Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Research Article

Promotion of Cervical Cancer Cell Proliferation by miR-130b Expression Level Changes and Inhibition of its Apoptosis by Targeting CDKN1A Gene

Author(s): Yanli Wang, Lei Yang, Caihong Fan, Hong Mu*, Munan Han, Tao Liu, Lili Xie and Qiang Gao

Volume 22, Issue 2, 2022

Published on: 08 March, 2022

Page: [153 - 168] Pages: 16

DOI: 10.2174/1568009622666220111090715

open access plus

Abstract

Background: Dysregulation of miR-130b expression is associated with the development of different cancers. However, the description of the biological roles of miR-130b in the growth and survival of cervical cancer cells is limited.

Methods: The miR-130b levels in cervical cancer cells during different stages of growth were determined using reverse transcription-quantitative PCR. The methylation level of DNA sequences upstream of the miR-130b gene was measured using an SYBR Green-based quantitative methylation- specific PCR. Reverse transcription-quantitative PCR, Western blotting, and fluorescence report assays were used to identify the miR-130b-targeted gene. Cell counting kit-8 and comet assays were used to determine cell viability and DNA damage levels in cells, respectively. EdU Apopllo488 in vitro Flow Cytometry kit, propidium iodide staining, anti-γ-H2AX antibody staining, and Annexin-V apoptosis kit were subsequently used to determine DNA synthesis rates, cell cycle distribution, count of DNA double-strand breaks, and levels of apoptotic cells.

Results: miR-130b levels increased at exponential phases of the growth of cervical cancer cells but reduced at stationary phases. The methylation of a prominent CpG island near the transcript start site suppressed the miR-130b gene expression. MiR-130b increased cell viability, promoted both DNA synthesis and G1 to S phase transition of the cells at exponential phases, but reduced cell viability accompanied by accumulations of DNA breaks and augmentations in apoptosis rates of the cells in stationary phases by targeting cyclin-dependent kinase inhibitor 1A mRNA.

Conclusion: miR-130b promoted the growth of cervical cancer cells during the exponential phase, whereas it impaired the survival of cells during stationary phases.

Keywords: Dynamics, miR-130b, expression level changes, cervical cancer cell, growth, survival.

Graphical Abstract
[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Hoque, M.R.; Haque, E.; Karim, M.R. Cervical cancer in low-income countries: A Bangladeshi perspective. Int. J. Gynaecol. Obstet., 2021, 152(1), 19-25.
[http://dx.doi.org/10.1002/ijgo.13400] [PMID: 32989750]
[3]
Vu, M.; Yu, J.; Awolude, O.A.; Chuang, L. Cervical cancer worldwide. Curr. Probl. Cancer, 2018, 42(5), 457-465.
[http://dx.doi.org/10.1016/j.currproblcancer.2018.06.003] [PMID: 30064936]
[4]
Khan, S.; Ayub, H.; Khan, T.; Wahid, F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie, 2019, 167, 12-24.
[http://dx.doi.org/10.1016/j.biochi.2019.09.001] [PMID: 31493469]
[5]
Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 21-37.
[http://dx.doi.org/10.1038/s41580-018-0045-7] [PMID: 30108335]
[6]
Guo, Q.; Yan, J.; Song, T.; Zhong, C.; Kuang, J.; Mo, Y.; Tan, J.; Li, D.; Sui, Z.; Cai, K.; Zhang, J. microRNA-130b-3p contained in MSC-Derived EVs promotes lung cancer progression by regulating the FOXO3/NFE2L2/TXNRD1 axis. Mol. Ther. Oncolytics, 2020, 20, 132-146.
[http://dx.doi.org/10.1016/j.omto.2020.09.005] [PMID: 33575477]
[7]
Mu, H.Q.; He, Y.H.; Wang, S.B.; Yang, S.; Wang, Y.J.; Nan, C.J.; Bao, Y.F.; Xie, Q.P.; Chen, Y.H. MiR-130b/TNF-α/NF-κB/VEGFA loop inhibits prostate cancer angiogenesis. Clin. Transl. Oncol., 2020, 22(1), 111-121.
[http://dx.doi.org/10.1007/s12094-019-02217-5] [PMID: 31667686]
[8]
Liao, Y.; Wang, C.; Yang, Z.; Liu, W.; Yuan, Y.; Li, K.; Zhang, Y.; Wang, Y.; Shi, Y.; Qiu, Y.; Zuo, D.; He, W.; Qiu, J.; Guan, X.; Yuan, Y.; Li, B. Dysregulated Sp1/miR-130b-3p/HOXA5 axis contributes to tumor angiogenesis and progression of hepatocellular carcinoma. Theranostics, 2020, 10(12), 5209-5224.
[http://dx.doi.org/10.7150/thno.43640] [PMID: 32373208]
[9]
Huang, S.; Xue, P.; Han, X.; Zhang, C.; Yang, L.; Liu, L.; Wang, X.; Li, H.; Fu, J.; Zhou, Y. Exosomal miR-130b-3p targets SIK1 to inhibit medulloblastoma tumorigenesis. Cell Death Dis., 2020, 11(6), 408.
[http://dx.doi.org/10.1038/s41419-020-2621-y] [PMID: 32483145]
[10]
Huang, Y.; Luo, F. Elevated microRNA-130b-5p or silenced ELK1 inhibits self-renewal ability, proliferation, migration, and invasion abilities, and promotes apoptosis of cervical cancer stem cells. IUBMB Life, 2021, 73(1), 118-129.
[http://dx.doi.org/10.1002/iub.2409] [PMID: 33295145]
[11]
Yang, L.; Wang, Y.; Shi, S.; Xie, L.; Liu, T.; Wang, Y.; Mu, H. The TNF-α-induced expression of miR-130b protects cervical cancer cells from the cytotoxicity of TNF-α. FEBS Open Bio, 2018, 8(4), 614-627.
[http://dx.doi.org/10.1002/2211-5463.12395] [PMID: 29632814]
[12]
Clough, E.; Barrett, T. The gene expression omnibus database. Methods Mol. Biol., 2016, 1418, 93-110.
[http://dx.doi.org/10.1007/978-1-4939-3578-9_5] [PMID: 27008011]
[13]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[14]
Yang, C.; Cai, J.; Wang, Q.; Tang, H.; Cao, J.; Wu, L.; Wang, Z. Epigenetic silencing of miR-130b in ovarian cancer promotes the development of multidrug resistance by targeting colony-stimulating factor 1. Gynecol. Oncol., 2012, 124(2), 325-334.
[http://dx.doi.org/10.1016/j.ygyno.2011.10.013] [PMID: 22005523]
[15]
Olive, P.L.; Banáth, J.P. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc., 2006, 1(1), 23-29.
[http://dx.doi.org/10.1038/nprot.2006.5] [PMID: 17406208]
[16]
Końca, K.; Lankoff, A.; Banasik, A.; Lisowska, H.; Kuszewski, T.; Góźdź, S.; Koza, Z.; Wojcik, A. A cross-platform public domain PC image-analysis program for the comet assay. Mutat. Res., 2003, 534(1-2), 15-20.
[http://dx.doi.org/10.1016/S1383-5718(02)00251-6] [PMID: 12504751]
[17]
Sharma, A.; Singh, K.; Almasan, A. Histone H2AX phosphorylation: A marker for DNA damage. Methods Mol. Biol., 2012, 920, 613-626.
[http://dx.doi.org/10.1007/978-1-61779-998-3_40] [PMID: 22941631]
[18]
De Biasio, A.; Blanco, F.J. Proliferating cell nuclear antigen structure and interactions: Too many partners for one dancer? Adv. Protein Chem. Struct. Biol., 2013, 91, 1-36.
[http://dx.doi.org/10.1016/B978-0-12-411637-5.00001-9] [PMID: 23790209]
[19]
Wiese, C.; Rudolph, J.H.; Jakob, B.; Fink, D.; Tobias, F.; Blattner, C.; Taucher-Scholz, G. PCNA-dependent accumulation of CDKN1A into nuclear foci after ionizing irradiation. DNA Repair (Amst.), 2012, 11(5), 511-521.
[http://dx.doi.org/10.1016/j.dnarep.2012.02.006] [PMID: 22456500]
[20]
El-Deiry, W.S. p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res., 2016, 76(18), 5189-5191.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2055] [PMID: 27635040]
[21]
Dutto, I.; Tillhon, M.; Prosperi, E. Assessing cell cycle independent function of the CDK inhibitor p21(CDKN¹A) in Dna repair. Methods Mol. Biol., 2016, 1336, 123-139.
[http://dx.doi.org/10.1007/978-1-4939-2926-9_11] [PMID: 26231713]
[22]
Yang, L.; Yang, B.; Wang, Y.; Liu, T.; He, Z.; Zhao, H.; Xie, L.; Mu, H. The CTIP-mediated repair of TNF-α-induced DNA double-strand break was impaired by miR-130b in cervical cancer cell. Cell Biochem. Funct., 2019, 37(7), 534-544.
[http://dx.doi.org/10.1002/cbf.3430] [PMID: 31418900]
[23]
Jakob, B.; Scholz, M.; Taucher-Scholz, G. Characterization of CDKN1A (p21) binding to sites of heavy-ion-induced damage: Colocalization with proteins involved in DNA repair. Int. J. Radiat. Biol., 2002, 78(2), 75-88.
[http://dx.doi.org/10.1080/09553000110090007] [PMID: 11779358]
[24]
Huang, P.; Ouyang, D.J.; Chang, S.; Li, M.Y.; Li, L.; Li, Q.Y.; Zeng, R.; Zou, Q.Y.; Su, J.; Zhao, P.; Pei, L.; Yi, W.J. Chemotherapy-driven increases in the CDKN1A/PTN/PTPRZ1 axis promote chemoresistance by activating the NF-κB pathway in breast cancer cells. Cell Commun. Signal., 2018, 16(1), 92.
[http://dx.doi.org/10.1186/s12964-018-0304-4] [PMID: 30497491]
[25]
Han, Y.C.; Vidigal, J.A.; Mu, P.; Yao, E.; Singh, I.; González, A.J.; Concepcion, C.P.; Bonetti, C.; Ogrodowski, P.; Carver, B.; Selleri, L.; Betel, D.; Leslie, C.; Ventura, A. An allelic series of miR-17 ~ 92-mutant mice uncovers functional specialization and cooperation among members of a microRNA polycistron. Nat. Genet., 2015, 47(7), 766-775.
[http://dx.doi.org/10.1038/ng.3321] [PMID: 26029871]
[26]
Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res., 2019, 47(D1), D155-D162.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[27]
Haeussler, M.; Zweig, A.S.; Tyner, C.; Speir, M.L.; Rosenbloom, K.R.; Raney, B.J.; Lee, C.M.; Lee, B.T.; Hinrichs, A.S.; Gonzalez, J.N.; Gibson, D.; Diekhans, M.; Clawson, H.; Casper, J.; Barber, G.P.; Haussler, D.; Kuhn, R.M.; Kent, W.J. The UCSC Genome Browser database: 2019 update. Nucleic Acids Res., 2019, 47(D1), D853-D858.
[http://dx.doi.org/10.1093/nar/gky1095] [PMID: 30407534]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy