]
Kerzare, D.R.; Menghani, S.S.; Rarokar, N.R.; Khedekar, P.B. Development of novel indole-linked pyrazoles as anticonvulsant agents: A molecular hybridization approach. Arch. Pharm. (Weinheim), 2021, 354(1), e2000100.
[http://dx.doi.org/10.1002/ardp.202000100] [PMID: 32909304]
[46]
Devi, N.; Shankar, R.; Singh, V. 4-Formyl-Pyrazole-3-Carboxylate: A useful aldo-x bifunctional precursor for the syntheses of pyrazole-fused/substituted frameworks. J. Heterocycl. Chem., 2018, 55(2), 373-390.
[http://dx.doi.org/10.1002/jhet.3045]
[47]
Kausar, N.; Ullah, S.; Khan, M.A.; Zafar, H. Atia-Tul-Wahab; Choudhary, M.I.; Yousuf, S. Celebrex derivatives: Synthesis, α-glucosidase inhibition, crystal structures and molecular docking studies. Bioorg. Chem., 2021, 106, 104499.
[http://dx.doi.org/10.1016/j.bioorg.2020.104499] [PMID: 33288319]
[48]
Sommer, H.; Braun, M.; Schröder, B.; Kirschning, A. 4-Ethoxy-1,1,1-Trifluoro-3-Buten-2-One (ETFBO), a versatile precursor for trifluoromethyl-substituted heteroarenes - A short synthesis of celebrex® (celecoxib). Synlett, 2018, 29(1), 121-125.
[http://dx.doi.org/10.1055/s-0036-1589097]
[49]
Niţulescu, G.M.; Nedelcu, G.; Buzescu, A.; Velescu, B.Ş.; Olaru, O.T. The pyrazole scaffold in drug development. A target profile analysis. Studia Universitatis Vasile Goldis Arad Seria Stiintele Vietii, 2015, 25(2), 79-85.
[50]
LAPES. StArt, state of the art through systematic review. Available from: http://lapes.dc.ufscar.br/tools/start_tool (accessed 2021-02-02).
[51]
Kristanti, A.N.; Suwito, H.; Aminah, N.S.; Haq, K.U.; Hardiyanti, H.D.; Anggraeni, H.; Faiza, N.; Anto, R.S.; Muharromah, S. Synthesis of some chalcone derivatives, in vitro and in silico toxicity evaluation. Rasayan J. Chem., 2020, 13(1), 654-662.
[http://dx.doi.org/10.31788/RJC.2020.1315534]
[52]
Bui, T.H.; Nguyen, N.T.; Dang, P.H.; Nguyen, H.X.; Nguyen, M.T.T. Design and synthesis of chalcone derivatives as potential non-purine xanthine oxidase inhibitors. Springerplus, 2016, 5(1), 1789.
[http://dx.doi.org/10.1186/s40064-016-3485-6] [PMID: 27795931]
[53]
Wijayanti, L.W.; Swasono, R.T.; Lee, W.; Jumina, J. Synthesis and evaluation of chalcone derivatives as novel sunscreen agent. Molecules, 2021, 26(9), 2698.
[http://dx.doi.org/10.3390/molecules26092698] [PMID: 34064528]
[54]
Kamal, A.; Shankaraiah, N.; Prabhakar, S.; Reddy, ChR.; Markandeya, N.; Reddy, K.L.; Devaiah, V. Solid-phase synthesis of new pyrrolobenzodiazepine-chalcone conjugates: DNA-binding affinity and anticancer activity. Bioorg. Med. Chem. Lett., 2008, 18(7), 2434-2439.
[http://dx.doi.org/10.1016/j.bmcl.2008.02.047] [PMID: 18325766]
[55]
Hernández-Ortiz, O.J.; Cerón-Castelán, J.E.; Muñoz-Pérez, F.M.; Salazar-Pereda, V.; Ortega-Mendoza, J.G.; Veloz-Rodríguez, M.A.; Lobo-Guerrero, A.; Espinosa-Roa, A.; Rodríguez-Rivera, M.A.; Vázquez-García, R.A. Synthesis, optical, electrochemical, and magnetic properties of new ferrocenyl chalcone semiconductors for optoelectronic applications. J. Mater. Sci. Mater. Electron., 2020, 31(4), 3372-3353.
[http://dx.doi.org/10.1007/s10854-020-02882-1]
[56]
Rasschaert, A.; Janssens, W.; Slootmaekers, P.J. A re-examination of the selectivity in the friedel-crafts chalcone synthesis. Bull. Soc. Chim. Belg., 2010, 75(7–8), 449-455.
[http://dx.doi.org/10.1002/bscb.19660750703]
[57]
George, R.F.; Samir, E.M.; Abdelhamed, M.N.; Abdel-Aziz, H.A.; Abbas, S.E.S. Synthesis and anti-proliferative activity of some new quinoline based 4,5-dihydropyrazoles and their thiazole hybrids as EGFR inhibitors. Bioorg. Chem., 2019, 83, 186-197.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.038] [PMID: 30380447]
[58]
Pavurala, S.; Vedula, R.R. Synthesis of 3-(2-(4,5-Dihydro-3,5-Diphenylpyrazol-1-Yl)Thiazol-4-Yl)-2H- Chromen-2-one derivatives via multicomponent approach. Synth. Commun., 2014, 44(5), 583-588.
[http://dx.doi.org/10.1080/00397911.2013.796522]
[59]
Raghuvanshi, D.S.; Verma, N.; Singh, S.V.; Khare, S.; Pal, A.; Negi, A.S. Synthesis of thymol-based pyrazolines: An effort to perceive novel potent-antimalarials. Bioorg. Chem., 2019, 88, 102933.
[http://dx.doi.org/10.1016/j.bioorg.2019.102933] [PMID: 31048119]
[60]
Fischer, E.; Knoevenagel, O. Ueber die verbindungen des phenylhydrazins mit acroleïn mesityloxyd und allylbromid. Justus Liebigs Ann. Chem., 1887, 239, 194.
[http://dx.doi.org/10.1002/jlac.18872390205]
[61]
Yaylayan, V.A.; Haffenden, L.J.W. Mechanism of pyrazole formation in [13c-2] labeled glycine model systems: n-n bond formation during maillard reaction. Food Res. Int., 2003, 36(6), 571-577.
[http://dx.doi.org/10.1016/S0963-9969(03)00003-6]
[62]
Sloop, J.C.; Lechner, B.; Washington, G.; Bumgardner, C.L.; Loehle, W.D.; Creasy, W. Pyrazole formation: examination of kinetics, substituent effects, and mechanistic pathways. Int. J. Chem. Kinet., 2008, 40(7), 370-383.
[http://dx.doi.org/10.1002/kin.20316]
[63]
Sabet-Sarvestani, H.; Eshghi, H.; Bakavoli, M.; Izadyar, M.; Rahimizadeh, M. Theoretical investigation of the chemoselectivity and synchronously pyrazole ring formation mechanism from ethoxymethylenemalononitrile and hydrazine hydrate in the gas and solvent phases: dft, meta-gga studies and nbo analysis. RSC Advances, 2014, 4(82), 43485-43495.
[http://dx.doi.org/10.1039/C4RA06316C]
[64]
Thirunarayanan, G.; Sekar, K.G. SiO2 - H2SO4 catalysed, microwave-assisted cyclization cum acetylation of 2-propenones under solvent-free condition: synthesis and spectral correlations of some 1-acetyl pyrazolines. J. Taibah Univ. Sci., 2014, 8(2), 124-136.
[http://dx.doi.org/10.1016/j.jtusci.2013.11.003]
[65]
Moklei, S.S.; Vibhute, A.Y.; Khansole, S.V.; Zangade, S.B.; Vibhute, Y.B. Synthesis, characterization and antibacterial activity of some new 2-pyrazolines using triethanolamine as reaction solvent. Res. J. Pharm. Biol. Chem. Sci., 2010, 1(3), 631-638.
[66]
Agrawal, N.N.; Soni, P.A. Synthesis of pyrazole and isoxazole in triethanolamine medium. Indian J. Chem., 2007, 46(3), 532-534.
[http://dx.doi.org/10.1002/chin.200729039]
[67]
Pawar, R.P. An efficient protocol for the one pot synthesis of pyranopyrazoles in aqueous medium using triethanolamine as a catalyst. Archiv. Org. Inorg. Chem. Sci., 2018, 3(1)
[http://dx.doi.org/10.32474/AOICS.2018.03.000155]
[68]
Sridhar, S.; Rajendraprasad, Y. Synthesis and analgesic studies of some new 2-pyrazolines. E-J. Chem., 2012, 9(4), 1810-1815.
[http://dx.doi.org/10.1155/2012/476989]
[69]
Ghodke, S.S.; Tekale, S.U.; Pathrikar, R.D.; Khandare, P.M.; Kótai, L.; Pawar, R.P. One-pot synthesis of pyrano[2,3-c]pyrazoles using lemon peel powder as a green and natural catalyst. Eur. Chem. Bull., 2020, 9(2), 38-42.
[http://dx.doi.org/10.17628/ecb.2020.9.38-42]
[70]
Babaei, E.; Mirjalili, B.B.F. An expedient and eco-friendly approach for multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles using nano-al2o3/bf3/fe3o4 as reusable catalyst. Inorg. Nano-Metal Chem., 2020, 50(1), 16-21.
[http://dx.doi.org/10.1080/24701556.2019.1661458]
[71]
Levai, A.; Jeko, J. Simple efficient procedure for the stereoselective synthesis of trans-2, 3, 3a, 4- tetrahydro-3-aryl-2-4-carboxyphenyl)[1] benzopyrano [4, 3-c] pyrazoles and their [1] benzothiopyrano analogues. Acta Chim. Slov., 2009, 56, 566.
[72]
Kim, D.K.; Shokova, E.A.; Tafeenko, V.A.; Kovalev, V.V. Synthesis of 1,3-diketones from 3-(4-r-phenyl)propionic acids. Russ. J. Org. Chem., 2014, 50(4), 464-468.
[http://dx.doi.org/10.1134/S1070428014040022]
[73]
Bratenko, M.K.; Chornous, V.A.; Vovk, M.V. Polyfunctional pyrazoles. 3. synthesis of 3-(3-aryl-4-formyl-1-pyrazolyl) propionic acids and their amides. Chem. Heterocycl. Compd., 2004, 40(10), 1279-1282.
[http://dx.doi.org/10.1007/s10593-005-0054-2]
[74]
Mantzanidou, M.; Pontiki, E.; Hadjipavlou-Litina, D. Pyrazoles and pyrazolines as anti-inflammatory agents. Molecules, 2021, 26(11), 3439.
[http://dx.doi.org/10.3390/molecules26113439] [PMID: 34198914]
[75]
Hassan, A.S.; Moustafa, G.O.; Awad, H.M. Synthesis and in vitro anticancer activity of pyrazolo[1,5-a]pyrimidines and pyrazolo[3,4-d][1,2,3]triazines. Synth. Commun., 2017, 47(21), 1963-1972.
[http://dx.doi.org/10.1080/00397911.2017.1358368]
[76]
Li, J.T.; Zhang, X.H.; Lin, Z.P. An improved synthesis of 1,3,5-triaryl-2-pyrazolines in acetic acid aqueous solution under ultrasound irradiation. Beilstein J. Org. Chem., 2007, 3, 13.
[http://dx.doi.org/10.1186/1860-5397-3-13] [PMID: 17374170]
[77]
Zou, Y.; Wu, H.; Hu, Y.; Liu, H.; Zhao, X.; Ji, H.; Shi, D. A novel and environment-friendly method for preparing dihydropyrano[2,3-c]pyrazoles in water under ultrasound irradiation. Ultrason. Sonochem., 2011, 18(3), 708-712.
[http://dx.doi.org/10.1016/j.ultsonch.2010.11.012] [PMID: 21185215]
[78]
Huang, Z.; Li, L.L.; Zhao, Y.W.; Wang, H.Y.; Shi, D.Q. An efficient synthesis of isoxazoles and pyrazoles under ultrasound irradiation. J. Heterocycl. Chem., 2014, 51(Suppl. 1), E309-E313.
[http://dx.doi.org/10.1002/jhet.2016]
[79]
Kumar, A.D.; Prabhudeva, M.G.; Bharath, S.; Kumara, K.; Lokanath, N.K.; Kumar, K.A. Design and amberlyst-15 mediated synthesis of novel thienyl-pyrazole carboxamides that potently inhibit phospholipase a2 by binding to an allosteric site on the enzyme. Bioorg. Chem., 2018, 80, 444-452.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.023] [PMID: 29986189]
[80]
Chandak, H.S.; Lad, N.P.; Dange, D.S. Greener and facile aqueous synthesis of pyrazoles using amberlyst-70 as a recyclable catalyst. Green Chem. Lett. Rev., 2012, 5(2), 135-138.
[http://dx.doi.org/10.1080/17518253.2011.585352]
[81]
Kumara, K.; Prabhudeva, M.G.; Vagish, C.B.; Vivek, H.K.; Lokanatha Rai, K.M.; Lokanath, N.K.; Ajay Kumar, K. Design, synthesis, characterization, and antioxidant activity studies of novel thienyl-pyrazoles. Heliyon, 2021, 7(7), e07592.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07592] [PMID: 34355092]
[82]
Shah, S.N.N.; Ziauddin, H.M.; Zameer, M.; Khan, T.; Baseer, M.A. A precious addition of some novel pyrazolines to the library of bioactive compounds. Int. J. Chemtech Res., 2011, 2(1), 1-3.
[83]
Rashdan, H.R.M.; Gomha, S.M.; El-Gendey, M.S.; El-Hashash, M.A.; Soliman, A.M.M. Eco-friendly one-pot synthesis of some new pyrazolo[1,2-b]phthalazinediones with antiproliferative efficacy on human hepatic cancer cell lines. Green Chem. Lett. Rev., 2018, 11(3), 264-274.
[http://dx.doi.org/10.1080/17518253.2018.1474270]
[84]
Anandarajagopal, K.; Anbu Jeba Sunilson, J.; Illavarasu, A.; Thangavelpandian, N.; Kalirajan, R. Antiepileptic and antimicrobial activities of novel 1-(unsubstituted/substituted)-3,5-dimethyl-1h-pyrazole derivatives. Int. J. Chemtech Res., 2010, 2(1), 45-49.
[85]
Chamorro Rengifo, A.F.; Stefanes, N.; Toigo, J.; Mendes, C.; Santos-Silva, M.C.; Nunes, R.J.; Parize, A.L.; Minatti, E. A new and efficient carboxymethyl-hexanoyl chitosan/dodecyl sulfate nanocarrier for a pyrazoline with antileukemic activity. Mater. Sci. Eng. C, 2019, 105, 110051.
[http://dx.doi.org/10.1016/j.msec.2019.110051] [PMID: 31546341]
[86]
Stefanes, N.M.; Toigo, J.; Maioral, M.F.; Jacques, A.V.; Chiaradia-Delatorre, L.D.; Perondi, D.M.; Ribeiro, A.A.B.; Bigolin, Á.; Pirath, I.M.S.; Duarte, B.F.; Nunes, R.J.; Santos-Silva, M.C. Synthesis of novel pyrazoline derivatives and the evaluation of death mechanisms involved in their antileukemic activity. Bioorg. Med. Chem., 2019, 27(2), 375-382.
[http://dx.doi.org/10.1016/j.bmc.2018.12.012] [PMID: 30579801]
[87]
Zhang, Y.P.; Dong, Y.Y.; Yang, Y.S.; Guo, H.C.; Cao, B.X.; Sun, S.Q. A new pyrazoline-based probe of quenched fluorescent reversible recognition for Cu2+ and its application in cells. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 177, 147-152.
[http://dx.doi.org/10.1016/j.saa.2017.01.042] [PMID: 28153812]
[88]
Kumar, L.; Lal, K.; Yadav, P.; Kumar, A.; Paul, A.K. Synthesis, characterization, α-glucosidase inhibition and molecular modeling studies of some pyrazoline-1h-1,2,3-triazole hybrids. J. Mol. Struct., 2020, 1216, 128253.
[http://dx.doi.org/10.1016/j.molstruc.2020.128253]
[89]
Moi, D.; Nocentini, A.; Deplano, A.; Balboni, G.; Supuran, C.T.; Onnis, V. Structure-activity relationship with pyrazoline-based aromatic sulfamates as carbonic anhydrase isoforms I, II, IX and XII inhibitors: Synthesis and biological evaluation. Eur. J. Med. Chem., 2019, 182, 111638.
[http://dx.doi.org/10.1016/j.ejmech.2019.111638] [PMID: 31472471]
[90]
Nurkenov, O.A.; Ibraev, M.K.; Schepetkin, I.A.; Khlebnikov, A.I.; Seilkhanov, T.M.; Arinova, A.E.; Isabaeva, M.B. Synthesis, structure, and anti-inflammatory activity of functionally substituted chalcones and their derivatives. Russ. J. Gen. Chem., 2019, 89(7), 1360-1367.
[http://dx.doi.org/10.1134/S1070363219070028]
[91]
Gul, H.I.; Yamali, C.; Sakagami, H.; Angeli, A.; Leitans, J.; Kazaks, A.; Tars, K.; Ozgun, D.O.; Supuran, C.T. New anticancer drug candidates sulfonamides as selective hCA IX or hCA XII inhibitors. Bioorg. Chem., 2018, 77, 411-419.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.021] [PMID: 29427856]
[92]
Li, H.L.; Su, M.M.; Xu, Y.J.; Xu, C.; Yang, Y.S.; Zhu, H.L. Design and biological evaluation of novel triaryl pyrazoline derivatives with dioxane moiety for selective BRAFV600E inhibition. Eur. J. Med. Chem., 2018, 155, 725-735.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.043] [PMID: 29940463]
[93]
Abdellatif, K.R.A.; Abdelall, E.K.A.; Labib, M.B.; Fadaly, W.A.A.; Zidan, T.H. Synthesis of novel halogenated triarylpyrazoles as selective COX-2 inhibitors: Anti-inflammatory activity, histopatholgical profile and in-silico studies. Bioorg. Chem., 2020, 105, 104418.
[http://dx.doi.org/10.1016/j.bioorg.2020.104418] [PMID: 33166844]
[94]
Sever, B.; Altıntop, M.D.; Radwan, M.O.; Özdemir, A.; Otsuka, M.; Fujita, M.; Ciftci, H.I. Design, synthesis and biological evaluation of a new series of thiazolyl-pyrazolines as dual EGFR and HER2 inhibitors. Eur. J. Med. Chem., 2019, 182, 111648.
[http://dx.doi.org/10.1016/j.ejmech.2019.111648] [PMID: 31493743]
[95]
Madni, M.; Ahmed, M.N.; Hameed, S.; Ali Shah, S.W.; Rashid, U.; Ayub, K.; Tahir, M.N.; Mahmood, T. Synthesis, quantum chemical, in vitro acetyl cholinesterase inhibition and molecular docking studies of four new coumarin based pyrazolylthiazole nuclei. J. Mol. Struct., 2018, 1168, 175-186.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.017]
[96]
Mumtaz, A.; Majeed, A.; Zaib, S.; Ur Rahman, S.; Hameed, S.; Saeed, A.; Rafique, H.; Mughal, E.; Maalik, A.; Hussain, I.; Iqbal, J. Investigation of potent inhibitors of cholinesterase based on thiourea and pyrazoline derivatives: Synthesis, inhibition assay and molecular modeling studies. Bioorg. Chem., 2019, 90, 103036.
[http://dx.doi.org/10.1016/j.bioorg.2019.103036] [PMID: 31271943]
[97]
Pola, S.; Banoth, K.K.; Sankaranarayanan, M.; Ummani, R.; Garlapati, A. Design, synthesis, in silico studies, and evaluation of novel chalcones and their pyrazoline derivatives for antibacterial and antitubercular activities. Med. Chem. Res., 2020, 29(10), 1819-1835.
[http://dx.doi.org/10.1007/s00044-020-02602-8]
[98]
Ozmen Ozgun, D.; Gul, H.I.; Yamali, C.; Sakagami, H.; Gulcin, I.; Sukuroglu, M.; Supuran, C.T. Synthesis and bioactivities of pyrazoline benzensulfonamides as carbonic anhydrase and acetylcholinesterase inhibitors with low cytotoxicity. Bioorg. Chem., 2019, 84, 511-517.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.028] [PMID: 30605787]
[99]
Abdel-Aziz, A.A.M.; El-Azab, A.S.; Bua, S.; Nocentini, A.; Abu El-Enin, M.A.; Alanazi, M.M.; AlSaif, N.A.; Hefnawy, M.M.; Supuran, C.T. Design, synthesis, and carbonic anhydrase inhibition activity of benzenesulfonamide-linked novel pyrazoline derivatives. Bioorg. Chem., 2019, 87, 425-431.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.052] [PMID: 30921744]
[100]
Asad, M.; Arshad, M.N.; Khan, S.A.; Oves, M.; Khalid, M.; Asiri, A.M.; Braga, A.A.C. Cyclization of chalcones into n-propionyl pyrazolines for their single crystal X-ray, computational and antibacterial studies. J. Mol. Struct., 2020, 1201, 127186.
[http://dx.doi.org/10.1016/j.molstruc.2019.127186]
[101]
Mahadevaswamy, L.D.; Kariyappa, A.K. An environmentally benign lemon juice mediated synthesis of novel furan conjugated pyrazole derivatives and their biological evaluation. Pharm. Chem. J., 2017, 51(8), 670-677.
[http://dx.doi.org/10.1007/s11094-017-1672-6]
[102]
Scroggs, S.L.P.; Gass, J.T.; Chinnasamy, R.; Widen, S.G.; Azar, S.R.; Rossi, S.L.; Arterburn, J.B.; Vasilakis, N.; Hanley, K.A. Evolution of resistance to fluoroquinolones by dengue virus serotype 4 provides insight into mechanism of action and consequences for viral fitness. Virology, 2021, 552, 94-106.
[http://dx.doi.org/10.1016/j.virol.2020.09.004] [PMID: 33120225]
[103]
Ojkic, N.; Lilja, E.; Direito, S.; Dawson, A.; Allen, R.J.; Waclaw, B. A roadblock-and-kill mechanism of action model for the DNA-targeting antibiotic ciprofloxacin. Antimicrob. Agents Chemother., 2020, 64(9), e02487-e19.
[http://dx.doi.org/10.1128/AAC.02487-19] [PMID: 32601161]
[104]
Siriwong, S.; Teethaisong, Y.; Thumanu, K.; Dunkhunthod, B.; Eumkeb, G. The synergy and mode of action of quercetin plus amoxicillin against amoxicillin-resistant Staphylococcus epidermidis. BMC Pharmacol. Toxicol., 2016, 17(1), 39.
[http://dx.doi.org/10.1186/s40360-016-0083-8] [PMID: 27491399]
[105]
Fu, L.; Huang, T.; Wang, S.; Wang, X.; Su, L.; Li, C.; Zhao, Y. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere, 2017, 168, 217-222.
[http://dx.doi.org/10.1016/j.chemosphere.2016.10.043] [PMID: 27783962]
[106]
Brajtburg, J.; Powderly, W.G.; Kobayashi, G.S.; Medoff, G.; Amphotericin, B. Amphotericin B: current understanding of mechanisms of action. Antimicrob. Agents Chemother., 1990, 34(2), 183-188.
[http://dx.doi.org/10.1128/AAC.34.2.183] [PMID: 2183713]
[107]
Falcón-González, J.M.; Jiménez-Domínguez, G.; Ortega-Blake, I.; Carrillo-Tripp, M. Multi-phase solvation model for biological membranes: Molecular action mechanism of amphotericin b. J. Chem. Theory Comput., 2017, 13(7), 3388-3397.
[http://dx.doi.org/10.1021/acs.jctc.7b00337] [PMID: 28553993]
[108]
Taveira, G.B.; Carvalho, A.O.; Rodrigues, R.; Trindade, F.G.; Da Cunha, M.; Gomes, V.M. Thionin-like peptide from Capsicum annuum fruits: mechanism of action and synergism with fluconazole against Candida species. BMC Microbiol., 2016, 16(1), 12.
[http://dx.doi.org/10.1186/s12866-016-0626-6] [PMID: 26819228]
[109]
Hope, W.; Stone, N.R.H.; Johnson, A.; McEntee, L.; Farrington, N.; Santoro-Castelazo, A.; Liu, X.; Lucaci, A.; Hughes, M.; Oliver, J.D.; Giamberardino, C.; Mfinanga, S.; Harrison, T.S.; Perfect, J.R.; Bicanic, T. Fluconazole monotherapy is a suboptimal option for initial treatment of cryptococcal meningitis because of emergence of resistance. MBio, 2019, 10(6), e02575-e19.
[http://dx.doi.org/10.1128/mBio.02575-19] [PMID: 31796539]
[110]
Cha, Y.E.; Park, R.; Jang, M.; Park, Y.I.; Yamamoto, A.; Oh, W.K.; Lee, E.J.; Park, J. 6-azauridine induces autophagy-mediated cell death via a p53-and AMPK-dependent pathway. Int. J. Mol. Sci., 2021, 22(6), 2947.
[http://dx.doi.org/10.3390/ijms22062947] [PMID: 33799444]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy