Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Exploration of Luteolin as Potential Anti-COVID-19 Agent: Molecular Docking, Molecular Dynamic Simulation, ADMET and DFT Analysis

Author(s): Waseem Ahmad Ansari, Tanveer Ahamad, Mohsin Ali Khan, Zaw Ali Khan and Mohammad Faheem Khan*

Volume 19, Issue 8, 2022

Published on: 27 January, 2022

Page: [741 - 756] Pages: 16

DOI: 10.2174/1570180819666211222151725

Price: $65

Abstract

Background: Coronavirus disease-2019 (COVID-19) has recently emerged as a pandemic respiratory disease with mild to severe pneumonia symptoms. No clinical antiviral agent is available so far. However, several repurposing drugs and vaccines are being given to individuals or in clinical trials against SARS-CoV-2.

Objective: The aim of this study is to uncover the potential effects of Luteolin (Lut) as an inhibitor of SARS-CoV2 encoded proteins via utilizing computational tools.

Methods: Molecular modelling to unfold the anti-SARS-CoV2 potential of Lut along with reference drugs namely remdesivir and nafamostat was performed by the use of molecular docking, molecular dynamic (MD) simulation, absorption, distribution, metabolism, excretion, toxicity (ADMET) and density functional theory (DFT) methods against the five different SARS-CoV-2 encoded key proteins and one human receptor protein. The chemical reactivity of Luteolin is done through prediction of HOMO-LUMO gap energy and other chemical descriptors analysis.

Results: In the present study, Lut binds effectively in the binding pockets of spike glycoprotein (6VSB), ADP phosphatase of NSP3 (6W02), and RNA dependent RNA polymerase (7AAP) protein receptors with significant values of docking scores -7.00, -7.25, and -6.46 respectively as compared to reference drugs remdesivir and nafamostat.

Conclusion: Thus, Lut can act as a therapeutic agent and is orally safe for human consumption as predicted by molecular modelling against SARS-CoV-2 in the treatment of COVID-19.

Keywords: COVID-19, SARS-CoV-2, luteolin, molecular docking, MD simulation, DFT study.

Graphical Abstract
[1]
Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem., 2001, 49(6), 3106-3112.
[http://dx.doi.org/10.1021/jf000892m] [PMID: 11410016]
[2]
Saquib, M.; Hussain, M.; Negi, D.; Khan, M. Bioflavonoids as promising antiosteoporotic agents. Plant-derived Bioactives, 2020, 2020, 509-528.
[http://dx.doi.org/10.1007/978-981-15-2361-8_23]
[3]
Sarawek, S.; Derendorf, H.; Butterweck, V. Pharmacokinetics of Luteolin and metabolites in rats. Nat. Prod. Commun., 2008, 3, 1934578X0800301.
[http://dx.doi.org/10.1177/1934578X0800301218]
[4]
Zhou, P.; Li, L.P.; Luo, S.Q.; Jiang, H.D.; Zeng, S. Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin. J. Agric. Food Chem., 2008, 56(1), 296-300.
[http://dx.doi.org/10.1021/jf072612+] [PMID: 18052241]
[5]
Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646.
[http://dx.doi.org/10.2174/156800908786241050] [PMID: 18991571]
[6]
Lee, J.W.; Ahn, J.Y.; Hasegawa, S.; Cha, B.Y.; Yonezawa, T.; Nagai, K.; Seo, H.J.; Jeon, W.B.; Woo, J.T. Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology, 2009, 61(3), 125-134.
[http://dx.doi.org/10.1007/s10616-010-9253-5] [PMID: 20162352]
[7]
Skaper, S.D.; Barbierato, M.; Facci, L.; Borri, M.; Contarini, G.; Zusso, M.; Giusti, P. Co-Ultramicronized Palmitoylethanolamide/Luteolin facilitates the development of differentiating and undifferentiated rat oligodendrocyte progenitor cells. Mol. Neurobiol., 2018, 55(1), 103-114.
[http://dx.doi.org/10.1007/s12035-017-0722-0] [PMID: 28822061]
[8]
Liao, P.H.; Hung, L.M.; Chen, Y.H.; Kuan, Y.H.; Zhang, F.B.; Lin, R.H.; Shih, H.C.; Tsai, S.K.; Huang, S.S. Cardioprotective effects of luteolin during ischemia-reperfusion injury in rats. Circ. J., 2011, 75(2), 443-450.
[http://dx.doi.org/10.1253/circj.CJ-10-0381] [PMID: 21178298]
[9]
Qi, L.; Pan, H.; Li, D.; Fang, F.; Chen, D.; Sun, H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur. J. Pharmacol., 2011, 668(1-2), 201-207.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.020] [PMID: 21723277]
[10]
Si, H.; Wyeth, R.P.; Liu, D. The flavonoid luteolin induces nitric oxide production and arterial relaxation. Eur. J. Nutr., 2014, 53(1), 269-275.
[http://dx.doi.org/10.1007/s00394-013-0525-7] [PMID: 23604495]
[11]
Khan, M.; Khan, M.; Khan, Z.; Ahamad, T.; Ansari, W. In-Silico study to identify dietary molecules as potential SARS-Cov-2 Agents. Lett. Drug Des. Discov., 2021, 18, 562-573.
[http://dx.doi.org/10.2174/1570180817999201209204153]
[12]
Zhu, J.; Ji, P.; Pang, J.; Zhong, Z.; Li, H.; He, C.; Zhang, J.; Zhao, C. Clinical characteristics of 3062 COVID-19 patients: A meta-analysis. J. Med. Virol., 2020, 92(10), 1902-1914.
[http://dx.doi.org/10.1002/jmv.25884] [PMID: 32293716]
[13]
Hu, Z.; Song, C.; Xu, C.; Jin, G.; Chen, Y.; Xu, X.; Ma, H.; Chen, W.; Lin, Y.; Zheng, Y.; Wang, J.; Hu, Z.; Yi, Y.; Shen, H. Clinical charac-teristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci. China Life Sci., 2020, 63(5), 706-711.
[http://dx.doi.org/10.1007/s11427-020-1661-4] [PMID: 32146694]
[14]
Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; Schwartz, A.; Uriel, N. COVID-19 and cardiovascular disease. Circulation, 2020, 141(20), 1648-1655.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.046941] [PMID: 32200663]
[15]
Smith, M.; Smith, J. Repurposing therapeutics for COVID-19: Supercomputer-based docking to the SARS-CoV-2 viral spike protein and viral spike protein-human ace2 interface. Biol. Med. Chem., 2020.
[http://dx.doi.org/10.26434/chemrxiv.11871402.v4]
[16]
Shawan, M.M.A.K.; Halder, S.K.; Hasan, M.A. Luteolin and abyssinone II as potential inhibitors of SARS-CoV-2: An in silico molecular modeling approach in battling the COVID-19 outbreak. Bull. Natl. Res. Cent., 2021, 45(1), 27.
[http://dx.doi.org/10.1186/s42269-020-00479-6] [PMID: 33495684]
[17]
Lee, J.P.; Li, Y.C.; Chen, H.Y.; Lin, R.H.; Huang, S.S.; Chen, H.L.; Kuan, P.C.; Liao, M.F.; Chen, C.J.; Kuan, Y.H. Protective effects of luteolin against lipopolysaccharide-induced acute lung injury involves inhibition of MEK/ERK and PI3K/Akt pathways in neutrophils. Wuli Xuebao, 2010, 31(7), 831-838.
[http://dx.doi.org/10.1038/aps.2010.62] [PMID: 20562902]
[18]
Mehla, R.; Bivalkar-Mehla, S.; Chauhan, A. A flavonoid, luteolin, cripples HIV-1 by abrogation of tat function. PLoS One, 2011, 6(11), e27915.
[http://dx.doi.org/10.1371/journal.pone.0027915] [PMID: 22140483]
[19]
Wong, S.S.; Yuen, K.Y. The management of coronavirus infections with particular reference to SARS. J. Antimicrob. Chemother., 2008, 62(3), 437-441.
[http://dx.doi.org/10.1093/jac/dkn243] [PMID: 18565970]
[20]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[21]
Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the bio-logical activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd., 2014, 50, 444-457.
[http://dx.doi.org/10.1007/s10593-014-1496-1]
[22]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[23]
Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction of bioactive small molecules. Nucleic Acids Res., 2014, 42(Web Server issue), W32-8.
[http://dx.doi.org/10.1093/nar/gku293] [PMID: 24792161]
[24]
Saini, M.; Sangwan, R.; Khan, M.F.; Kumar, A.; Verma, R.; Jain, S. Specioside (SS) & verminoside (VS) (Iridoid glycosides): isolation, characterization and comparable quantum chemical studies using density functional theory (DFT). Heliyon, 2019, 5(1), e01118.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01118] [PMID: 30671559]
[25]
Pandey, S.K.; Khan, M.F.; Awasthi, S.; Sangwan, R.; Jain, S. A quantum theory of atoms-in-molecules perspective and DFT study of two natural products: Trans-Communic acid and Imbricatolic acid. Aust. J. Chem., 2017, 70, 328-337.
[http://dx.doi.org/10.1071/CH16406]
[26]
Uzzaman, Monir Thermodynamic HOMO-LUMO, MEP and ADMET studies of metronidazole and its modified derivatives based on DFT. Op. Acc. J. Bio. Eng. Bio. Sci., 2018, 3, 8.
[http://dx.doi.org/10.32474/OAJBEB.2019.03.000153]
[27]
Ali, M.; Mansha, A.; Asim, S.; Zahid, M.; Usman, M.; Ali, N. DFT Study for the spectroscopic and structural analysis of P-dimethylaminoazobenzene. J. Spectrosc., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/9365153]
[28]
Kerru, N.; Gummidi, L.; Bhaskaruni, S.V.H.S.; Maddila, S.N.; Singh, P.; Jonnalagadda, S.B. A comparison between observed and DFT calculations on structure of 5-(4-chlorophenyl)-2-amino-1,3,4-thiadiazole. Sci. Rep., 2019, 9(1), 19280.
[http://dx.doi.org/10.1038/s41598-019-55793-5] [PMID: 31848439]
[29]
Tandon, H.; Ranjan, P.; Chakraborty, T.; Suhag, V. Polarizability: A promising descriptor to study chemical–biological interactions. Mol. Divers., 2020, 25(1), 249-262.
[http://dx.doi.org/10.1007/s11030-020-10062-w] [PMID: 32146657]
[30]
Hagar, M.; Ahmed, H.; Aljohani, G.; Alhaddad, O. Investigation of some antiviral N-Heterocycles as COVID 19 drug: Molecular docking and DFT calculations. Int. J. Mol. Sciences, 2020, 21, 3922.
[http://dx.doi.org/10.3390/ijms21113922]
[31]
Pearson, R. Chemical hardness and density functional theory. J. Chem. Sci., 2005, 117, 369-377.
[http://dx.doi.org/10.1007/BF02708340]
[32]
Talmaciu, M.M.; Bodoki, E.; Oprean, R. Global chemical reactivity parameters for several chiral beta-blockers from the density functional theory viewpoint. Clujul Med., 2016, 89(4), 513-518.
[PMID: 27857521]
[33]
Alaşalvar, C.; Soylu, M.S.; Ünver, H.; Ocak İskeleli, N.; Yildiz, M.; Çiftçi, M.; Banoğlu, E. Crystal structure and DFT calculations of 5-(4-Chlorophenyl)-1-(6-methoxypyridazin-3-yl)-1H-pyrazole-3-carboxylic acid. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 132, 555-562.
[http://dx.doi.org/10.1016/j.saa.2014.05.014] [PMID: 24892534]
[34]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[35]
Prajapat, M.; Sarma, P.; Shekhar, N.; Avti, P.; Sinha, S.; Kaur, H.; Kumar, S.; Bhattacharyya, A.; Kumar, H.; Bansal, S.; Medhi, B. Drug targets for corona virus: A systematic review. Indian J. Pharmacol., 2020, 52(1), 56-65.
[http://dx.doi.org/10.4103/ijp.IJP_115_20] [PMID: 32201449]
[36]
Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X.C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol., 2008, 82(5), 2515-2527.
[http://dx.doi.org/10.1128/JVI.02114-07] [PMID: 18094151]
[37]
Chang, C.K.; Hou, M.H.; Chang, C.F.; Hsiao, C.D.; Huang, T.H. The SARS coronavirus nucleocapsid protein-forms and functions. Antiviral Res., 2014, 103, 39-50.
[http://dx.doi.org/10.1016/j.antiviral.2013.12.009] [PMID: 24418573]
[38]
Chellapandi, P.; Saranya, S. Genomics insights of SARS-CoV-2 (COVID-19) into target-based drug discovery. Med. Chem. Res., 2020, 29, 1-15.
[http://dx.doi.org/10.1007/s00044-020-02610-8] [PMID: 32837137]
[39]
Khuroo, M.S. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: A critical ap-praisal. Int. J. Antimicrob. Agents, 2020, 56(3), 106101.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106101] [PMID: 32687949]
[40]
Marcolino, V.A.; Pimentel, T.C.; Barão, C.E. What to expect from different drugs used in the treatment of COVID-19: A study on applica-tions and in vivo and in vitro results. Eur. J. Pharmacol., 2020, 887, 173467.
[http://dx.doi.org/10.1016/j.ejphar.2020.173467] [PMID: 32777212]
[41]
Dai, W.; Bi, J.; Li, F.; Wang, S.; Huang, X.; Meng, X.; Sun, B.; Wang, D.; Kong, W.; Jiang, C.; Su, W. Antiviral efficacy of flavonoids against Enterovirus 71 infection in vitro and in newborn mice. Viruses, 2019, 11(7), 625.
[http://dx.doi.org/10.3390/v11070625] [PMID: 31284698]
[42]
Lalani, S.; Poh, C. Flavonoids as antiviral agents for Enterovirus A71 (EV-A71). Viruses, 2020, 12, 184.
[http://dx.doi.org/10.3390/v12020184]
[43]
Zakaryan, H.; Arabyan, E.; Oo, A.; Zandi, K. Flavonoids: Promising natural compounds against viral infections. Arch. Virol., 2017, 162(9), 2539-2551.
[http://dx.doi.org/10.1007/s00705-017-3417-y] [PMID: 28547385]
[44]
Yan, H.; Ma, L.; Wang, H.; Wu, S.; Huang, H.; Gu, Z.; Jiang, J.; Li, Y. Luteolin decreases the yield of influenza A virus in vitro by interfer-ing with the coat protein I complex expression. J. Nat. Med., 2019, 73(3), 487-496.
[http://dx.doi.org/10.1007/s11418-019-01287-7] [PMID: 30758716]
[45]
Quintieri, L.; Palatini, P.; Nassi, A.; Ruzza, P.; Floreani, M. Flavonoids diosmetin and luteolin inhibit midazolam metabolism by human liver microsomes and recombinant CYP 3A4 and CYP3A5 enzymes. Biochem. Pharmacol., 2008, 75(6), 1426-1437.
[http://dx.doi.org/10.1016/j.bcp.2007.11.012] [PMID: 18191104]
[46]
Foti, R. Wahlstrom. The role of dietary supplements in cytochrome P450-mediated drug interactions. Bol. Latinoam. Caribe Plantas Med. Aromat., 2008, 7, 66-84.
[47]
Liu, J.; Sun, Y.; Cheng, M.; Liu, Q.; Liu, W.; Gao, C.; Feng, J.; Jin, Y.; Tu, L. Improving oral bioavailability of Luteolin nanocrystals by surface modification of sodium dodecyl sulfate. AAPS PharmSciTech, 2021, 22(3), 133.
[http://dx.doi.org/10.1208/s12249-021-02012-y] [PMID: 33855636]
[48]
Chen, T.; Li, L.P.; Lu, X.Y.; Jiang, H.D.; Zeng, S. Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J. Agric. Food Chem., 2007, 55(2), 273-277.
[http://dx.doi.org/10.1021/jf062088r] [PMID: 17227053]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy