Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Phytochemical Content and Potential Health Applications of Pecan [Carya illinoinensis (Wangenh) K. Koch] Nutshell

Author(s): Nohemí del C. Reyes-Vázquez*, Laura A. de la Rosa*, Juan Luis Morales-Landa, Jorge Alberto García-Fajardo and Miguel Ángel García-Cruz

Volume 22, Issue 2, 2022

Published on: 03 February, 2022

Page: [150 - 167] Pages: 18

DOI: 10.2174/1568026622666220105104355

Price: $65

Abstract

Background: The pecan nutshell contains phytochemicals with various biological activities that are potentially useful in the prevention or treatment of diseases, such as cancer, diabetes, and metabolic imbalances associated with heart diseases.

Objective: The aim of this study is to update this topic by means of a literature review and include those studies that contribute to the knowledge of the chemical composition and biological activities of pecan nutshell, particularly those related to the therapeutic potential against some chronic degenerative diseases associated with oxidative stress.

Methods: Exhaustive and detailed review of the existing literature was conducted using electronic databases.

Conclusion: The pecan nutshell is a promising natural product with pharmaceutical uses in various diseases. However, additional research related to the assessment of efficient extraction methods and characterization, particularly the evaluation of the mechanisms of action in new in vivo models, is necessary to confirm these findings and development of new drugs with therapeutic use.

Keywords: Pecan nutshell, Phytochemicals, Antimicrobial, Antioxidant, Cytotoxic, Anticancer, Antidiabetic.

Graphical Abstract
[1]
Asci, S.; Devadoss, S. Trends and issues relevant for the US tree. Nut. Sector, 2020, 36, 1-7.
[2]
Alvarez-Parrilla, E.; Urrea-López, R.; de la Rosa, L.A. Bioactive Components and Health Effects of Pecan Nuts and Their Byproducts: A Review. J. Food Bioact., 2018, 1(1), 56-92.
[http://dx.doi.org/10.31665/JFB.2018.1127]
[3]
SIAP. Agri-food and Fisheries Information Service Available from: https://nube.siap.gob.mx/avance_agricola/ [Accessed Apr 15, 2021].
[4]
Economic Research Service. Economic Research Service Fruit and Tree Nut Yearbook Tables., Available from: https://www.ers.usda.gov/data-products/fruit-and-tree-nuts-data/fruit-and-tree-nuts-yearbook-tables/ [Accessed Apr 15, 2021).
[5]
Ojeda-barrios, D.L.; Hernandez, A. Swot analysis and perspectives of pecan nogal cultivation in Chihuahua. Rev. Mex. Agroneg., 2010, XIV(27), 348-359.
[6]
Orona Castillo, I.; Sangerman-Jarquín, D.M.; Fortis Hernández, M.; Vázquez Vázquez, C.; Gallegos Robles, M.Á. Producción y Comercialización de Nuez Pecanera (Carya Illinoensis Koch) En El Norte de Coahuila, México. Rev. Mex. Cienc. Agric., 2018, 4(3), 461-476.
[http://dx.doi.org/10.29312/remexca.v4i3.1207]
[7]
do Prado, A.C.P.; da Silva, H.S.; da Silveira, S.M.; Barreto, P.L.M.; Vieira, C.R.W.; Maraschin, M.; Ferreira, S.R.S.; Block, J.M. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya Illinoinensis (Wangenh) C. Koch] Shell. Ind. Crops Prod., 2014, 52, 552-561.
[http://dx.doi.org/10.1016/j.indcrop.2013.11.031]
[8]
Lim, T.K. Carya Illinoensis. In: Edible Medicinal and Non-Medicinal Plants; Springer Science Business Media B.V, 2012, pp. 51-57.
[http://dx.doi.org/10.1007/978-94-007-2534-8_3]
[9]
Dórame-Miranda, R.F.; Gámez-Meza, N.; Medina-Juárez, L.Á.; Ezquerra-Brauer, J.M.; Ovando-Martínez, M.; Lizardi-Mendoza, J. Bacterial cellulose production by Glucon acetobacter entanii using pecan nutshell as carbon source and its chemical functionalization. Carbohydr. Polym., 2019, 207(207), 91-99.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.067] [PMID: 30600072]
[10]
Moccia, F.; Agustin-Salazar, S.; Berg, A.L.; Setaro, B.; Micillo, R.; Pizzo, E.; Weber, F.; Gamez-Meza, N.; Schieber, A.; Cerruti, P.; Panzella, L.; Napolitano, A. Pecan (Carya illinoinensis (Wagenh.) K. Koch) nut shell as an accessible polyphenol source for active packaging and food colorant stabilization. ACS Sustain. Chem. Eng., 2020, 8(17), 6700-6712.
[http://dx.doi.org/10.1021/acssuschemeng.0c00356] [PMID: 33828928]
[11]
Ozdemir, M.; Floros, J.D. Active food packaging technologies. Crit. Rev. Food Sci. Nutr., 2004, 44(3), 185-193.
[http://dx.doi.org/10.1080/10408690490441578] [PMID: 15239372]
[12]
Rangaraj, M.V.; Rambabu, K.; Banat, F.; Mittal, V. Natural antioxidants-based edible active food packaging: An overview of current advancements. Food Biosci., 2021, 43(July), 101251.
[http://dx.doi.org/10.1016/j.fbio.2021.101251]
[13]
Galali, Y.; Omar, Z.A.; Sajadi, S.M. Biologically active components in by-products of food processing. Food Sci. Nutr., 2020, 8(7), 3004-3022.
[http://dx.doi.org/10.1002/fsn3.1665] [PMID: 32724565]
[14]
Moccia, F.; Agustin-Salazar, S.; Verotta, L.; Caneva, E.; Giovando, S.; D’Errico, G.; Panzella, L.; d’Ischia, M.; Napolitano, A. Antioxidant properties of agri-food byproducts |and specific boosting effects of hydrolytic treatments. Antioxidants, 2020, 9(5), E438.
[http://dx.doi.org/10.3390/antiox9050438] [PMID: 32443466]
[15]
Bouali, I.; Khadhri, A.; Dallali, S.; Albouchi, A.; Sebei, H.; Boukhchina, S.; Masson, E. Chemical composition and antioxidant activity of essential oils from three varieties of Carya Illinoinensis (Wangenh.) C. Koch grown in Tunisia. J. Essent. Oil-Bear. Plants, 2017, 20(6), 1472-1481.
[http://dx.doi.org/10.1080/0972060X.2017.1409655]
[16]
Flores-Estrada, R.A.; Gámez-Meza, N.; Medina-Juárez, L.A.; Castillón-Campaña, L.G.; Molina-Domínguez, C.C.; Rascón- Valenzuela, L.A.; García-Galaz, A. Chemical composition, antioxidant, antimicrobial and antiproliferative activities of wastes from pecan nut. Waste Biomass Valoriz., 2020, 11(7), 3419-3432.
[http://dx.doi.org/10.1007/s12649-019-00681-2]
[17]
Dorsaf, H.; Sabrine, M.; Houda, B.L.; Khémais, B.R.; Mohsen, S.; Olfa, T. Pecan pericarp extract protects against carbon tetrachloride-induced liver injury through oxidative mechanism in rats. Toxicol. Res. (Camb.), 2020, 9(5), 652-660.
[http://dx.doi.org/10.1093/toxres/tfaa071] [PMID: 33178425]
[18]
Rábago-Panduro, L.M.; Morales-de la Peña, M.; Martín-Belloso, O.; Welti-Chanes, J. Application of pulsed electric fields pef on pecan nuts Carya illinoinensis wangenh. k. koch: oil extraction yield and compositional characteristics of the oil and its by-product. Food Eng. Rev., 2021, 73, 676-685.
[http://dx.doi.org/10.1007/s12393-020-09267-4]
[19]
Subiria-Cueto, R.; Coria-Oliveros, A.J.; Wall-Medrano, A.; Rodrigo-García, J.; González-Aguilar, G.A.; Martínez-Ruiz, N. del R.; Alvarez-Parrilla, E. Antioxidant dietary fiber-based bakery products: A new alternative for using plant-by-products. Food Sci. Technol., 2021. epub ahead of print
[20]
Ruiz-Martínez, J.; Ascacio, J.A.; Rodríguez, R.; Morales, D.; Aguilar, C.N. Phytochemical screening of extracts from some Mexican plants used in traditional medicine. J. Med. Plants Res., 2011, 5(13), 2791-2797.
[21]
Bhardwaj, E.; Sharma, D. Medicinal and therapeutic properties of pecan (Carya Illinoensis). Int. J. Herb. Med, 2017, 5(6), 01-03.
[22]
Li, Y.; Kong, D.; Fu, Y.; Sussman, M.R.; Wu, H. The effect of developmental and environmental factors on secondary metabolites in medicinal plants. Plant Physiol. Biochem., 2020, 148(148), 80-89.
[http://dx.doi.org/10.1016/j.plaphy.2020.01.006] [PMID: 31951944]
[23]
Chaachouay, N.; Benkhnigue, O.; Fadli, M.; El Ibaoui, H.; Zidane, L. Ethnobotanical and ethnopharmacological studies of medicinal and aromatic plants used in the treatment of metabolic diseases in the Moroccan Rif. Heliyon, 2019, 5(10), e02191.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02191] [PMID: 31720440]
[24]
Hilbig, J.; Alves, V.R.; Müller, C.M.O.; Micke, G.A.; Vitali, L.; Pedrosa, R.C.; Block, J.M. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [Carya illinoinensis (Wangenh) C. Koch] extracts. Food Res. Int., 2018, 106(106), 549-557.
[http://dx.doi.org/10.1016/j.foodres.2018.01.010] [PMID: 29579960]
[25]
Schmidt, B.; Ribnicky, D.M.; Poulev, A.; Logendra, S.; Cefalu, W.T.; Raskin, I. A natural history of botanical therapeutics. Metabolism, 2008, 57(7)(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1016/j.metabol.2008.03.001] [PMID: 18555851]
[26]
Khan, R.A. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm. J., 2018, 26(5), 739-753.
[http://dx.doi.org/10.1016/j.jsps.2018.02.015] [PMID: 29991919]
[27]
Carmona, F.; Pereira, A.M.S. Herbal medicines: Old and new concepts, truths and misunderstandings. Rev. Bras. Farmacogn., 2013, 23(2), 379-385.
[http://dx.doi.org/10.1590/S0102-695X2013005000018]
[28]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[29]
Bolling, B.W.; Chen, C.Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev., 2011, 24(2), 244-275.
[http://dx.doi.org/10.1017/S095442241100014X] [PMID: 22153059]
[30]
Yuanita, E.; Sudirman; Dharmayani, N.K.T.; Ulfa, M.; Syahri, J. Quantitative structure-activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents. J. Clin. Tuberc. Other Mycobact. Dis., 2020, 21, 100203.
[http://dx.doi.org/10.1016/j.jctube.2020.100203] [PMID: 33294629]
[31]
Xu, J.; Gao, L.; Liang, H.; Chen, S.D. In silico screening of potential anti-COVID-19 bioactive natural constituents from food sources by molecular docking. Nutrition, 2021, 82, 111049.
[http://dx.doi.org/10.1016/j.nut.2020.111049] [PMID: 33290972]
[32]
Sun, Y.; Shi, S.; Li, Y.; Wang, Q. Development of quantitative structure-activity relationship models to predict potential nephrotoxic ingredients in traditional Chinese medicines. Food Chem. Toxicol., 2019, 128(38), 163-170.
[http://dx.doi.org/10.1016/j.fct.2019.03.056] [PMID: 30954639]
[33]
de la Rosa, L.A.; Alvarez-Parrilla, E.; Shahidi, F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J. Agric. Food Chem., 2011, 59(1), 152-162.
[http://dx.doi.org/10.1021/jf1034306] [PMID: 21138247]
[34]
Porto, L.C.S.; da Silva, J.; Ferraz, Ade.B.; Corrêa, D.S.; dos Santos, M.S.; Porto, C.D.L.; Picada, J.N. Evaluation of acute and subacute toxicity and mutagenic activity of the aqueous extract of pecan shells [Carya illinoinensis (Wangenh.) K. Koch]. Food Chem. Toxicol., 2013, 59, 579-585.
[http://dx.doi.org/10.1016/j.fct.2013.06.048] [PMID: 23831307]
[35]
Lerma-Herrera, M.A.; Núñez-Gastélum, J.A.; Ascacio-Valdés, J.; Aguilar, C.N.; Rodrigo-García, J.; Díaz-Sánchez, A.G.; Alvarez-Parrilla, E.; de la Rosa, L.A. Estimation of the mean degree of polymerization of condensed tannins from the kernel and shell of Carya illinoinensis by HPLC/MS and spectrophotometric Methods. Food Anal. Methods, 2017, 10(9), 3023-3031.
[http://dx.doi.org/10.1007/s12161-017-0866-6]
[36]
Vazquez-Flores, A.A.; Wong-Paz, J.E.; Lerma-Herrera, M.A.; Martinez-Gonzalez, A.I.; Olivas-Aguirre, F.J.; Aguilar, C.N.; Wall-Medrano, A.; Gonzalez-Aguilar, G.A.; Alvarez-Parrilla, E.; de la Rosa, L.A. Proanthocyanidins from the kernel and shell of pecan (Carya illinoinensis): average degree of polymerization and effects on carbohydrate, lipid, and peptide hydrolysis in a simulated human digestive system. J. Funct. Foods, 2017, 28, 227-234.
[http://dx.doi.org/10.1016/j.jff.2016.11.003]
[37]
U.S. Food and Drug Administration. GRAS Notices: GRN No. 646 Pecan shellfiber. Available from: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm (Accessed Apr 10, 2021).
[38]
Agustin-Salazar, S.; Cerruti, P.; Medina-Juárez, L.Á.; Scarinzi, G.; Malinconico, M.; Soto-Valdez, H.; Gamez-Meza, N. Lignin and holocellulose from pecan nutshell as reinforcing fillers in poly (lactic acid) biocomposites. Int. J. Biol. Macromol., 2018, 115, 727-736.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.120] [PMID: 29702173]
[39]
do Prado, A.C.P.; Manion, B.A.; Seetharaman, K.; Deschamps, F.C.; Barrera Arellano, D.; Block, J.M. Relationship between antioxidant properties and chemical composition of the oil and the shell of pecan nuts. Ind. Crops Prod., 2013, 45, 64. 73 [Caryaillinoinensis (Wangenh) C. Koch].
[http://dx.doi.org/10.1016/j.indcrop.2012.11.042]
[40]
Ghada, A. Soliman. Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients, 2019, 11, 1155.
[http://dx.doi.org/10.3390/nu11051155]
[41]
Klasson, K.T.; Wartelle, L.H.; Rodgers, J.E.; Lima, I.M. Copper(II) adsorption by activated carbons from pecan shells: effect of oxygen level during activation. Ind. Crops Prod., 2009, 30(1), 72-77.
[http://dx.doi.org/10.1016/j.indcrop.2009.01.007]
[42]
Alfred, R.; Phillip, C. Biopolymers. In: In Elements of Polymer Science & Engineering; Alfred; Alfred, R.; Phillip, C., Eds.; 2013; pp. 521-535.
[http://dx.doi.org/10.1016/B978-0-12-382178-2.00013-4]
[43]
Flores-Córdova, M.A.; Sánchez-Chávez, E. Phytochemicals and nutrients in almond and pecan nut shell. Intl. J. Res. Technol. Innov., 2016, 3(18), 1-10.
[44]
De la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Álvarez-Parrilla, E. Phenolic compounds.In Posharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, Elhadi; Carrillo-López, A., Eds.; Elsevier Woodhead Publishing: Duxford, 2019, pp. 253-272.
[http://dx.doi.org/10.1016/B978-0-12-813278-4.00012-9]
[45]
Kureck, I.; Policarpi, P.B.; Toaldo, I.M.; Maciel, M.V.O.B.; Bordignon-Luiz, M.T.; Barreto, P.L.M.; Block, J.M. Chemical characterization and release of polyphenols from pecan nut shell [Carya illinoinensis (Wangenh) C. Koch] in zein microparticles for bioactive applications. Plant Foods Hum. Nutr., 2018, 73(2), 137-145.
[http://dx.doi.org/10.1007/s11130-018-0667-0] [PMID: 29725928]
[46]
Xu, M.; Liu, P.; Jia, X.; Zhai, M.; Zhou, S.; Wu, B.; Guo, Z. Metabolic profiling revealed the organ-specific distribution differences of tannins and flavonols in pecan. Food Sci. Nutr., 2020, 8(9), 4987-5006.
[http://dx.doi.org/10.1002/fsn3.1797] [PMID: 32994960]
[47]
Cason, C.; Yemmireddy, V.K.; Moreira, J.; Adhikari, A. Antioxidant properties of pecan shell bioactive components of different cultivars and extraction methods. Foods, 2021, 10(4), 713.
[http://dx.doi.org/10.3390/foods10040713] [PMID: 33801608]
[48]
El Hawary, S.S.; Saad, S.; El Halawany, A.M.; Ali, Z.Y.; El Bishbishy, M. Phenolic content and anti-hyperglycemic activity of pecan cultivars from Egypt. Pharm. Biol., 2016, 54(5), 788-798.
[http://dx.doi.org/10.3109/13880209.2015.1080732] [PMID: 26450069]
[49]
Villasante, J.; Pérez-Carrillo, E.; Heredia-Olea, E.; Metón, I.; Almajano, M.P. In vitro antioxidant activity optimization of nut shell (Carya illinoinensis) by extrusion using response surface methods. Biomolecules, 2019, 9(12), E883.
[http://dx.doi.org/10.3390/biom9120883] [PMID: 31888291]
[50]
Pan, F.; Zhao, L.; Cai, S.; Tang, X.; Mehmood, A.; Alnadari, F.; Tuersuntuoheti, T.; Zhou, N.; Ai, X. Prediction and evaluation of the 3D structure of Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and its interaction with palmitoleic acid or oleic acid: An integrated computational approach. Food Chem., 2022, 367(367), 130677.
[http://dx.doi.org/10.1016/j.foodchem.2021.130677] [PMID: 34343803]
[51]
Zhao, L.; Zhang, M.; Pan, F.; Li, J.; Dou, R.; Wang, X.; Wang, Y.; He, Y.; Wang, S.; Cai, S. In silico analysis of novel dipeptidyl peptidase-IV inhibitory peptides released from Macadamia integrifolia antimicrobial protein 2 (MiAMP2) and the possible pathways involved in diabetes protection. Curr. Res. Food Sci., 2021, 4, 603-611.
[http://dx.doi.org/10.1016/j.crfs.2021.08.008] [PMID: 34522898]
[52]
Allec, S.I.; Sun, Y.; Sun, J.; Chang, C.A.; Wong, B.M. Heterogeneous CPU+GPU-enabled simulations for DFTB molecular dynamics of large chemical and biological systems. J. Chem. Theory Comput., 2019, 15(5), 2807-2815.
[http://dx.doi.org/10.1021/acs.jctc.8b01239] [PMID: 30916958]
[53]
Carrillo-Tripp, M.; Alvarez-Rivera, L.; Lara-Ramírez, O.I.; Becerra-Toledo, F.J.; Vega-Ramírez, A.; Quijas-Valades, E.; González-Zavala, E.; González-Vázquez, J.C.; García-Vieyra, J.; Santoyo-Rivera, N.B.; Chapa-Vergara, S.V.; Meneses-Viveros, A. HTMoL: full-stack solution for remote access, visualization, and analysis of molecular dynamics trajectory data. J. Comput. Aided Mol. Des., 2018, 32(8), 869-876.
[http://dx.doi.org/10.1007/s10822-018-0141-y] [PMID: 30084079]
[54]
Prakash, A.; Vadivel, V.; Banu, S.F.; Nithyanand, P.; Lalitha, C.; Brindha, P. Evaluation of antioxidant and antimicrobial properties of solvent extracts of agro-food by-products (Cashew nut shell, coconut shell and groundnut hull). Agric. Nat. Resour. (Bangk.), 2018, 52(5), 451-459.
[http://dx.doi.org/10.1016/j.anres.2018.10.018]
[55]
Huang, L.; Hwang, C.A.; Fang, T. Improved estimation of thermal resistance of Escherichia Coli O157:H7, Salmonella spp., and listeria monocytogenes in meat and poultry – the effect of temperature and fat and a global analysis. Food Control, 2018, 2019(96), 29-38.
[http://dx.doi.org/10.1016/j.foodcont.2018.08.026]
[56]
Sarwar, A.; Butt, M.A.; Hafeez, S.; Danish, M.Z. Rapid emergence of antibacterial resistance by bacterial isolates from patients of gynecological infections in Punjab, Pakistan. J. Infect. Public Health, 2020, 13(12), 1972-1980.
[http://dx.doi.org/10.1016/j.jiph.2020.06.011] [PMID: 32605779]
[57]
Loureiro, R.J.; Roque, F.; Teixeira Rodrigues, A.; Herdeiro, M.T.; Ramalheira, E. Use of antibiotics and bacterial resistances: brief notes on its evolution. Rev. Port. Saude Publica, 2016, 34(1), 77-84.
[http://dx.doi.org/10.1016/j.rpsp.2015.11.003]
[58]
Organization, W. health. WHO publishes list of bacteria for which new antibiotics are urgently needed. Available from:https://www.who.int/es/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed [Accessed Jun 6, 2021].
[59]
Ma, Y.; Ding, S.; Fei, Y.; Liu, G.; Jang, H.; Fang, J. Antimicrobial activity of anthocyanins and catechins against foodborne pathogens Escherichia Coli and Salmonella. Food Control, 2019, 106(June), 106712.
[http://dx.doi.org/10.1016/j.foodcont.2019.106712]
[60]
Sanez-Esqueda, M. de los A.; lvarez-Román, R.; Castro-Ríos, R.; Gómez-Flores, R.; Núñez-Rodríguez, M.A.; Galindo-Rodríguez, S.A.; Chávez-Montes, A. Antituberculosis activity of a carya illinoensis extract. Rev. Mex. Cienc. Farm., 2012, 43(3), 36-44.
[61]
Caxambú, S.; Biondo, E.; Kolchinski, E.M.; Padilha, R.L.; Brandelli, A.; Sant’Anna, V. Evaluation of the antimicrobial activity of pecan nut [Carya illinoinensis (Wangenh) C. KoCh] shell aqueous extract on minimally processed lettuce leaves. Food Sci. Technol., 2016, 36, 42-45.
[http://dx.doi.org/10.1590/1678-457x.0043]
[62]
Yemmireddy, V.K.; Cason, C.; Moreira, J.; Adhikari, A. Effect of pecan variety and the method of extraction on the antimicrobial activity of pecan shell extracts against different foodborne pathogens and their efficacy on food matrices. Food Control, 2019, 2020(112), 107098.
[http://dx.doi.org/10.1016/j.foodcont.2020.107098]
[63]
De la Rosa, L.A.; Vazquez-Flores, A.A.; Alvarez-Parrilla, E.; Rodrigo-García, J.; Medina-Campos, O.N.; Ávila-Nava, A.; González-Reyes, S.; Pedraza-Chaverri, J. Content of major classes of polyphenolic compounds, antioxidant, antiproliferative, and cell protective activity of pecan crude extracts and their fractions. J. Funct. Foods, 2014, 7(1), 219-228.
[http://dx.doi.org/10.1016/j.jff.2014.02.008]
[64]
Kar, M.M.; Raichaudhuri, A. Role of microRNAs in mediating biotic and abiotic stress in plants. Plant Gene, 2021, 26(February), 100277.
[http://dx.doi.org/10.1016/j.plgene.2021.100277]
[65]
Unsleber, S.; Wohlleben, W.; Stegmann, E. Diversity of peptidoglycan structure-Modifications and their physiological role in resistance in antibiotic producers. Int. J. Med. Microbiol., 2019, 309(6), 151332.
[http://dx.doi.org/10.1016/j.ijmm.2019.151332] [PMID: 31350128]
[66]
Espeche, J.C.; Martínez, M.; Maturana, P.; Cutró, A.; Semorile, L.; Maffia, P.C.; Hollmann, A. Unravelling the mechanism of action of “de novo” designed peptide P1 with model membranes and gram-positive and gram-negative bacteria. Arch. Biochem. Biophys., 2020, 693, 108549.
[http://dx.doi.org/10.1016/j.abb.2020.108549] [PMID: 32828795]
[67]
Sommer, M.O.A.; Munck, C.; Toft-Kehler, R.V.; Andersson, D.I. Prediction of antibiotic resistance: time for a new preclinical paradigm? Nat. Rev. Microbiol., 2017, 15(11), 689-696.
[http://dx.doi.org/10.1038/nrmicro.2017.75] [PMID: 28757648]
[68]
Martin, J.K., II; Sheehan, J.P.; Bratton, B.P.; Moore, G.M.; Mateus, A.; Li, S.H.J.; Kim, H.; Rabinowitz, J.D.; Typas, A.; Savitski, M.M.; Wilson, M.Z.; Gitai, Z. A dual-mechanism antibiotic kills gram-negative bacteria and avoids drug resistance. Cell, 2020, 181(7), 1518-1532 e14.
[http://dx.doi.org/10.1016/j.cell.2020.05.005] [PMID: 32497502]
[69]
Wang, Y.; Malkmes, M.J.; Jiang, C.; Wang, P.; Zhu, L.; Zhang, H.; Zhang, Y.; Huang, H.; Jiang, L. Antibacterial mechanism and transcriptome analysis of ultra-small gold nanoclusters as an alternative of harmful antibiotics against Gram-negative bacteria. J. Hazard. Mater., 2021, 416(March), 126236.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126236] [PMID: 34492988]
[70]
Ruhal, R.; Kataria, R. Biofilm patterns in gram-positive and gram-negative bacteria. Microbiol. Res., 2021, 251(March), 126829.
[http://dx.doi.org/10.1016/j.micres.2021.126829] [PMID: 34332222]
[71]
Ropponen, H.K.; Richter, R.; Hirsch, A.K.H.; Lehr, C.M. Mastering the Gram-negative bacterial barrier - Chemical approaches to increase bacterial bioavailability of antibiotics. Adv. Drug Deliv. Rev., 2021, 172, 339-360.
[http://dx.doi.org/10.1016/j.addr.2021.02.014] [PMID: 33705882]
[72]
Christofferson, A.J.; Elbourne, A.; Cheeseman, S.; Shi, Y.; Rolland, M.; Cozzolino, D.; Chapman, J.; McConville, C.F.; Crawford, R.J.; Wang, P.Y.; Truong, N.P.; Anastasaki, A.; Truong, V.K. Conformationally tuned antibacterial oligomers target the peptidoglycan of Gram-positive bacteria. J. Colloid Interface Sci., 2020, 580, 850-862.
[http://dx.doi.org/10.1016/j.jcis.2020.07.090] [PMID: 32736272]
[73]
Jeyanthi, V.; Velusamy, P.; Kumar, G.V.; Kiruba, K. Effect of naturally isolated hydroquinone in disturbing the cell membrane integrity of Pseudomonas aeruginosa MTCC 741 and Staphylococcus aureus MTCC 740. Heliyon, 2021, 7(5), e07021.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07021] [PMID: 34036196]
[74]
Chang, S.K.; Alasalvar, C.; Shahidi, F. Weighing the benefits of dietary antioxidant supplements. Food Technol., 2018, 72(4), 44-53.
[75]
Domínguez-Avila, J.A.; Wall-Medrano, A.; Velderrain-Rodríguez, G.R.; Chen, C.O.; Salazar-López, N.J.; Robles-Sánchez, M.; González-Aguilar, G.A. Gastrointestinal interactions, absorption, splanchnic metabolism and pharmacokinetics of orally ingested phenolic compounds. Food Funct., 2017, 8(1), 15-38.
[http://dx.doi.org/10.1039/C6FO01475E] [PMID: 28074953]
[76]
de Camargo, A.C.; Biasoto, A.C.T.; Schwember, A.R.; Granato, D.; Rasera, G.B.; Franchin, M.; Rosalen, P.L.; Alencar, S.M.; Shahidi, F. Should we ban total phenolics and antioxidant screening methods? The link between antioxidant potential and activation of NF-κB using phenolic compounds from grape by-products. Food Chem., 2019, 290(January), 229-238.
[http://dx.doi.org/10.1016/j.foodchem.2019.03.145] [PMID: 31000041]
[77]
Porto, L.C.S.; da Silva, J.; Ferraz, A.B.F.; Ethur, E.M.; Porto, C.D.L.; Marroni, N.P.; Picada, J.N. The antidiabetic and antihypercholesterolemic effects of an aqueous extract from pecan shells in wistar rats. Plant Foods Hum. Nutr., 2015, 70(4), 414-419.
[http://dx.doi.org/10.1007/s11130-015-0510-9] [PMID: 26449221]
[78]
Reckziegel, P.; Boufleur, N.; Barcelos, R.C.S.; Benvegnú, D.M.; Pase, C.S.; Muller, L.G.; Teixeira, A.M.; Zanella, R.; Prado, A.C.P.; Fett, R.; Block, J.M.; Burger, M.E. Oxidative stress and anxiety-like symptoms related to withdrawal of passive cigarette smoke in mice: beneficial effects of pecan nut shells extract, a by-product of the nut industry. Ecotoxicol. Environ. Saf., 2011, 74(6), 1770-1778.
[http://dx.doi.org/10.1016/j.ecoenv.2011.04.022] [PMID: 21531023]
[79]
Müller, L.G.; Pase, C.S.; Reckziegel, P.; Barcelos, R.C.S.; Boufleur, N.; Prado, A.C.P.; Fett, R.; Block, J.M.; Pavanato, M.A.; Bauermann, L.F.; da Rocha, J.B.T.; Burger, M.E. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage. Exp. Toxicol. Pathol., 2013, 65(1-2), 165-171.
[http://dx.doi.org/10.1016/j.etp.2011.08.002] [PMID: 21924598]
[80]
Engler Ribeiro, P.C.; de Britto Policarpi, P.; Dal Bo, A.; Barbetta, P.A.; Block, J.M. Impact of pecan nut shell aqueous extract on the oxidative properties of margarines during storage. J. Sci. Food Agric., 2017, 97(9), 3005-3012.
[http://dx.doi.org/10.1002/jsfa.8141] [PMID: 27859283]
[81]
Maszewska, M.; Florowska, A.; Dłużewska, E.; Wroniak, M.; Marciniak-Lukasiak, K.; Żbikowska, A. Oxidative stability of selected edible oils. Molecules, 2018, 23(7), 15-17.
[http://dx.doi.org/10.3390/molecules23071746] [PMID: 30018226]
[82]
do Amaral, A.A.; Schuster, G.C.; Boschen, N.L.; Benvegnú, D.M.; Wyzykowski, J.; Pinto Rodrigues, P.R.; Gallina, A.L. Antioxidant evaluation of extracts of pecan nutShell (Carya illinoensis) in soybean biodiesel B100. Glob. Chall., 2019, 3(11), 1900001.
[http://dx.doi.org/10.1002/gch2.201900001] [PMID: 31692959]
[83]
Hilbig, J.; Policarpi, P.B.; Grinevicius, V.M.A.S.; Mota, N.S.R.S.; Toaldo, I.M.; Luiz, M.T.B.; Pedrosa, R.C.; Block, J.M. Aqueous extract from pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell show activity against breast cancer cell line MCF-7 and Ehrlich ascites tumor in Balb-C mice. J. Ethnopharmacol., 2018, 211, 256-266.
[http://dx.doi.org/10.1016/j.jep.2017.08.012] [PMID: 28807853]
[84]
Trevisan, G.; Rossato, M.F.; Hoffmeister, C.; Müller, L.G.; Pase, C.; Córdova, M.M.; Rosa, F.; Tonello, R.; Hausen, B.S.; Boligon, A.A.; Moresco, R.N.; Athayde, M.L.; Burguer, M.E.; Santos, A.R.; Ferreira, J. Antinociceptive and antiedematogenic effect of pecan (Carya illinoensis) nut shell extract in mice: a possible beneficial use for a by-product of the nut industry. J. Basic Clin. Physiol. Pharmacol., 2014, 25(4), 1-10.
[http://dx.doi.org/10.1515/jbcpp-2013-0137] [PMID: 24468619]
[85]
Andrade, E.L.; Meotti, F.C.; Calixto, J.B. TRPA1 antagonists as potential analgesic drugs. Pharmacol. Ther., 2012, 133(2), 189-204.
[http://dx.doi.org/10.1016/j.pharmthera.2011.10.008] [PMID: 22119554]
[86]
Fedorova, M.; Bollineni, R.C.; Hoffmann, R. Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom. Rev., 2014, 33(2), 79-97.
[http://dx.doi.org/10.1002/mas.21381] [PMID: 23832618]
[87]
Gil-Chávez, J.; Gurikov, P.; Hu, X.; Meyer, R.; Reynolds, W.; Smirnova, I. Application of novel and technical lignins in food and pharmaceutical industries: Structure-function relationship and current challenges. Biomass Convers. Biorefinery, 2021, 11, 2387-2403.
[http://dx.doi.org/10.1007/s13399-019-00458-6]
[88]
Pinheiro do Prado, A.C.; Monalise Aragão, A.; Fett, R.; Block, J.M. Antioxidant properties of pecan nut [Carya illinoinensis (Wangenh.) C. Koch] shell infusion. Grasas Aceites, 2009, 60(4), 330-335.
[http://dx.doi.org/10.3989/gya.107708]
[89]
Sánchez-Acosta, D.; Rodriguez-Uribe, A.; Álvarez-Chávez, C.R.; Mohanty, A.K.; Misra, M.; López-Cervantes, J.; Madera-Santana, T.J. Physicochemical characterization and evaluation of pecan nutshell as Biofiller in a matrix of poly(lactic acid). J. Polym. Environ., 2019, 27(3), 521-532.
[http://dx.doi.org/10.1007/s10924-019-01374-6]
[90]
Calderón-Martínez, G. Patentes en instituciones de educación superior en méxico. Rev. Educ. Super., 2014, 43(170), 37-56.
[http://dx.doi.org/10.1016/j.resu.2014.06.001]
[91]
Vega-González, L.R.; Hernández-Jardines, I.J. The costs of patenting in Mexico. Rev. Med. Hosp. Gen. (Mex.), 2018, 81(3), 165-176.
[http://dx.doi.org/10.1016/j.hgmx.2017.05.004]
[92]
Huang, Y.C.; Riskowski, G.L.; Chang, J.; Hsuan Lin, C.; Tsyy Lai, J.; Chingzu Chang, A. Pecan shell by-products-phenolic compound contents and antimicrobial properties. AIMS Agric. Food, 2020, 5(2), 218-232.
[http://dx.doi.org/10.3934/agrfood.2020.2.218]
[93]
Javan Bakht Dalir, S.; Djahaniani, H.; Nabati, F.; Hekmati, M. Characterization and the evaluation of antimicrobial activities of silver nanoparticles biosynthesized from Carya illinoinensis leaf extract. Heliyon, 2020, 6(3), e03624.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03624] [PMID: 32215333]
[94]
Pascual Fuster, V. Usefulness of plant sterols in the treatment of hypercholesterolemia. Nutr. Hosp., 2017, 34(Suppl. 4), 62-67.
[http://dx.doi.org/10.20960/nh.1574] [PMID: 29156935]
[95]
Scholle, J.M.; Baker, W.L.; Talati, R.; Coleman, C.I. The effect of adding plant sterols or stanols to statin therapy in hypercholesterolemic patients: systematic review and meta-analysis. J. Am. Coll. Nutr, 2009, 28(5), 517-524.
[http://dx.doi.org/10.1080/07315724.2009.10719784] [PMID: 20439548]
[96]
Scolaro, B.; Nogueira, M.S.; Paiva, A.; Bertolami, A.; Barroso, L.P.; Vaisar, T.; Heffron, S.P.; Fisher, E.A.; Castro, I.A. Statin dose reduction with complementary diet therapy: A pilot study of personalized medicine. Mol. Metab., 2018, 11, 137-144.
[http://dx.doi.org/10.1016/j.molmet.2018.02.005] [PMID: 29503145]
[97]
Chengdong, Y. A method for extracting pecan shell sterol. CN110538215(A), 2018.
[98]
Caballero, B. Humans against obesity: Who will win? Adv. Nutr., 2019, 10(Suppl. 1), S4-S9.
[http://dx.doi.org/10.1093/advances/nmy055] [PMID: 30721956]
[99]
Vuorio, A.; Strandberg, T.E.; Raal, F.; Santos, R.D.; Kovanen, P.T. Familial hypercholesterolemia and COVID-19: A menacing but treatable vasculopathic condition. Atheroscler. Plus, 2021, 43, 3-6.
[http://dx.doi.org/10.1016/j.athplu.2021.08.001] [PMID: 34622243]
[100]
Jun, F. X.; Chen, G. H.; Jun, Ch.; Xu, W.; Fei, T. Method for extracting total polyphenol from pecan peels. CN102697849(B), 2014.
[101]
Lianhe, L. A method for extracting hickory nut shell polyphenol. CN102973645 (A), 2013.
[102]
Yan, H.; Guang, X.; Jin, D.; Xiaoqiang, C. A Preparation of northeast hickory nutshell flavone extract micro-capsule and application thereof. CN108159113 (A), 2018.
[103]
Yañez-Reyes, J. N. Mexican desert as a bioactive organic antifungal, obtaining process and its use against skin mycosis. MX2015003375(A), 2016.
[104]
Foshan, J. Development of a solar facial cream based on plant extracts that includes pecan leaf extract. CN107041866 (A), 2017.
[105]
Xiaodong, J.; Mengyang, X.; Zhenghai, M.; Jiping, X.; Jiyu, Z.; Gang, W.; Tao, W.; Zhanhui, J.; Yongzhi, L.; Zhongren, G. A preparation method and use of thin shell carya. CN109984975 (A), 2019.
[106]
Pérez-Hernández, O. Formula based on natural extracts for preventing and avoiding hair loss. ΜΧ 340154 (Β), 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy