Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Discovery and Development of Antibacterial Agents: Fortuitous and Designed

Author(s): Ravleen Kaur, Pooja Rani, Atanas G. Atanasov, Qushmua Alzahrani, Reena Gupta, Bhupinder Kapoor*, Monica Gulati* and Pooja Chawla

Volume 22, Issue 7, 2022

Published on: 19 January, 2022

Page: [984 - 1029] Pages: 46

DOI: 10.2174/1570193X19666211221150119

Price: $65

Abstract

Today, antibacterial drug resistance has turned into a significant public health issue. Repeated intake, suboptimal and/or unnecessary use of antibiotics, and, additionally, the transfer of resistance genes are the critical elements that make microorganisms resistant to conventional antibiotics. A substantial number of antibacterials that were successfully utilized earlier for prophylaxis and therapeutic purposes have been rendered inadequate due to this phenomenon. Therefore, the exploration of new molecules has become a continuous endeavour. Many such molecules are at various stages of the investigation. A surprisingly high number of new molecules are currently in the stage of phase 3 clinical trials. A few new agents have been commercialized in the last decade. These include solithromycin, plazomicin, lefamulin, omadacycline, eravacycline, delafloxacin, zabofloxacin, finafloxacin, nemonoxacin, gepotidacin, zoliflodacin, cefiderocol, BAL30072, avycaz, zerbaxa, vabomere, relebactam, tedizolid, cadazolid, sutezolid, triclosan, and afabiacin. This article aims to review the investigational and recently approved antibacterials with a focus on their structure, mechanisms of action/resistance, and spectrum of activity. Delving deep, their success or otherwise in various phases of clinical trials is also discussed while attributing the same to various causal factors.

Keywords: Antimicrobials, microbial resistance, macrolides, aminoglycosides, pleuromutilins, tetracyclines, fluoroquinolones, oxazolidinones, fatty acid biosynthesis inhibitors, cephalosporins.

Graphical Abstract
[1]
Lupande-Mwenebitu, D.; Baron, S.A.; Nabti, L.Z.; Lunguya-Metila, O.; Lavigne, J-P.; Rolain, J-M.; Diene, S.M. Current status of resistance to antibiotics in the Democratic Republic of the Congo: A review. J. Glob. Antimicrob. Resist., 2020, 22, 818-825.
[http://dx.doi.org/10.1016/j.jgar.2020.07.008] [PMID: 32688007]
[2]
Jindal, A.K.; Pandya, K.; Khan, I.D. Antimicrobial resistance: A public health challenge. Med. J. Armed Forces India, 2015, 71(2), 178-181.
[http://dx.doi.org/10.1016/j.mjafi.2014.04.011] [PMID: 25859082]
[3]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[4]
[5]
Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74(3), 417-433.
[http://dx.doi.org/10.1128/MMBR.00016-10] [PMID: 20805405]
[6]
[7]
Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a new metallo-beta-lactamase gene, bla(NDM-1), and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother., 2009, 53(12), 5046-5054.
[http://dx.doi.org/10.1128/AAC.00774-09] [PMID: 19770275]
[8]
Mohapatra, P.R. Metallo-β-lactamase 1--why blame New Delhi & India? Indian J. Med. Res., 2013, 137(1), 213-215.
[PMID: 23481076]
[9]
Zhang, G.; Li, W.; Chen, S.; Zhou, W.; Chen, J. Problems of conventional disinfection and new sterilization methods for antibiotic resistance control. Chemosphere, 2020, 254, 126831.
[http://dx.doi.org/10.1016/j.chemosphere.2020.126831] [PMID: 32957272]
[10]
The State of the World’s Antibiotics. 2015. Available from: https://www.cddep.org/publications/state_worlds_antibiotics_2015/ (Accessed October 16, 2021).
[11]
Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr., 2016, 4(2)
[http://dx.doi.org/10.1128/microbiolspec.VMBF-0016-2015] [PMID: 27227291]
[12]
Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol., 2018, 4(3), 482-501.
[http://dx.doi.org/10.3934/microbiol.2018.3.482] [PMID: 31294229]
[13]
Centers for Disease Control and Prevention. Biggest Threats and Data., Available from: https://www.cdc.gov/drugresistance/biggest-threats.html (Accessed October 16, 2021).
[14]
WHO. New report calls for urgent action to avert antimicrobial resistance crisis., Available from: https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (Accessed October 16, 2021).
[15]
Littmann, J.; Viens, A.M. The ethical significance of antimicrobial resistance. Public Health Ethics, 2015, 8(3), 209-224.
[PMID: 26566395]
[16]
WHO. Available from: https://www.who.int/drugresistance/WHO_Global_Strategy.htm/en/ (Accessed October 16, 2021).
[17]
World Health, O. The evolving threat of antimicrobial resistance : Options for action. World Health Organization, Geneva. 2012. Available from: https://apps.who.int/iris/handle/10665/44812 (Accessed 10 Aug. 2021).
[18]
WHO. Available from: https://www.who.int/publications/guidelines/antimicrobial-resistance/en/ (Accessed October 16, 2021).
[19]
WHO. 18 to 24 November is World Antimicrobial Awareness Week. Available from: https://www.who.int/campaigns/world-antibiotic-awareness-week (Accessed October 16, 2021).
[20]
WHO. Available from: https://www.who.int/glass/en/ (Accessed October 16, 2021).
[21]
Discover GARDP webinars and resources to mark World Antimicrobial Awareness Week (18-24 November). Available from: https://gardp.org/ (Accessed October 16, 2021).
[22]
Durand, G.A.; Raoult, D.; Dubourg, G. Antibiotic discovery: History, methods and perspectives. Int. J. Antimicrob. Agents, 2019, 53(4), 371-382.
[http://dx.doi.org/10.1016/j.ijantimicag.2018.11.010] [PMID: 30472287]
[23]
Mankelow, D.P.; Neilan, B.A. Non-ribosomal peptide antibiotics. Expert Opin. Ther. Pat., 2000, 10(10), 1583-1591.
[http://dx.doi.org/10.1517/13543776.10.10.1583]
[24]
Gomes, E.S.; Schuch, V.; de Macedo Lemos, E.G. Biotechnology of polyketides: New breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz. J. Microbiol., 2014, 44(4), 1007-1034.
[http://dx.doi.org/10.1590/S1517-83822013000400002] [PMID: 24688489]
[25]
Becker, B.; Cooper, M.A. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol., 2013, 8(1), 105-115.
[http://dx.doi.org/10.1021/cb3005116] [PMID: 23110460]
[26]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T.; Banach, M.; Rollinger, J.M.; Barreca, D.; Weckwerth, W.; Bauer, R.; Bayer, E.A.; Majeed, M.; Bishayee, A.; Bochkov, V.; Bonn, G.K.; Braidy, N.; Bucar, F.; Cifuentes, A.; D’Onofrio, G.; Bodkin, M.; Diederich, M.; Dinkova-Kostova, A.T.; Efferth, T.; El Bairi, K.; Arkells, N.; Fan, T-P.; Fiebich, B.L.; Freissmuth, M.; Georgiev, M.I.; Gibbons, S.; Godfrey, K.M.; Gruber, C.W.; Heer, J.; Huber, L.A.; Ibanez, E.; Kijjoa, A.; Kiss, A.K.; Lu, A.; Macias, F.A.; Miller, M.J.S.; Mocan, A.; Müller, R.; Nicoletti, F.; Perry, G.; Pittalà, V.; Rastrelli, L.; Ristow, M.; Russo, G.L.; Silva, A.S.; Schuster, D.; Sheridan, H.; Skalicka-Woźniak, K.; Skaltsounis, L.; Sobarzo-Sánchez, E.; Bredt, D.S.; Stuppner, H.; Sureda, A.; Tzvetkov, N.T.; Vacca, R.A.; Aggarwal, B.B.; Battino, M.; Giampieri, F.; Wink, M.; Wolfender, J-L.; Xiao, J.; Yeung, A.W.K.; Lizard, G.; Popp, M.A.; Heinrich, M.; Berindan-Neagoe, I.; Stadler, M.; Daglia, M.; Verpoorte, R.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[27]
WHO. Available from: https://www.who.int/foodsafety/areas_work/antimicrobial-resistance/cia/en/ (Accessed October 16, 2021).
[28]
Matsumoto, T. Arbekacin: Another novel agent for treating infections due to methicillin-resistant Staphylococcus aureus and multidrug-resistant Gram-negative pathogens. Clin. Pharmacol., 2014, 6, 139-148.
[http://dx.doi.org/10.2147/CPAA.S44377] [PMID: 25298740]
[29]
Itoh, N.; Kikuchi, N.; Hiramune, T. Antimicrobial effects of amikacin therapy on experimentally induced Salmonella typhimurium infection in fowls. J. Vet. Med. Sci., 1996, 58(5), 425-429.
[http://dx.doi.org/10.1292/jvms.58.425] [PMID: 8741602]
[30]
Drugs@FDA: FDA-Approved.. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=064045 (Accessed October 16, 2021).
[31]
Quirke, J.C.K.; Rajasekaran, P.; Sarpe, V.A.; Sonousi, A.; Osinnii, I.; Gysin, M.; Haldimann, K.; Fang, Q-J.; Shcherbakov, D.; Hobbie, S.N.; Sha, S-H.; Schacht, J.; Vasella, A.; Böttger, E.C.; Crich, D. Apralogs: Apramycin 5-O-glycosides and ethers with improved antibacterial activity and ribosomal selectivity and reduced susceptibility to the aminoacyltransferase (3)-IV resistance determinant. J. Am. Chem. Soc., 2020, 142(1), 530-544.
[http://dx.doi.org/10.1021/jacs.9b11601] [PMID: 31790244]
[32]
Huong, N.L.; Hoang, N.H.; Hong, S-Y.; Sohng, J.K.; Yoon, Y.J.; Park, J.W. Characterization of fortimicin aminoglycoside profiles produced from Micromonospora olivasterospora DSM 43868 by high-performance liquid chromatography-electrospray ionization-ion trap-mass spectrometry. Anal. Bioanal. Chem., 2016, 408(6), 1667-1678.
[http://dx.doi.org/10.1007/s00216-015-9281-2] [PMID: 26753981]
[33]
Takahashi, Y.; Igarashi, M. Destination of aminoglycoside antibiotics in the ‘post-antibiotic era’. J. Antibiot. (Tokyo), 2016, 71, 4-14.
[http://dx.doi.org/10.1038/ja.2017.117]
[34]
Hill, C.D.; Counts, G.W.; Turck, M. In vitro comparison of dibekacin and gentamicin activities. Antimicrob. Agents Chemother., 1981, 19(1), 190-192.
[http://dx.doi.org/10.1128/AAC.19.1.190] [PMID: 6787978]
[35]
Umezawa, S.; Tsuchiya, T.; Yamasaki, T.; Sano, H.; Takahashi, Y. Total synthesis of dihydrostreptomycin. J. Am. Chem. Soc., 1974, 96(3), 920-921.
[http://dx.doi.org/10.1021/ja00810a049] [PMID: 4131131]
[36]
Burrows, D. Framycetin sulphate: A cutaneous antibiotic. BMJ, 1958, 2(5093), 428-429.
[http://dx.doi.org/10.1136/bmj.2.5093.428] [PMID: 13560890]
[37]
Asadollahi, P.; Razavi, S.; Asadollahi, K.; Pourshafie, M.R.; Talebi, M. Rise of antibiotic resistance in clinical enterococcal isolates during 2001-2016 in Iran: A review. New Microbes New Infect., 2018, 26, 92-99.
[http://dx.doi.org/10.1016/j.nmni.2018.08.018] [PMID: 30319780]
[38]
Drugs@FDA: FDA-Approved.. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050425 (Accessed October 16, 2021).
[39]
Tod, M.; Padoin, C.; Petitjean, O. Clinical pharmacokinetics and pharmacodynamics of isepamicin. Clin. Pharmacokinet., 2000, 38(3), 205-223.
[http://dx.doi.org/10.2165/00003088-200038030-00002] [PMID: 10749517]
[40]
Hoerr, V.; Duggan, G.E.; Zbytnuik, L.; Poon, K.K.H.; Große, C.; Neugebauer, U.; Methling, K.; Löffler, B.; Vogel, H.J. Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiol., 2016, 16, 82.
[http://dx.doi.org/10.1186/s12866-016-0696-5] [PMID: 27159970]
[41]
Drugs@FDA: FDA-Approved.. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=060304 (Accessed October 16, 2021).
[42]
Mehta, R.; Champney, W.S. 30S ribosomal subunit assembly is a target for inhibition by aminoglycosides in Escherichia coli. Antimicrob. Agents Chemother., 2002, 46(5), 1546-1549.
[http://dx.doi.org/10.1128/AAC.46.5.1546-1549.2002] [PMID: 11959595]
[43]
Campoli-Richards, D.M.; Chaplin, S.; Sayce, R.H.; Goa, K.L. Netilmicin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1989, 38(5), 703-756.
[http://dx.doi.org/10.2165/00003495-198938050-00003] [PMID: 2689137]
[45]
Eljaaly, K.; Alharbi, A.; Alshehri, S.; Ortwine, J.K.; Pogue, J.M. Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs, 2019, 79(3), 243-269.
[http://dx.doi.org/10.1007/s40265-019-1054-3] [PMID: 30723876]
[46]
Kong, J.; Wu, Z-X.; Wei, L.; Chen, Z-S.; Yoganathan, S. Exploration of antibiotic activity of aminoglycosides, in particular ribostamycin alone and in combination with ethylenediaminetetraacetic acid against pathogenic bacteria. Front. Microbiol., 2020, 11, 1718.
[http://dx.doi.org/10.3389/fmicb.2020.01718] [PMID: 32849365]
[47]
Rawlins, M. The disputed discovery of streptomycin. Lancet, 2012, 380(9838), 207.
[http://dx.doi.org/10.1016/S0140-6736(12)61202-1]
[48]
Luzzatto, L.; Apirion, D.; Schlessinger, D. Mechanism of action of streptomycin in E. coli: interruption of the ribosome cycle at the initiation of protein synthesis. Proc. Natl. Acad. Sci. USA, 1968, 60(3), 873-880.
[http://dx.doi.org/10.1073/pnas.60.3.873] [PMID: 4875806]
[49]
Le Goffic, F.; Capmau, M.L.; Tangy, F.; Baillarge, M. Mechanism of action of aminoglycoside antibiotics. Binding studies of tobramycin and its 6'-N-acetyl derivative to the bacterial ribosome and its subunits. Eur. J. Biochem., 1979, 102(1), 73-81.
[http://dx.doi.org/10.1111/j.1432-1033.1979.tb06264.x] [PMID: 391568]
[50]
US food and drug administration.. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=050477 (Accessed October 16, 2021).
[51]
Bujnowski, K.; Synoradzki, L.; Darłak, R.C.; Zevaco, T.A.; Dinjus, E. Semi-synthetic zwitterionic rifamycins: A promising class of antibiotics; survey of their chemistry and biological activities. RSC Advances, 2016, 6, 114758-114772.
[http://dx.doi.org/10.1039/C6RA22880A]
[52]
Sensi, P. History of the development of rifampin. Rev. Infect. Dis., 1983, 5(Suppl. 3), S402-S406.
[http://dx.doi.org/10.1093/clinids/5.Supplement_3.S402] [PMID: 6635432]
[53]
Wehrli, W.; Staehelin, M. Actions of the rifamycins. Bacteriol. Rev., 1971, 35(3), 290-309.
[http://dx.doi.org/10.1128/br.35.3.290-309.1971] [PMID: 5001420]
[54]
Zheng, C.; Hu, X.; Zhao, L.; Hu, M.; Gao, F. Clinical and pharmacological hallmarks of rifapentine’s use in diabetes patients with active and latent tuberculosis: Do we know enough? Drug Des. Devel. Ther., 2017, 11, 2957-2968.
[http://dx.doi.org/10.2147/DDDT.S146506] [PMID: 29066867]
[55]
Koo, H.L.; DuPont, H.L. Rifaximin: A unique gastrointestinal-selective antibiotic for enteric diseases. Curr. Opin. Gastroenterol., 2010, 26(1), 17-25.
[http://dx.doi.org/10.1097/MOG.0b013e328333dc8d] [PMID: 19881343]
[56]
Calanni, F.; Renzulli, C.; Barbanti, M.; Viscomi, G.C. Rifaximin: Beyond the traditional antibiotic activity. J. Antibiot. (Tokyo), 2014, 67(9), 667-670.
[http://dx.doi.org/10.1038/ja.2014.106] [PMID: 25095806]
[57]
Wang, X.; Zhang, X.; Zong, Z.; Yu, R.; Lv, X.; Xin, J.; Tong, C.; Hao, Q.; Qin, Z.; Xiong, Y.; Liu, H.; Ding, G.; Hu, C. Biapenem versus meropenem in the treatment of bacterial infections: A multicenter, randomized, controlled clinical trial. Indian J. Med. Res., 2013, 138(6), 995-1002.
[PMID: 24521647]
[58]
Hilas, O.; Ezzo, D.C.; Jodlowski, T.Z. Doripenem (doribax), a new carbapenem antibacterial agent. P&T, 2008, 33(3), 134-180.
[PMID: 19750153]
[59]
Zhanel, G.G.; Johanson, C.; Embil, J.M.; Noreddin, A.; Gin, A.; Vercaigne, L.; Hoban, D.J. Ertapenem: Review of a new carbapenem. Expert Rev. Anti Infect. Ther., 2005, 3(1), 23-39.
[http://dx.doi.org/10.1586/14787210.3.1.23] [PMID: 15757455]
[60]
Sundelof, J.G.; Hajdu, R.; Gill, C.J.; Thompson, R.; Rosen, H.; Kropp, H. Pharmacokinetics of L-749,345, a long-acting carbapenem antibiotic, in primates. Antimicrob. Agents Chemother., 1997, 41(8), 1743-1748.
[http://dx.doi.org/10.1128/AAC.41.8.1743] [PMID: 9257753]
[61]
Schurek, K.N.; Wiebe, R.; Karlowsky, J.A.; Rubinstein, E.; Hoban, D.J.; Zhanel, G.G. Faropenem: Review of a new oral penem. Expert Rev. Anti Infect. Ther., 2007, 5(2), 185-198.
[http://dx.doi.org/10.1586/14787210.5.2.185] [PMID: 17402834]
[62]
Rodloff, A.C.; Goldstein, E.J.C.; Torres, A. Two decades of imipenem therapy. J. Antimicrob. Chemother., 2006, 58(5), 916-929.
[http://dx.doi.org/10.1093/jac/dkl354] [PMID: 16997845]
[63]
Drusano, G. Meropenem: Laboratory and clinical data. Clin. Microbiol. Infect., 1997, 3(Suppl. 4), S51-S59.
[http://dx.doi.org/10.1016/S1198-743X(14)65034-5] [PMID: 11869241]
[64]
Goa, K.L.; Noble, S. Panipenem/betamipron. Drugs, 2003, 63(9), 913-925.
[http://dx.doi.org/10.2165/00003495-200363090-00005] [PMID: 12678575]
[65]
Tanimura, H.; Uchiyama, K.; Onishi, H.; Akimoto, S.; Ochiai, M.; Kontani, T.; Kobayasi, Y.; Johata, K.; Hotta, T.; Sahara, M.; Masaki, K.; Noguchi, K.; Iwakura, S. Study of the absorption of cefcapene pivoxil in patients with infectious disease and soft stool or diarrhea. J. Infect. Chemother., 2003, 9(1), 75-82.
[http://dx.doi.org/10.1007/s10156-002-0218-2] [PMID: 12673412]
[66]
Guay, D.R. Cefdinir: An advanced-generation, broad-spectrum oral cephalosporin. Clin. Ther., 2002, 24(4), 473-489.
[http://dx.doi.org/10.1016/S0149-2918(02)85125-6] [PMID: 12017394]
[67]
Guay, D.R. Review of cefditoren, an advanced-generation, broad-spectrum oral cephalosporin. Clin. Ther., 2001, 23(12), 1924-1937.
[http://dx.doi.org/10.1016/S0149-2918(01)80147-8] [PMID: 11813929]
[68]
Kumazawa, J.; Yagisawa, M. The history of antibiotics: The Japanese story. J. Infect. Chemother., 2002, 8(2), 125-133.
[http://dx.doi.org/10.1007/s101560200022] [PMID: 12111564]
[69]
Yahav, D.; Paul, M.; Fraser, A.; Sarid, N.; Leibovici, L. Efficacy and safety of cefepime: A systematic review and meta-analysis. Lancet Infect. Dis., 2007, 7(5), 338-348.
[http://dx.doi.org/10.1016/S1473-3099(07)70109-3] [PMID: 17448937]
[70]
Cullmann, W.; Edwards, D.J.; Kissling, M.; Kneer, J.; Stoeckel, K.; Urwyler, H. Cefetamet pivoxil: A review of its microbiology, toxicology, pharmacokinetics and clinical efficacy. Int. J. Antimicrob. Agents, 1992, 1(4), 175-191.
[http://dx.doi.org/10.1016/0924-8579(92)90004-B] [PMID: 18611503]
[71]
Peeters, M.; Piot, P. In-vitro activity of Ro-15-8074, a new oral cephalosporin. J. Antimicrob. Chemother., 1985, 16(4), 469-473.
[http://dx.doi.org/10.1093/jac/16.4.469] [PMID: 3877719]
[72]
Brogden, R.N.; Campoli-Richards, D.M. Cefixime. A review of its antibacterial activity. Pharmacokinetic properties and therapeutic potential. Drugs, 1989, 38(4), 524-550.
[http://dx.doi.org/10.2165/00003495-198938040-00004] [PMID: 2684593]
[73]
Kumar, M.; Kumar, V.; Gupta, G.K. Synthesis, antibacterial evaluation, and SAR study of some novel 3-aryl/heteroaryl-9-methyl-1,2,4-triazolo-[4,3-a]-quinoline derivatives. Med. Chem. Res., 2015, 24, 1857-1868.
[http://dx.doi.org/10.1007/s00044-014-1254-z]
[74]
Jones, R.N.; Barry, A.L.; Thornsberry, C.; Wilson, H.W. In vitro antimicrobial activity evaluation of cefodizime (HR221), a new semisynthetic cephalosporin. Antimicrob. Agents Chemother., 1981, 20(6), 760-768.
[http://dx.doi.org/10.1128/AAC.20.6.760] [PMID: 6275785]
[75]
Brogden, R.N.; Carmine, A.; Heel, R.C.; Morley, P.A.; Speight, T.M.; Avery, G.S. Cefoperazone: A review of its in vitro antimicrobial activity, pharmacological properties and therapeutic efficacy. Drugs, 1981, 22(6), 423-460.
[http://dx.doi.org/10.2165/00003495-198122060-00002] [PMID: 6459224]
[76]
Ohki, H.; Kawabata, K.; Okuda, S.; Kamimura, T.; Sakane, K. FK037, a new parenteral cephalosporin with a broad antibacterial spectrum: Synthesis and antibacterial activity. J. Antibiot. (Tokyo), 1993, 46(2), 359-361.
[http://dx.doi.org/10.7164/antibiotics.46.359] [PMID: 8468254]
[77]
Carmine, A.A.; Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Cefotaxime. A review of its antibacterial activity, pharmacological properties and therapeutic use. Drugs, 1983, 25(3), 223-289.
[http://dx.doi.org/10.2165/00003495-198325030-00001] [PMID: 6303743]
[78]
Raabe, B.M.; Lovaglio, J.; Grover, G.S.; Brown, S.A.; Boucher, J.F.; Yuan, Y.; Civil, J.R.; Gillhouse, K.A.; Stubbs, M.N.; Hoggatt, A.F.; Halliday, L.C.; Fortman, J.D. Pharmacokinetics of cefovecin in cynomolgus macaques (Macaca fascicularis), olive baboons (Papio anubis), and rhesus macaques (Macaca mulatta). J. Am. Assoc. Lab. Anim. Sci., 2011, 50(3), 389-395.
[PMID: 21640036]
[79]
Iizawa, Y.; Okonogi, K.; Hayashi, R.; Iwahi, T.; Yamazaki, T.; Imada, A. Therapeutic effect of cefozopran (SCE-2787), a new parenteral cephalosporin, against experimental infections in mice. Antimicrob. Agents Chemother., 1993, 37(1), 100-105.
[http://dx.doi.org/10.1128/AAC.37.1.100] [PMID: 8431004]
[80]
Fujimori, I. [Cefpiramide] Jpn. J. Antibiot., 1985, 38(12), 3437-3448.
[PMID: 3914557]
[81]
Garau, J.; Wilson, W.; Wood, M.; Carlet, J. Fourth-generation cephalosporins: A review of in vitro activity, pharmacokinetics, pharmacodynamics and clinical utility. Clin. Microbiol. Infect., 1997, 3, S87-S101.
[http://dx.doi.org/10.1111/j.1469-0691.1997.tb00649.x]
[82]
Todd, W.M. Cefpodoxime proxetil: A comprehensive review. Int. J. Antimicrob. Agents, 1994, 4(1), 37-62.
[http://dx.doi.org/10.1016/0924-8579(94)90062-0] [PMID: 18611588]
[83]
Dołhań, A.; Urbaniak, B.; Manuszewska, M.; Klause, R.; Tomczak, S.; Muszalska, I.; Sobczak, A.; Jelińska, A. Critical parameters for the stability of cefquinome sulfate in aqueous solutions and solid phase. React. Kinet. Mech. Catal., 2017, 122, 715-728.
[http://dx.doi.org/10.1007/s11144-017-1257-0]
[84]
Limbert, M.; Isert, D.; Klesel, N.; Markus, A.; Seeger, K.; Seibert, G.; Schrinner, E. Antibacterial activities in vitro and in vivo and pharmacokinetics of cefquinome (HR 111V), a new broad-spectrum cephalosporin. Antimicrob. Agents Chemother., 1991, 35(1), 14-19.
[http://dx.doi.org/10.1128/AAC.35.1.14] [PMID: 2014969]
[85]
Wright, D.B. Cefsulodin. Drug Intell. Clin. Pharm., 1986, 20(11), 845-849.
[http://dx.doi.org/10.1177/106002808602001104] [PMID: 3536385]
[86]
Shirley, D-A.T.; Heil, E.L.; Johnson, J.K. Ceftaroline fosamil: A brief clinical review. Infect. Dis. Ther., 2013, 2(2), 95-110.
[http://dx.doi.org/10.1007/s40121-013-0010-x] [PMID: 25134474]
[87]
Hayes, M.V.; Orr, D.C. Mode of action of ceftazidime: Affinity for the penicillin-binding proteins of Escherichia coli K12, Pseudomonas aeruginosa and Staphylococcus aureus. J. Antimicrob. Chemother., 1983, 12(2), 119-126.
[http://dx.doi.org/10.1093/jac/12.2.119] [PMID: 6413485]
[88]
Wiseman, L.R.; Balfour, J.A. Ceftibuten. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs, 1994, 47(5), 784-808.
[http://dx.doi.org/10.2165/00003495-199447050-00006] [PMID: 7520858]
[89]
Dołhań, A.; Jelińska, A.; Bębenek, M. Stability of ceftiofur sodium and cefquinome sulphate in intravenous solutions. Scientif. World J., 2014, 2014, 583461.
[http://dx.doi.org/10.1155/2014/583461] [PMID: 25025091]
[90]
Parks, D.; Layne, P.; Uri, J.; Ziv, D.; Bass, S. Ceftizoxime: Clinical evaluation of efficacy and safety in the U.S.A. J. Antimicrob. Chemother., 1982, 10(10)(Suppl. C), 327-338.
[http://dx.doi.org/10.1093/jac/10.suppl_C.327] [PMID: 6296027]
[91]
Morosini, M.I.; Díez-Aguilar, M.; Cantón, R. Mechanisms of action and antimicrobial activity of ceftobiprole. Rev. Esp. Quimioter., 2019, 32(Suppl. 3), 3-10.
[PMID: 31364335]
[92]
Bremner, D.A. Ceftriaxone - a new broad-spectrum semisynthetic cephalosporin. In vitro activity against gram-negative bacilli sensitive and resistant to gentamicin. Chemotherapy, 1983, 29(4), 283-288.
[http://dx.doi.org/10.1159/000238210] [PMID: 6307605]
[93]
Carmine, A.A.; Brogden, R.N.; Heel, R.C.; Romankiewicz, J.A.; Speight, T.M.; Avery, G.S. Moxalactam (latamoxef). A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1983, 26(4), 279-333.
[http://dx.doi.org/10.2165/00003495-198326040-00001] [PMID: 6354685]
[94]
Wise, R.; Andrews, J.M.; Bedford, K.A. LY127935, a novel oxa-beta-lactam: An in vitro comparison with other beta-lactam antibiotics. Antimicrob. Agents Chemother., 1979, 16(3), 341-345.
[http://dx.doi.org/10.1128/AAC.16.3.341] [PMID: 507788]
[95]
Piddock, L.J.V. Teixobactin, the first of a new class of antibiotics discovered by iChip technology? J. Antimicrob. Chemother., 2015, 70(10), 2679-2680.
[http://dx.doi.org/10.1093/jac/dkv175] [PMID: 26089440]
[96]
Acar, J.; Casewell, M.; Freeman, J.; Friis, C.; Goossens, H. Avoparcin and virginiamycin as animal growth promoters: A plea for science in decision-making. Clin. Microbiol. Infect., 2000, 6(9), 477-482.
[http://dx.doi.org/10.1046/j.1469-0691.2000.00128.x] [PMID: 11168181]
[97]
Kunstmann, M.P.; Mitscher, L.A.; Porter, J.N.; Shay, A.J.; Darken, M.A. LL-AV290, a new antibiotic. I. Fermentation, isolation, and characterization. Antimicrob. Agents Chemother., 1968, 8, 242-245.
[PMID: 5735366]
[98]
Chen, A.Y.; Zervos, M.J.; Vazquez, J.A. Dalbavancin: A novel antimicrobial. Int. J. Clin. Pract., 2007, 61(5), 853-863.
[http://dx.doi.org/10.1111/j.1742-1241.2007.01318.x] [PMID: 17362476]
[99]
Ramdeen, S.; Boucher, H.W. Dalbavancin for the treatment of acute bacterial skin and skin structure infections. Expert Opin. Pharmacother., 2015, 16(13), 2073-2081.
[http://dx.doi.org/10.1517/14656566.2015.1075508] [PMID: 26239321]
[100]
Rosenthal, S.; Decano, A.G.; Bandali, A.; Lai, D.; Malat, G.E.; Bias, T.E. Oritavancin (Orbactiv): A new-generation lipoglycopeptide for the treatment of acute bacterial skin and skin structure infections. P&T, 2018, 43(3), 143-179.
[PMID: 29491695]
[101]
Han, J.; Chen, J.; Shao, L.; Zhang, J.; Dong, X.; Liu, P.; Chen, D. Production of the ramoplanin activity analogue by double gene inactivation. PLoS One, 2016, 11(5), e0154121.
[http://dx.doi.org/10.1371/journal.pone.0154121] [PMID: 27149627]
[102]
Butler, M.S.; Hansford, K.A.; Blaskovich, M.A.; Halai, R.; Cooper, M.A. Glycopeptide antibiotics: Back to the future. J. Antibiot. (Tokyo), 2014, 67(9), 631-644.
[http://dx.doi.org/10.1038/ja.2014.111] [PMID: 25118105]
[103]
Al Jalali, V.; Zeitlinger, M. Clinical pharmacokinetics and pharmacodynamics of telavancin compared with the other glycopeptides. Clin. Pharmacokinet., 2018, 57(7), 797-816.
[http://dx.doi.org/10.1007/s40262-017-0623-4] [PMID: 29332251]
[104]
Rubinstein, E.; Keynan, Y. Vancomycin revisited - 60 years later. Front. Public Health, 2014, 2, 217.
[http://dx.doi.org/10.3389/fpubh.2014.00217] [PMID: 25401098]
[105]
Wenzel, R.; Bate, G.; Kirkpatrick, P. Tigecycline. Nat. Rev. Drug Discov., 2005, 4(10), 809-810.
[http://dx.doi.org/10.1038/nrd1857] [PMID: 16237846]
[106]
Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother., 2005, 55(3), 283-288.
[http://dx.doi.org/10.1093/jac/dkh546] [PMID: 15705644]
[107]
Jelić, D.; Antolović, R. From erythromycin to azithromycin and new potential ribosome-binding antimicrobials. Antibiotics (Basel), 2016, 5(3), 29.
[http://dx.doi.org/10.3390/antibiotics5030029] [PMID: 27598215]
[108]
Mansour, H.; Chahine, E.B.; Karaoui, L.R.; El-Lababidi, R.M. Cethromycin: A new ketolide antibiotic. Ann. Pharmacother., 2013, 47(3), 368-379.
[http://dx.doi.org/10.1345/aph.1R435] [PMID: 23463743]
[109]
Sturgill, M.G.; Rapp, R.P. Clarithromycin: Review of a new macrolide antibiotic with improved microbiologic spectrum and favorable pharmacokinetic and adverse effect profiles. Ann. Pharmacother., 1992, 26(9), 1099-1108.
[http://dx.doi.org/10.1177/106002809202600912] [PMID: 1421677]
[110]
Whitaker, G.W.; Lindstrom, T.D. Determination of dirithromycin, LY281389 and other macrolide antibiotics by HPLC with electrochemical detection. J. Liq. Chromatogr., 1988, 11(14), 3011-3020.
[http://dx.doi.org/10.1080/01483918808076776]
[111]
Shinkai, I.; Ohta, Y. New drugs--reports of new drugs recently approved by the FDA. Dirithromycin. Bioorg. Med. Chem., 1996, 4(4), 521-522.
[PMID: 8735838]
[112]
Wise, R.I.; Voigt, A.E.; Collin, M.V.; Cranny, C.L. Origin of erythromycin-resistant strains of Micrococcus pyogenes in infections; bacteriophage types and in vitro resistance of cultures to antibiotics. AMA Arch. Intern. Med., 1955, 95(3), 419-426.
[http://dx.doi.org/10.1001/archinte.1955.00250090057008] [PMID: 14349420]
[113]
McAlpine, J.B. The ups and downs of drug discovery: The early history of Fidaxomicin. J. Antibiot. (Tokyo), 2017, 70(5), 492-494.
[http://dx.doi.org/10.1038/ja.2016.157] [PMID: 28096550]
[114]
Saverino, D.; Debbia, E.A.; Pesce, A.; Lepore, A.M.; Schito, G.C. Antibacterial profile of flurithromycin, a new macrolide. J. Antimicrob. Chemother., 1992, 30(3), 261-272.
[http://dx.doi.org/10.1093/jac/30.3.261] [PMID: 1452490]
[115]
Toscano, L.; Fioriello, G.; Spagnoli, R.; Cappelletti, L.; Zanuso, G. New fluorinated erythromycins obtained by mutasynthesis. J. Antibiot. (Tokyo), 1983, 36(11), 1439-1450.
[http://dx.doi.org/10.7164/antibiotics.36.1439] [PMID: 6654754]
[116]
Yang, Q.; Liu, X.; Zhang, C.; Yong, K.; Clifton, A.C.; Ding, H.; Liu, Y. Pharmacokinetics and pharmacodynamics of gamithromycin treatment of Pasteurella multocida in a murine lung infection model. Front. Pharmacol., 2019, 10, 1090.
[http://dx.doi.org/10.3389/fphar.2019.01090] [PMID: 31680940]
[117]
Heck, J.V.; Leanza, W.J.; Ratcliffe, R.W.; Salzmann, T.N.; Wilkening, R.R.; Szymonifka, M.J.; Shankaran, K. 9-Deoxo-8a-aza-8ahomoerythromycin a derivatives modified at the 4"- and 8apositions. CA2064634A1 1992.
[118]
Umezawa, H. Discovery of josamycin. G. Ital. Chemioter., 1982, 29(1)(Suppl. 1), 1-10.
[PMID: 6765367]
[119]
Hung, C-J.; Cheng, J-J.; Lai, P-J.; Lin, W-L.; Hsiao, Y-P. Leucomycin-induced acute generalized exanthematous pustulosis complicated with pitting edema of the legs. Zhonghua Pifuke Yixue Zazhi, 2015, 33(3), 157-159.
[http://dx.doi.org/10.1016/j.dsi.2014.10.004]
[120]
Niida, T.; Tsuruoka, T.; Ezaki, N.; Shomura, T.; Akita, E. A new antibiotic, SF-837. J. Antibiot. (Tokyo), 1971, 24(5), 319-320.
[http://dx.doi.org/10.7164/antibiotics.24.319] [PMID: 5581351]
[121]
Tsuruoka, T.; Shomura, T.; Ezaki, N.; Watanabe, H.; Akita, E. Studies on antibiotic SF-837, a new antibiotic. I. The producing microorganism and isolation and characterization of the antibiotic. J. Antibiot. (Tokyo), 1971, 24(7), 452-459.
[http://dx.doi.org/10.7164/antibiotics.24.452] [PMID: 5562042]
[122]
Holliday, S.M.; Faulds, D. Miocamycin. A review of its antimicrobial activity, pharmacokinetic properties and therapeutic potential. Drugs, 1993, 46(4), 720-745.
[http://dx.doi.org/10.2165/00003495-199346040-00008] [PMID: 7506653]
[123]
Vilches, C.; Méndez, C.; Hardisson, C.; Salas, J.A. Biosynthesis of oleandomycin by Streptomyces antibioticus: Influence of nutritional conditions and development of resistance. J. Gen. Microbiol., 1990, 136(8), 1447-1454.
[http://dx.doi.org/10.1099/00221287-136-8-1447] [PMID: 2262785]
[124]
Braga, P.C. Rokitamycin: bacterial resistance to a 16-membered ring macrolide differs from that to 14- and 15-membered ring macrolides. J. Chemother., 2002, 14(2), 115-131.
[http://dx.doi.org/10.1179/joc.2002.14.2.115] [PMID: 12017366]
[125]
Young, R.A.; Gonzalez, J.P.; Sorkin, E.M. Roxithromycin. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs, 1989, 37(1), 8-41.
[http://dx.doi.org/10.2165/00003495-198937010-00002] [PMID: 2651088]
[126]
Fernandes, P.; Martens, E.; Bertrand, D.; Pereira, D. The solithromycin journey-It is all in the chemistry. Bioorg. Med. Chem., 2016, 24(24), 6420-6428.
[http://dx.doi.org/10.1016/j.bmc.2016.08.035] [PMID: 27595539]
[127]
Waites, K.B.; Crabb, D.M.; Duffy, L.B. Comparative in vitro susceptibilities of human mycoplasmas and ureaplasmas to a new investigational ketolide, CEM-101. Antimicrob. Agents Chemother., 2009, 53(5), 2139-2141.
[http://dx.doi.org/10.1128/AAC.00090-09] [PMID: 19258276]
[128]
Kaufman, H.E. Spiramycin. Arch. Ophthalmol., 1961, 66(4), 609-610.
[http://dx.doi.org/10.1001/archopht.1961.00960010611029]
[129]
Raja, A.; Lebbos, J.; Kirkpatrick, P. Telithromycin. Nat. Rev. Drug Discov., 2004, 3(9), 733-734.
[http://dx.doi.org/10.1038/nrd1502] [PMID: 15368658]
[130]
Andersen, N.M.; Poehlsgaard, J.; Warrass, R.; Douthwaite, S. Inhibition of protein synthesis on the ribosome by tildipirosin compared with other veterinary macrolides. Antimicrob. Agents Chemother., 2012, 56(11), 6033-6036.
[http://dx.doi.org/10.1128/AAC.01250-12] [PMID: 22926570]
[131]
Poehlsgaard, J.; Andersen, N.M.; Warrass, R.; Douthwaite, S. Visualizing the 16-membered ring macrolides tildipirosin and tilmicosin bound to their ribosomal site. ACS Chem. Biol., 2012, 7(8), 1351-1355.
[http://dx.doi.org/10.1021/cb300105p] [PMID: 22563863]
[132]
Ziv, G.; Shem-Tov, M.; Glickman, A.; Winkler, M.; Saran, A. Tilmicosin antibacterial activity and pharmacokinetics in cows. J. Vet. Pharmacol. Ther., 1995, 18(5), 340-345.
[http://dx.doi.org/10.1111/j.1365-2885.1995.tb00601.x] [PMID: 8587151]
[133]
Evans, D.J.; Cullinan, P.; Geddes, D.M.; Walters, E.H.; Milan, S.J.; Jones, P. Troleandomycin as an oral corticosteroid steroid sparing agent in stable asthma. Cochrane Database Syst. Rev., 2001, 2000(2), CD002987.
[PMID: 11406054]
[134]
English, A.R.; McBride, T.J. Triacetyloleandomycin: Biological studies. Antibiot. Chemother. (Northfield Ill.), 1958, 8(8), 424-428.
[PMID: 24544894]
[135]
Villarino, N.; Brown, S.A.; Martín-Jiménez, T. The role of the macrolide tulathromycin in veterinary medicine. Vet. J., 2013, 198(2), 352-357.
[http://dx.doi.org/10.1016/j.tvjl.2013.07.032] [PMID: 24268476]
[136]
Nowakowski, M.A.; Inskeep, P.B.; Risk, J.E.; Skogerboe, T.L.; Benchaoui, H.A.; Meinert, T.R.; Sherington, J.; Sunderland, S.J. Pharmacokinetics and lung tissue concentrations of tulathromycin, a new triamilide antibiotic, in cattle. Vet. Ther., 2004, 5(1), 60-74.
[PMID: 15150731]
[137]
McGuire, J.; Boniece, W.; Higgens, C.; Hoehn, M.; Stark, W.; Westhead, J.; Wolfe, R. Tylosin, a new antibiotic: I. Microbiological studies. Antibiot. Chemother. (Northfield Ill.), 1961, 11(5), 320-327.
[138]
Elbadawy, M.; Aboubakr, M.; Abugomaa, A. Pharmacokinetics of tylvalosin in broiler turkeys (Meleagris Gallopavo) after single intravenous and oral administration. Front. Vet. Sci., 2019, 6, 355.
[http://dx.doi.org/10.3389/fvets.2019.00355] [PMID: 31681811]
[139]
Jacks, T.M.; Judith, F.R.; Feighner, S.D.; Likoff, R.O. 3-Acetyl-4'-isovaleryl tylosin for prevention of swine dysentery. Am. J. Vet. Res., 1986, 47(11), 2325-2328.
[PMID: 3789492]
[140]
Madsen, P.O.; Nielsen, K.T.; Graversen, P.H. Aztreonam: critical evaluation of the first monobactam antibiotic in treatment of urinary tract infections. J. Urol., 1988, 140(5), 925-932.
[http://dx.doi.org/10.1016/S0022-5347(17)41891-X] [PMID: 3050153]
[141]
Sykes, R.B.; Bonner, D.P.; Bush, K.; Georgopapadakou, N.H. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob. Agents Chemother., 1982, 21(1), 85-92.
[http://dx.doi.org/10.1128/AAC.21.1.85] [PMID: 6979307]
[142]
Manchand, P.S.; Luk, K.C.; Belica, P.S.; Choudhry, S.C.; Wei, C.C.; Soukup, M. A novel synthesis of the monobactam antibiotic carumonam. J. Org. Chem., 1988, 53(23), 5507-5512.
[http://dx.doi.org/10.1021/jo00258a020]
[143]
Scaiola, A.; Leibundgut, M.; Boehringer, D.; Caspers, P.; Bur, D.; Locher, H.H.; Rueedi, G.; Ritz, D. Structural basis of translation inhibition by cadazolid, a novel quinoxolidinone antibiotic. Sci. Rep., 2019, 9(1), 5634.
[http://dx.doi.org/10.1038/s41598-019-42155-4] [PMID: 30948752]
[144]
Rashid, M.U.; Lozano, H.M.; Weintraub, A.; Nord, C.E. In vitro activity of cadazolid against Clostridium difficile strains isolated from primary and recurrent infections in Stockholm, Sweden. Anaerobe, 2013, 20, 32-35.
[http://dx.doi.org/10.1016/j.anaerobe.2013.02.003] [PMID: 23454525]
[145]
Hashemian, S.M.R.; Farhadi, T.; Ganjparvar, M. Linezolid: A review of its properties, function, and use in critical care. Drug Des. Devel. Ther., 2018, 12, 1759-1767.
[http://dx.doi.org/10.2147/DDDT.S164515] [PMID: 29950810]
[146]
Chellat, M.F.; Raguž, L.; Riedl, R. Targeting antibiotic resistance. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6600-6626.
[http://dx.doi.org/10.1002/anie.201506818] [PMID: 27000559]
[147]
Lawrence, L.; Danese, P.; DeVito, J.; Franceschi, F.; Sutcliffe, J. In vitro activities of the Rx-01 oxazolidinones against hospital and community pathogens. Antimicrob. Agents Chemother., 2008, 52(5), 1653-1662.
[http://dx.doi.org/10.1128/AAC.01383-07] [PMID: 18316525]
[148]
Urbina, O.; Ferrández, O.; Espona, M.; Salas, E.; Ferrández, I.; Grau, S. Potential role of tedizolid phosphate in the treatment of acute bacterial skin infections. Drug Des. Devel. Ther., 2013, 7, 243-265.
[PMID: 23589680]
[149]
Vera-Cabrera, L.; Gonzalez, E.; Rendon, A.; Ocampo-Candiani, J.; Welsh, O.; Velazquez-Moreno, V.M.; Choi, S.H.; Molina-Torres, C. In vitro activities of DA-7157 and DA-7218 against Mycobacterium tuberculosis and Nocardia brasiliensis. Antimicrob. Agents Chemother., 2006, 50(9), 3170-3172.
[http://dx.doi.org/10.1128/AAC.00571-06] [PMID: 16940121]
[150]
Kalinkova, G.; Stoeva, S. Polymorphism of azlocillin sodium. Int. J. Pharm., 1996, 135(1-2), 111-114.
[http://dx.doi.org/10.1016/0378-5173(95)04407-8]
[151]
Pothineni, V.R.; Potula, H.S.K.; Ambati, A.; Mallajosyula, V.V.A.; Sridharan, B.; Inayathullah, M.; Ahmed, M.S.; Rajadas, J. Azlocillin can be the potential drug candidate against drug-tolerant Borrelia burgdorferi sensu stricto JLB31. Sci. Rep., 2020, 10(1), 3798.
[http://dx.doi.org/10.1038/s41598-020-59600-4] [PMID: 32123189]
[152]
Rolinson, G.N.; Sutherland, R. Carbenicillin, a new semisynthetic penicillin active against Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 1967, 7, 609-613.
[PMID: 4970205]
[153]
English, A.R.; Retsema, J.A.; Ray, V.A.; Lynch, J.E. Carbenicillin indanyl sodium, an orally active derivative of carbenicillin. Antimicrob. Agents Chemother., 1972, 1(3), 185-191.
[http://dx.doi.org/10.1128/AAC.1.3.185] [PMID: 4558137]
[154]
Ellis, C.J.; Geddes, A.M.; Davey, P.G.; Wise, R.; Andrews, J.M.; Grimley, R.P. Mezlocillin and azlocillin: An evaluation of two new beta-lactam antibiotics. J. Antimicrob. Chemother., 1979, 5(5), 517-525.
[http://dx.doi.org/10.1093/jac/5.5.517] [PMID: 387705]
[155]
Fu, K.P.; Neu, H.C. Piperacillin, a new penicillin active against many bacteria resistant to other penicillins. Antimicrob. Agents Chemother., 1978, 13(3), 358-367.
[http://dx.doi.org/10.1128/AAC.13.3.358] [PMID: 122519]
[156]
Brogden, R.N.; Heel, R.C.; Speight, T.M.; Avery, G.S. Ticarcillin: A review of its pharmacological properties and therapeutic efficacy. Drugs, 1980, 20(5), 325-352.
[http://dx.doi.org/10.2165/00003495-198020050-00001] [PMID: 7002527]
[157]
Geddes, A.M.; Klugman, K.P.; Rolinson, G.N. Introduction: historical perspective and development of amoxicillin/clavulanate. Int. J. Antimicrob. Agents, 2007, 30(2)(Suppl. 2), S109-S112.
[http://dx.doi.org/10.1016/j.ijantimicag.2007.07.015] [PMID: 17900874]
[158]
Huttner, A.; Bielicki, J.; Clements, M.N.; Frimodt-Møller, N.; Muller, A.E.; Paccaud, J.P.; Mouton, J.W. Oral amoxicillin and amoxicillin-clavulanic acid: Properties, indications and usage. Clin. Microbiol. Infect., 2020, 26(7), 871-879.
[http://dx.doi.org/10.1016/j.cmi.2019.11.028] [PMID: 31811919]
[159]
Rodgers, F.G.; Tzianabos, A.O.; Elliott, T.S. The effect of antibiotics that inhibit cell-wall, protein, and DNA synthesis on the growth and morphology of Legionella pneumophila. J. Med. Microbiol., 1990, 31(1), 37-44.
[http://dx.doi.org/10.1099/00222615-31-1-37] [PMID: 2296040]
[160]
Rolinson, G.N. Forty years of beta-lactam research. J. Antimicrob. Chemother., 1998, 41(6), 589-603.
[http://dx.doi.org/10.1093/jac/41.6.589] [PMID: 9687097]
[161]
Scheife, R.T.; Neu, H.C. Bacampicillin hydrochloride: Chemistry, pharmacology, and clinical use. Pharmacotherapy, 1982, 2(6), 313-321.
[http://dx.doi.org/10.1002/j.1875-9114.1982.tb03206.x] [PMID: 6762528]
[162]
Bodin, N-O.; Ekström, B.; Forsgren, U.; Jalar, L-P.; Magni, L.; Ramsay, C-H.; Sjöberg, B. Bacampicillin: A new orally well-absorbed derivative of ampicillin. Antimicrob. Agents Chemother., 1975, 8(5), 518-525.
[http://dx.doi.org/10.1128/AAC.8.5.518] [PMID: 1211909]
[163]
Dolfini, J.E.; Applegate, H.E.; Bach, G.; Basch, H.; Bernstein, J.; Schwartz, J.; Weisenborn, F.L. A new class of semisynthetic penicillins and cephalosporins derived from D-2-(1,4-cyclohexadienyl)glycine. J. Med. Chem., 1971, 14(2), 117-119.
[http://dx.doi.org/10.1021/jm00284a008] [PMID: 5544394]
[164]
Hardcastle, G.A., Jr; Johnson, D.A.; Panetta, C.A.; Scott, A.I.; Sutherland, S.A. The preparation and structure of hetacillin. J. Org. Chem., 1966, 31(3), 897-899.
[http://dx.doi.org/10.1021/jo01341a060] [PMID: 5907864]
[165]
Sutherland, R.; Elson, S.; Croydon, E.A.P. Metampicillin. Antibacterial activity and absorption and excretion in man. Chemotherapy, 1972, 17(3), 145-160.
[http://dx.doi.org/10.1159/000220849] [PMID: 4556172]
[166]
Daehne, W.; Frederiksen, E.; Gundersen, E.; Lund, F.; Morch, P.; Petersen, H.J.; Roholt, K.; Tybring, L.; Godtfredsen, W.O. Acyloxymethyl esters of ampicillin. J. Med. Chem., 1970, 13(4), 607-612.
[http://dx.doi.org/10.1021/jm00298a005] [PMID: 5452419]
[167]
English, A.R.; Retsema, J.A.; Girard, A.E.; Lynch, J.E.; Barth, W.E. CP-45,899, a beta-lactamase inhibitor that extends the antibacterial spectrum of beta-lactams: initial bacteriological characterization. Antimicrob. Agents Chemother., 1978, 14(3), 414-419.
[http://dx.doi.org/10.1128/AAC.14.3.414] [PMID: 309306]
[168]
Leigh, D.A.; Reeves, D.S.; Simmons, K.; Thomas, A.L.; Wilkinson, P.J. Talampicillin: A new derivative of ampicillin. BMJ, 1976, 1(6022), 1378-1380.
[http://dx.doi.org/10.1136/bmj.1.6022.1378] [PMID: 776328]
[169]
Slocombe, B.; Basker, M.J.; Bentley, P.H.; Clayton, J.P.; Cole, M.; Comber, K.R.; Dixon, R.A.; Edmondson, R.A.; Jackson, D.; Merrikin, D.J.; Sutherland, R. BRL 17421, a novel beta-lactam antibiotic, highly resistant to beta-lactamases, giving high and prolonged serum levels in humans. Antimicrob. Agents Chemother., 1981, 20(1), 38-46.
[http://dx.doi.org/10.1128/AAC.20.1.38] [PMID: 6974539]
[170]
Kahan, F.M.; Kahan, J.S.; Cassidy, P.J.; Kropp, H. The mechanism of action of fosfomycin (phosphonomycin). Ann. N. Y. Acad. Sci., 1974, 235(0), 364-386.
[http://dx.doi.org/10.1111/j.1749-6632.1974.tb43277.x] [PMID: 4605290]
[171]
Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev., 2016, 29(2), 321-347.
[http://dx.doi.org/10.1128/CMR.00068-15] [PMID: 26960938]
[172]
Biswas, S.; Brunel, J-M.; Dubus, J-C.; Reynaud-Gaubert, M.; Rolain, J-M. Colistin: An update on the antibiotic of the 21st century. Expert Rev. Anti Infect. Ther., 2012, 10(8), 917-934.
[http://dx.doi.org/10.1586/eri.12.78] [PMID: 23030331]
[173]
Yahav, D.; Farbman, L.; Leibovici, L.; Paul, M. Colistin: New lessons on an old antibiotic. Clin. Microbiol. Infect., 2012, 18(1), 18-29.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03734.x] [PMID: 22168320]
[174]
Bhor, V.M.; Thomas, C.J.; Surolia, N.; Surolia, A.; Polymyxin, B.; Polymyxin, B. An ode to an old antidote for endotoxic shock. Mol. Biosyst., 2005, 1(3), 213-222.
[http://dx.doi.org/10.1039/b500756a] [PMID: 16880985]
[175]
Paterno, M.R.; Brunner, L.S.; Norton, S.E.; Blondeau, J.M. In vitro activity of SS734, a novel fluoroquinolone for bacterial conjunctivitis, against ocular isolates from a Phase II clinical study. Invest. Ophthalmol. Vis. Sci., 2007, 48(13), 766-766.
[176]
Comstock, T.L.; Karpecki, P.M.; Morris, T.W.; Zhang, J-Z. Besifloxacin: A novel anti-infective for the treatment of bacterial conjunctivitis. Clin. Ophthalmol., 2010, 4, 215-225.
[http://dx.doi.org/10.2147/OPTH.S9604] [PMID: 20463787]
[177]
Sisca, T.S.; Heel, R.C.; Romankiewicz, J.A. Cinoxacin. A review of its pharmacological properties and therapeutic efficacy in the treatment of urinary tract infections. Drugs, 1983, 25(6), 544-569.
[http://dx.doi.org/10.2165/00003495-198325060-00002] [PMID: 6347618]
[178]
LeBel, M. Ciprofloxacin: chemistry, mechanism of action, resistance, antimicrobial spectrum, pharmacokinetics, clinical trials, and adverse reactions. Pharmacotherapy, 1988, 8(1), 3-33.
[http://dx.doi.org/10.1002/j.1875-9114.1988.tb04058.x] [PMID: 2836821]
[179]
Lynch, M.J.; Rice, J.R.; Ericson, J.F.; Mosher, F.R.; Millas, W.J.; Harran, L.P.; Frame, G.M.; Illyes, E.F.; McGuirk, P.R. Residue depletion studies on danofloxacin in the chicken. J. Agric. Food Chem., 1994, 42(2), 289-294.
[http://dx.doi.org/10.1021/jf00038a012]
[180]
McGuirk, P.; Jefson, M.; Shryock, E.; Schaaf, T. The synthesis and antibacterial activity of danofloxacin (CP–76,136): A new quinolone for Veterinary Medicine. 29th Intersci. Conf. Antimicrob. Agents Chemother., 1989, p. 1187.
[181]
Van Bambeke, F. Delafloxacin, a non-zwitterionic fluoroquinolone in Phase III of clinical development: Evaluation of its pharmacology, pharmacokinetics, pharmacodynamics and clinical efficacy. Future Microbiol., 2015, 10(7), 1111-1123.
[http://dx.doi.org/10.2217/fmb.15.39] [PMID: 26119479]
[182]
Stamm, J.M.; Hanson, C.W.; Chu, D.T.; Bailer, R.; Vojtko, C.; Fernandes, P.B. In vitro evaluation of A-56619 (difloxacin) and A-56620: New aryl-fluoroquinolones. Antimicrob. Agents Chemother., 1986, 29(2), 193-200.
[http://dx.doi.org/10.1128/AAC.29.2.193] [PMID: 3087274]
[183]
Henwood, J.M.; Monk, J.P. Enoxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1988, 36(1), 32-66.
[http://dx.doi.org/10.2165/00003495-198836010-00004] [PMID: 3063494]
[184]
Verma, H.K.; Pangawkar, G.R.; Chaudhary, R.K.; Srivastava, A.K. Pharmacokinetics and dosage regimen of enrofloxacin in buffalo bulls after intramuscular administration. Vet. Res. Commun., 1999, 23(8), 501-505.
[http://dx.doi.org/10.1023/A:1006366507016] [PMID: 10672966]
[185]
Balfour, J.A.; Todd, P.A.; Peters, D.H. Fleroxacin. A review of its pharmacology and therapeutic efficacy in various infections. Drugs, 1995, 49(5), 794-850.
[http://dx.doi.org/10.2165/00003495-199549050-00010] [PMID: 7601015]
[186]
Sharma, P.C.; Jain, A.; Jain, S. Fluoroquinolone antibacterials: A review on chemistry, microbiology and therapeutic prospects. Acta Pol. Pharm., 2009, 66(6), 587-604.
[PMID: 20050522]
[187]
Takahata, M.; Mitsuyama, J.; Yamashiro, Y.; Yonezawa, M.; Araki, H.; Todo, Y.; Minami, S.; Watanabe, Y.; Narita, H. In vitro and in vivo antimicrobial activities of T-3811ME, a novel des-F(6)-quinolone. Antimicrob. Agents Chemother., 1999, 43(5), 1077-1084.
[http://dx.doi.org/10.1128/AAC.43.5.1077] [PMID: 10223917]
[188]
Donati, M.; Pollini, G.M.; Sparacino, M.; Fortugno, M.T.; Laghi, E.; Cevenini, R. Comparative in vitro activity of garenoxacin against Chlamydia spp. J. Antimicrob. Chemother., 2002, 50(3), 407-410.
[http://dx.doi.org/10.1093/jac/dkf145] [PMID: 12205067]
[189]
Perry, C.M.; Barman Balfour, J.A.; Lamb, H.M. Gatifloxacin. Drugs, 1999, 58(4), 683-696.
[http://dx.doi.org/10.2165/00003495-199958040-00010] [PMID: 10551438]
[190]
Oh, J.I.; Paek, K.S.; Ahn, M.J.; Kim, M.Y.; Hong, C.Y.; Kim, I.C.; Kwak, J.H. In vitro and in vivo evaluations of LB20304, a new fluoronaphthyridone. Antimicrob. Agents Chemother., 1996, 40(6), 1564-1568.
[http://dx.doi.org/10.1128/AAC.40.6.1564] [PMID: 8726042]
[191]
Marriott, M.S. Grepafloxacin: Microbiological properties. Clin. Microbiol. Infect., 1998, 4(Suppl. 1), S9-S14.
[http://dx.doi.org/10.1111/j.1469-0691.1998.tb00683.x] [PMID: 11869244]
[192]
Stern, R.M. Antimicrobial 6,7-dihydro-5,8-dimethyl-9-fluoro-1-oxo-1H,5H-benzo (ij) quinolizine-2-carboxylic acid and derivatives. U.S. Patent 4472405A, 1984.
[193]
Hara, Y.; Honjo, Y. Ofloxacin and Levofloxacin (Tarivid/Cravit).In: Drug Discovery in Japan: Investigating the Sources of Innovation; Nagaoka, S., Ed.; Springer Singapore, Singapore, 2019, pp. 85-110.
[http://dx.doi.org/10.1007/978-981-13-8906-1_6]
[194]
Sanzgiri, Y.D.; Knaub, S.R.; Riley, C.M. Lomefloxacin.In: Analytical Profiles of Drug Substances and Excipients; Brittain, H.G., Ed.; Academic Press, 1994, pp. 321-369.
[195]
Petracca, K.; Riond, J-L.; Graser, T.; Wanner, M. Pharmacokinetics of the gyrase inhibitor marbofloxacin: influence of pregnancy and lactation in sows. Zentralbl. Veterinärmed. A, 1993, 40(1), 73-79.
[http://dx.doi.org/10.1111/j.1439-0442.1993.tb00602.x] [PMID: 8383902]
[196]
Balfour, J.A.B.; Wiseman, L.R. Moxifloxacin. Drugs, 1999, 57(3), 363-373.
[http://dx.doi.org/10.2165/00003495-199957030-00007] [PMID: 10193688]
[197]
Ishikawa, H.; Tabusa, F.; Miyamoto, H.; Kano, M.; Ueda, H.; Tamaoka, H.; Nakagawa, K. Studies on antibacterial agents. I. Synthesis of substituted 6,7-dihydro-1-oxo-1H,5H-benzo[i,j]quinolizine-2-carboxylic acids. Chem. Pharm. Bull. (Tokyo), 1989, 37(8), 2103-2108.
[http://dx.doi.org/10.1248/cpb.37.2103] [PMID: 2598310]
[198]
Emmerson, A.M.; Jones, A.M. The quinolones: Decades of development and use. J. Antimicrob. Chemother., 2003, 51(Suppl. 1), 13-20.
[http://dx.doi.org/10.1093/jac/dkg208] [PMID: 12702699]
[199]
Holmes, B.; Brogden, R.N.; Richards, D.M. Norfloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1985, 30(6), 482-513.
[http://dx.doi.org/10.2165/00003495-198530060-00003] [PMID: 3908074]
[200]
Monk, J.P.; Campoli-Richards, D.M. Ofloxacin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs, 1987, 33(4), 346-391.
[http://dx.doi.org/10.2165/00003495-198733040-00003] [PMID: 3297617]
[201]
Cazedey, E.C.L.; Salgado, H.R.N. Orbifloxacin: A review of properties, its antibacterial activities, pharmacokinetic/pharmacodynamic characteristics, therapeutic use, and analytical methods. Crit. Rev. Anal. Chem., 2013, 43(2), 79-99.
[http://dx.doi.org/10.1080/10408347.2012.746855]
[202]
Yamakawa, T.; Mitsuyama, J.; Hayashi, K. In vitro and in vivo antibacterial activity of T-3912, a novel non-fluorinated topical quinolone. J. Antimicrob. Chemother., 2002, 49(3), 455-465.
[http://dx.doi.org/10.1093/jac/49.3.455] [PMID: 11864945]
[203]
Kaminsky, D.; Meltzer, R.I. Quinolone antibacterial agents. Oxolinic acid and related compounds. J. Med. Chem., 1968, 11(1), 160-163.
[http://dx.doi.org/10.1021/jm00307a041] [PMID: 5637164]
[204]
Snyder, M.; Drlica, K. DNA gyrase on the bacterial chromosome: DNA cleavage induced by oxolinic acid. J. Mol. Biol., 1979, 131(2), 287-302.
[http://dx.doi.org/10.1016/0022-2836(79)90077-9] [PMID: 226717]
[205]
Muratani, T.; Inoue, M.; Mitsuhashi, S. In vitro activity of T-3761, a new fluoroquinolone. Antimicrob. Agents Chemother., 1992, 36(10), 2293-2303.
[http://dx.doi.org/10.1128/AAC.36.10.2293] [PMID: 1332594]
[206]
Goueffon, Y.; Montay, G.; Roquet, F.; Pesson, M. [A new synthetic antibacterial: 1-Ethyl-6-fluoro-7-(4-methyl-1-piperazinyl)-4-oxo-1, 4-dihydroquinolin-3-carboxylic acid (1589 R.B.)] C. R. Seances Acad. Sci. III, 1981, 292(1), 37-40.
[PMID: 6786770]
[207]
Shimizu, M.; Nakamura, S.; Takase, Y.; Kurobe, N. Pipemidic acid: Absorption, distribution, and excretion. Antimicrob. Agents Chemother., 1975, 7(4), 441-446.
[http://dx.doi.org/10.1128/AAC.7.4.441] [PMID: 1147580]
[208]
Shimizu, M.; Nakamura, S.; Takase, Y. Piromidic acid, a new antibacterial agent: Antibacterial properties. Antimicrob. Agents Chemother., 1970, 10, 117-122.
[PMID: 4939730]
[209]
Bartel, S.T.J.; Himmler, T.; Rast, H-G.; Hallenbach, W.; Heinen, E.; Pirro, F.; Scheer, M.; Stegemann, M.; Stupp, H-P.; Wetzstein, H-G. Possibly substituted 8-cyano-1-cyclopropyl-7-(2,8- diazabicyclo-[4.3.0]-nonan-8-yl)-6-fluoro-1,4-dihydro-4-oxo-3- quinolin carboxylic acids and their derivatives. U.S. Patent 6323213B1, 1997.
[210]
Keam, S.J.; Perry, C.M. Prulifloxacin. Drugs, 2004, 64(19), 2221-2234.
[http://dx.doi.org/10.2165/00003495-200464190-00005] [PMID: 15456336]
[211]
Lesher, G.Y. 1,4-Dihydro-4-oxo-7-pyridyl-3-quinolinecarboxylic acid derivatives. US patent U.S. Patent 3907808A, 1975.
[212]
Shen, L.L.; Mitscher, L.A.; Sharma, P.N.; O’Donnell, T.J.; Chu, D.W.T.; Cooper, C.S.; Rosen, T.; Pernet, A.G. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: A cooperative drug--DNA binding model. Biochemistry, 1989, 28(9), 3886-3894.
[http://dx.doi.org/10.1021/bi00435a039] [PMID: 2546585]
[213]
Cecchetti, V.; Fravolini, A.; Fringuelli, R.; Mascellani, G.; Pagella, P.; Palmioli, M.; Segre, G.; Terni, P. Quinolonecarboxylic acids. 2. Synthesis and antibacterial evaluation of 7-oxo-2,3-dihydro-7H-pyrido[1,2,3-de][1,4]benzothiazine-6-carboxylic acids. J. Med. Chem., 1987, 30(3), 465-473.
[http://dx.doi.org/10.1021/jm00386a005] [PMID: 3820216]
[214]
Piddock, L.J.; Panchal, S.; Norte, V. Comparison of the mechanism of action and resistance of two new fluoroquinolones, rufloxacin and MF961 with those of ofloxacin and fleroxacin in gram-negative and gram-positive bacteria. J. Antimicrob. Chemother., 1993, 31(6), 855-863.
[http://dx.doi.org/10.1093/jac/31.6.855] [PMID: 8395493]
[215]
Sato, K.; Hoshino, K.; Tanaka, M.; Hayakawa, I.; Osada, Y. Antimicrobial activity of DU-6859, a new potent fluoroquinolone, against clinical isolates. Antimicrob. Agents Chemother., 1992, 36(7), 1491-1498.
[http://dx.doi.org/10.1128/AAC.36.7.1491] [PMID: 1324647]
[216]
Keating, G.M. Sitafloxacin: In bacterial infections. Drugs, 2011, 71(6), 731-744.
[http://dx.doi.org/10.2165/11207380-000000000-00000] [PMID: 21504249]
[217]
Matsumoto, J-I.; Miyamoto, T.; Egawa, H.; Nakamura, S. 5- substituted-6,8-difluoroquinolines useful as antibacterial agents. U.S. Patent 4795751A, 1989.
[218]
Goa, K.L.; Bryson, H.M.; Markham, A. Sparfloxacin. A review of its antibacterial activity, pharmacokinetic properties, clinical efficacy and tolerability in lower respiratory tract infections. Drugs, 1997, 53(4), 700-725.
[http://dx.doi.org/10.2165/00003495-199753040-00010] [PMID: 9098667]
[219]
Hardy, D.J.; Swanson, R.N.; Hensey, D.M.; Ramer, N.R.; Bower, R.R.; Hanson, C.W.; Chu, D.T.; Fernandes, P.B. Comparative antibacterial activities of temafloxacin hydrochloride (A-62254) and two reference fluoroquinolones. Antimicrob. Agents Chemother., 1987, 31(11), 1768-1774.
[http://dx.doi.org/10.1128/AAC.31.11.1768] [PMID: 3435123]
[220]
Appelbaum, P.C. Mechanisms and frequency of resistance to temafloxacin. Am. J. Med., 1991, 91(6A), 27S-30S.
[http://dx.doi.org/10.1016/0002-9343(91)90306-I] [PMID: 1662892]
[221]
Mahajan, R. Bedaquiline: First FDA-approved tuberculosis drug in 40 years. Int. J. Appl. Basic Med. Res., 2013, 3(1), 1-2.
[http://dx.doi.org/10.4103/2229-516X.112228] [PMID: 23776831]
[222]
Deoghare, S. Bedaquiline: A new drug approved for treatment of multidrug-resistant tuberculosis. Indian J. Pharmacol., 2013, 45(5), 536-537.
[http://dx.doi.org/10.4103/0253-7613.117765] [PMID: 24130398]
[223]
Campregher, C.; Gasche, C. Aminosalicylates. Best Pract. Res. Clin. Gastroenterol., 2011, 25(4-5), 535-546.
[http://dx.doi.org/10.1016/j.bpg.2011.10.013] [PMID: 22122769]
[224]
Cheng, C.; Chen, M-L.; Tseng, C.; Uang, Y-S.; Huang, C-L.; Hsu, K-Y. A relative bioavailability study of 500 mg calcium p-aminosalicylate film coating tablet in healthy individuals. Yao Wu Shi Pin Fen Xi, 2014, 22, 242-247.
[225]
Koseki, Y.; Okamoto, S. Studies on cross-resistance between capreomycin and certain other anti-mycobacterial agents. Jpn. J. Med. Sci. Biol., 1963, 16, 31-38.
[http://dx.doi.org/10.7883/yoken1952.16.31] [PMID: 14044251]
[226]
Lin, Y.; Li, Y.; Zhu, N.; Han, Y.; Jiang, W.; Wang, Y.; Si, S.; Jiang, J. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10. Antimicrob. Agents Chemother., 2014, 58(4), 2038-2044.
[http://dx.doi.org/10.1128/AAC.02394-13] [PMID: 24449778]
[227]
Epstein, I.G.; Nair, K.G.; Boyd, L.J. Cycloserine, a new antibiotic, in the treatment of human pulmonary tuberculosis: A preliminary report. Antibiotic Med. Clin. Ther., 1955, 1(2), 80-93.
[PMID: 14362439]
[228]
Vilchèze, C. Mycobacterial cell wall: A source of successful targets for old and new drugs. Appl. Sci. (Basel), 2020, 10(7), 2278.
[http://dx.doi.org/10.3390/app10072278]
[229]
Lewis, J.M.; Sloan, D.J. The role of delamanid in the treatment of drug-resistant tuberculosis. Ther. Clin. Risk Manag., 2015, 11, 779-791.
[PMID: 25999726]
[230]
Matsumoto, M.; Hashizume, H.; Tomishige, T.; Kawasaki, M.; Tsubouchi, H.; Sasaki, H.; Shimokawa, Y.; Komatsu, M. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med., 2006, 3(11), e466.
[http://dx.doi.org/10.1371/journal.pmed.0030466] [PMID: 17132069]
[231]
Goude, R.; Amin, A.G.; Chatterjee, D.; Parish, T. The arabinosyltransferase EmbC is inhibited by ethambutol in Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2009, 53(10), 4138-4146.
[http://dx.doi.org/10.1128/AAC.00162-09] [PMID: 19596878]
[232]
Tsukamura, M.; Tsukamura, S.; Mizuno, S.; Nakano, E. The mechanism of action of ethionamide. Am. Rev. Respir. Dis., 1964, 89, 933-935.
[PMID: 14169423]
[233]
Chakraborty, S.; Rhee, K.Y. Tuberculosis drug development: History and evolution of the mechanism-based paradigm. Cold Spring Harb. Perspect. Med., 2015, 5(8), a021147.
[http://dx.doi.org/10.1101/cshperspect.a021147] [PMID: 25877396]
[234]
Unissa, A.N.; Subbian, S.; Hanna, L.E.; Selvakumar, N. Overview on mechanisms of isoniazid action and resistance in Mycobacterium tuberculosis. Infect. Genet. Evol., 2016, 45, 474-492.
[http://dx.doi.org/10.1016/j.meegid.2016.09.004] [PMID: 27612406]
[235]
Mariani, B.; Salomone, G.; Corato, P.; Loschi, G.C.; Fortuni, M.; Bisetti, A. On the therapeutic and side effects of morfazinamide in the treatment of tuberculosis. Minerva Med., 1962, 53, 1718-1732.
[PMID: 14469801]
[236]
Donald, P.R.; Diacon, A.H. Para-aminosalicylic acid: The return of an old friend. Lancet Infect. Dis., 2015, 15(9), 1091-1099.
[http://dx.doi.org/10.1016/S1473-3099(15)00263-7] [PMID: 26277036]
[237]
Zheng, J.; Rubin, E.J.; Bifani, P.; Mathys, V.; Lim, V.; Au, M.; Jang, J.; Nam, J.; Dick, T.; Walker, J.R.; Pethe, K.; Camacho, L.R. Para-Aminosalicylic acid is a prodrug targeting dihydrofolate reductase in Mycobacterium tuberculosis. J. Biol. Chem., 2013, 288(32), 23447-23456.
[http://dx.doi.org/10.1074/jbc.M113.475798] [PMID: 23779105]
[238]
Brouet, G.; Chevallier, J.; Nevot, P. Preliminary study of Th-1321 or alpha-propylthioisonicotinamide in common pulmonary tuberculosis in man. Rev. Tuberc. Pneumol. (Paris), 1962, 26, 1187-1203.
[PMID: 14015861]
[239]
Ramanathan, M.R.; Howell, C.K.; Sanders, J.M. Drugs in tuberculosis and leprosy. In: Side Eff. Drugs Annu; , 2018; 40, pp. 363-376.
[240]
Zhang, Y.; Shi, W.; Zhang, W.; Mitchison, D. Mechanisms of pyrazinamide action and resistance. Microbiol. Spectr., 2013, 2(4), 1-12.
[PMID: 25530919]
[241]
Bianchi, S.; Felder, E.; Tiepolo, U. Terizidone. A new Schiff base of D-cycloserine. In: Farmaco Prat; , 1965; 20, pp. (7)366-371.
[242]
Buu-Hoi, N.P.; Bang, T.V.; Kim Mong-Don, T.T.; Xuong, N.D. Short-term results of the treatment of leprosy with 4,4'-diisoamyloxythiocarbanilide. Chemotherapia (Basel), 1961, 2, 122-128.
[PMID: 13689500]
[243]
Phetsuksiri, B.; Jackson, M.; Scherman, H.; McNeil, M.; Besra, G.S.; Baulard, A.R.; Slayden, R.A.; DeBarber, A.E.; Barry, C.E., III; Baird, M.S.; Crick, D.C.; Brennan, P.J. Unique mechanism of action of the thiourea drug isoxyl on Mycobacterium tuberculosis. J. Biol. Chem., 2003, 278(52), 53123-53130.
[http://dx.doi.org/10.1074/jbc.M311209200] [PMID: 14559907]
[244]
Rana, R.; Awasthi, R.; Sharma, B.; Kulkarni, G.T. Nanoantibiotic formulations to combat antibiotic resistance - old wine in a new bottle. Recent Pat. Drug Deliv. Formul., 2019, 13(3), 174-183.
[http://dx.doi.org/10.2174/1872211313666190911124626] [PMID: 31544718]
[245]
Huh, A.J.; Kwon, Y.J. “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 2011, 156(2), 128-145.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.002] [PMID: 21763369]
[246]
Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol., 2019, 17(3), 141-155.
[http://dx.doi.org/10.1038/s41579-018-0141-x] [PMID: 30683887]
[247]
Cheng, Y-S.; Williamson, P.R.; Zheng, W. Improving therapy of severe infections through drug repurposing of synergistic combinations. Curr. Opin. Pharmacol., 2019, 48, 92-98.
[http://dx.doi.org/10.1016/j.coph.2019.07.006] [PMID: 31454708]
[248]
Genilloud, O. Natural products discovery and potential for new antibiotics. Curr. Opin. Microbiol., 2019, 51, 81-87.
[http://dx.doi.org/10.1016/j.mib.2019.10.012] [PMID: 31739283]
[249]
Wiese, J.; Imhoff, J.F. Marine bacteria and fungi as promising source for new antibiotics. Drug Dev. Res., 2019, 80(1), 24-27.
[http://dx.doi.org/10.1002/ddr.21482] [PMID: 30370576]
[250]
Fernandes, P.; Martens, E. Antibiotics in late clinical development. Biochem. Pharmacol., 2017, 133, 152-163.
[http://dx.doi.org/10.1016/j.bcp.2016.09.025] [PMID: 27687641]
[251]
Rai, J.; Randhawa, G.K.; Kaur, M. Recent advances in antibacterial drugs. Int. J. Appl. Basic Med. Res., 2013, 3(1), 3-10.
[http://dx.doi.org/10.4103/2229-516X.112229] [PMID: 23776832]
[252]
Zuckerman, J.M.; Qamar, F.; Bono, B.R. Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med. Clin. North Am., 2011, 95(4), 761-791. [viii.]
[http://dx.doi.org/10.1016/j.mcna.2011.03.012] [PMID: 21679791]
[253]
Farrell, D.J.; Flamm, R.K.; Sader, H.S.; Jones, R.N. Results from the Solithromycin International Surveillance Program (2014). Antimicrob. Agents Chemother., 2016, 60(6), 3662-3668.
[http://dx.doi.org/10.1128/AAC.00185-16] [PMID: 27044551]
[254]
Owens, B. Solithromycin rejection chills antibiotic sector. Nat. Biotechnol., 2017, 35(3), 187-188.
[http://dx.doi.org/10.1038/nbt0317-187] [PMID: 28267725]
[255]
Llano-Sotelo, B.; Dunkle, J.; Klepacki, D.; Zhang, W.; Fernandes, P.; Cate, J.H.; Mankin, A.S. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob. Agents Chemother., 2010, 54(12), 4961-4970.
[http://dx.doi.org/10.1128/AAC.00860-10] [PMID: 20855725]
[256]
Andrews, J.M. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother., 2001, 48(1)(Suppl. 1), 5-16.
[http://dx.doi.org/10.1093/jac/48.suppl_1.5] [PMID: 11420333]
[257]
Buege, M.J.; Brown, J.E.; Aitken, S.L. Solithromycin: A novel ketolide antibiotic. Am. J. Health Syst. Pharm., 2017, 74(12), 875-887.
[http://dx.doi.org/10.2146/ajhp160934] [PMID: 28432048]
[258]
Zhanel, G.G.; Hartel, E.; Adam, H.; Zelenitsky, S.; Zhanel, M.A.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Gin, A.S.; Hoban, D.J.; Lynch, J.P., III; Karlowsky, J.A. Solithromycin: A novel fluoroketolide for the treatment of community-acquired bacterial pneumonia. Drugs, 2016, 76(18), 1737-1757.
[http://dx.doi.org/10.1007/s40265-016-0667-z] [PMID: 27909995]
[259]
Bertrand, D.; Bertrand, S.; Neveu, E.; Fernandes, P. Molecular characterization of off-target activities of telithromycin: A potential role for nicotinic acetylcholine receptors. Antimicrob. Agents Chemother., 2010, 54(12), 5399-5402.
[http://dx.doi.org/10.1128/AAC.00840-10] [PMID: 20855733]
[260]
Mancuso, A.M.; Gandhi, M.A.; Slish, J. Solithromycin (CEM-101): A new fluoroketolide antibiotic and its role in the treatment of gonorrhea. J. Pharm. Pract., 2018, 31(2), 195-201.
[http://dx.doi.org/10.1177/0897190017708073] [PMID: 28490220]
[261]
Van Bambeke, F.; Tulkens, P.M. The role of solithromycin in the management of bacterial community-acquired pneumonia. Expert Rev. Anti Infect. Ther., 2016, 14(3), 311-324.
[http://dx.doi.org/10.1586/14787210.2016.1138857] [PMID: 26848612]
[262]
MacLauchlin, C.; Schneider, S.E.; Keedy, K.; Fernandes, P.; Jamieson, B.D. Metabolism, excretion, and mass balance of solithromycin in humans. Antimicrob. Agents Chemother., 2018, 62(5), e01474-e01417.
[http://dx.doi.org/10.1128/AAC.01474-17] [PMID: 29507061]
[263]
Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(6), a027029.
[http://dx.doi.org/10.1101/cshperspect.a027029] [PMID: 27252397]
[264]
Davies, J.; Wright, G.D. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol., 1997, 5(6), 234-240.
[http://dx.doi.org/10.1016/S0966-842X(97)01033-0] [PMID: 9211644]
[265]
Garneau-Tsodikova, S.; Labby, K.J. Mechanisms of resistance to aminoglycoside antibiotics: Overview and perspectives. MedChemComm, 2016, 7(1), 11-27.
[http://dx.doi.org/10.1039/C5MD00344J] [PMID: 26877861]
[266]
Kotra, L.P.; Haddad, J.; Mobashery, S. Aminoglycosides: Perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother., 2000, 44(12), 3249-3256.
[http://dx.doi.org/10.1128/AAC.44.12.3249-3256.2000] [PMID: 11083623]
[267]
Zárate, S.G.; De la Cruz Claure, M.L.; Benito-Arenas, R.; Revuelta, J.; Santana, A.G.; Bastida, A. Overcoming aminoglycoside enzymatic resistance: Design of novel antibiotics and inhibitors. Molecules, 2018, 23(2), 284.
[http://dx.doi.org/10.3390/molecules23020284] [PMID: 29385736]
[268]
Doi, Y.; Wachino, J-I.; Arakawa, Y. Aminoglycoside resistance: the emergence of acquired 16S ribosomal RNA methyltransferases. Infect. Dis. Clin. North Am., 2016, 30(2), 523-537.
[http://dx.doi.org/10.1016/j.idc.2016.02.011] [PMID: 27208771]
[269]
Shaeer, K.M.; Zmarlicka, M.T.; Chahine, E.B.; Piccicacco, N.; Cho, J.C. Plazomicin: A next-generation aminoglycoside. Pharmacotherapy, 2019, 39(1), 77-93.
[http://dx.doi.org/10.1002/phar.2203] [PMID: 30511766]
[270]
Zhanel, G.G.; Lawson, C.D.; Zelenitsky, S.; Findlay, B.; Schweizer, F.; Adam, H.; Walkty, A.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Lynch, J.P.; Karlowsky, J.A. Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin. Expert Rev. Anti Infect. Ther., 2012, 10(4), 459-473.
[http://dx.doi.org/10.1586/eri.12.25] [PMID: 22512755]
[271]
Clark, J.A.; Burgess, D.S. Plazomicin: A new aminoglycoside in the fight against antimicrobial resistance. Ther. Adv. Infect. Dis., 2020, 7, 2049936120952604.
[http://dx.doi.org/10.1177/2049936120952604] [PMID: 32953108]
[272]
Saravolatz, L.D.; Stein, G.E. Plazomicin: A new aminoglycoside. Clin. Infect. Dis., 2020, 70(4), 704-709.
[PMID: 31328228]
[273]
Paukner, S.; Riedl, R. Pleuromutilins: potent drugs for resistant bugs-mode of action and resistance. Cold Spring Harb. Perspect. Med., 2017, 7(1), a027110.
[http://dx.doi.org/10.1101/cshperspect.a027110] [PMID: 27742734]
[274]
Poulsen, S.M.; Karlsson, M.; Johansson, L.B.; Vester, B. The pleuromutilin drugs tiamulin and valnemulin bind to the RNA at the peptidyl transferase centre on the ribosome. Mol. Microbiol., 2001, 41(5), 1091-1099.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02595.x] [PMID: 11555289]
[275]
van Duijkeren, E.; Greko, C.; Pringle, M.; Baptiste, K.E.; Catry, B.; Jukes, H.; Moreno, M.A.; Pomba, M.C.M.F.; Pyörälä, S.; Rantala, M.; Ružauskas, M.; Sanders, P.; Teale, C.; Threlfall, E.J.; Torren-Edo, J.; Törneke, K. Pleuromutilins: Use in food-producing animals in the European Union, development of resistance and impact on human and animal health. J. Antimicrob. Chemother., 2014, 69(8), 2022-2031.
[http://dx.doi.org/10.1093/jac/dku123] [PMID: 24793902]
[276]
Drugs@FDA: FDA-Approved Drugs.. Available from: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=BasicSearch.process (Accessed October 16, 2021).
[277]
Yi, Y.; Fu, Y.; Dong, P.; Qin, W.; Liu, Y.; Liang, J.; Shang, R. Synthesis and biological activity evaluation of novel heterocyclic pleuromutilin derivatives. Molecules, 2017, 22(6), 996.
[http://dx.doi.org/10.3390/molecules22060996] [PMID: 28617344]
[278]
Eyal, Z.; Matzov, D.; Krupkin, M.; Paukner, S.; Riedl, R.; Rozenberg, H.; Zimmerman, E.; Bashan, A.; Yonath, A. A novel pleuromutilin antibacterial compound, its binding mode and selectivity mechanism. Sci. Rep., 2016, 6, 39004.
[http://dx.doi.org/10.1038/srep39004] [PMID: 27958389]
[279]
Mercuro, N.J.; Veve, M.P. Clinical utility of lefamulin: If not now, when? Curr. Infect. Dis. Rep., 2020, 22(9), 25.
[http://dx.doi.org/10.1007/s11908-020-00732-z] [PMID: 32834786]
[280]
Lee, Y.R.; Jacobs, K.L. Leave it to lefamulin: A pleuromutilin treatment option in community-acquired bacterial pneumonia. Drugs, 2019, 79(17), 1867-1876.
[http://dx.doi.org/10.1007/s40265-019-01219-5] [PMID: 31705486]
[281]
Rodvold, K.A. Introduction: lefamulin and pharmacokinetic/pharmacodynamic rationale to support the dose selection of lefamulin. J. Antimicrob. Chemother., 2019, 74(3)(Suppl. 3), iii2-iii4.
[http://dx.doi.org/10.1093/jac/dkz084] [PMID: 30949709]
[282]
Dillon, C.; Guarascio, A.J.; Covvey, J.R. Lefamulin: A promising new pleuromutilin antibiotic in the pipeline. Expert Rev. Anti Infect. Ther., 2019, 17(1), 5-15.
[http://dx.doi.org/10.1080/14787210.2019.1554431] [PMID: 30513017]
[283]
Felix, T.M.; Karpa, K. Lefamulin (Xenleta) for the treatment of community-acquired bacterial pneumonia. Am. Fam. Physician, 2020, 102(6), 373-374.
[PMID: 32931220]
[284]
Roberts, M.C. Tetracycline therapy: Update. Clin. Infect. Dis., 2003, 36(4), 462-467.
[http://dx.doi.org/10.1086/367622] [PMID: 12567304]
[285]
Duggar, B.M. Aureomycin; A product of the continuing search for new antibiotics. Ann. N. Y. Acad. Sci., 1948, 51(Art. 2), 177-181.
[http://dx.doi.org/10.1111/j.1749-6632.1948.tb27262.x] [PMID: 18112227]
[286]
Nelson, M.L.; Levy, S.B. The history of the tetracyclines. Ann. N. Y. Acad. Sci., 2011, 1241, 17-32.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x] [PMID: 22191524]
[287]
Chopra, I.; Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev., 2001, 65(2), 232-260.
[http://dx.doi.org/10.1128/MMBR.65.2.232-260.2001] [PMID: 11381101]
[288]
Nguyen, F.; Starosta, A.L.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D.N. Tetracycline antibiotics and resistance mechanisms. Biol. Chem., 2014, 395(5), 559-575.
[http://dx.doi.org/10.1515/hsz-2013-0292] [PMID: 24497223]
[289]
Zhanel, G.G.; Homenuik, K.; Nichol, K.; Noreddin, A.; Vercaigne, L.; Embil, J.; Gin, A.; Karlowsky, J.A.; Hoban, D.J. The glycylcyclines: A comparative review with the tetracyclines. Drugs, 2004, 64(1), 63-88.
[http://dx.doi.org/10.2165/00003495-200464010-00005] [PMID: 14723559]
[291]
Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Walkty, A.; Gin, A.S.; Hoban, D.J.; Karlowsky, J.A. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs, 2016, 76(5), 567-588.
[http://dx.doi.org/10.1007/s40265-016-0545-8] [PMID: 26863149]
[292]
Graber, E.M. Treating acne with the tetracycline class of antibiotics: A review. Dermatol. Rev., 2021.
[http://dx.doi.org/10.1002/der2.49]
[293]
Zhanel, G.G.; Esquivel, J.; Zelenitsky, S.; Lawrence, C.K.; Adam, H.J.; Golden, A.; Hink, R.; Berry, L.; Schweizer, F.; Zhanel, M.A.; Bay, D.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Lynch, J.P., III; Karlowsky, J.A. 3rd; Karlowsky, J.A. Omadacycline: A novel oral and intravenous aminomethylcycline antibiotic agent. Drugs, 2020, 80(3), 285-313.
[http://dx.doi.org/10.1007/s40265-020-01257-4] [PMID: 31970713]
[294]
Baker, D.E. Omadacycline. Hosp. Pharm., 2019, 54(2), 80-87.
[http://dx.doi.org/10.1177/0018578718823730] [PMID: 30923399]
[295]
Rodvold, K.A.; Burgos, R.M.; Tan, X.; Pai, M.P. Omadacycline: A review of the clinical pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet., 2020, 59(4), 409-425.
[http://dx.doi.org/10.1007/s40262-019-00843-4] [PMID: 31773505]
[296]
Agwuh, K.N.; MacGowan, A. Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J. Antimicrob. Chemother., 2006, 58(2), 256-265.
[http://dx.doi.org/10.1093/jac/dkl224] [PMID: 16816396]
[297]
U.S. National Library of Medicine. Available from: https://www.clinicaltrials.gov/ct2/results?cond=&term=omadacycline&cntry=&state=&city=&dist=&Search=Search (Accessed October 16, 2021).
[298]
Lee, Y.R.; Burton, C.E. Eravacycline, a newly approved fluorocycline. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(10), 1787-1794.
[http://dx.doi.org/10.1007/s10096-019-03590-3] [PMID: 31175478]
[299]
U.S. National Library of Medicine. Available from: https://www.clinicaltrials.gov/ct2/results?cond=&term=Eravacycline&cntry=&state=&city=&dist= (Accessed October 16, 2021).
[300]
Redgrave, L.S.; Sutton, S.B.; Webber, M.A.; Piddock, L.J. Fluoroquinolone resistance: Mechanisms, impact on bacteria, and role in evolutionary success. Trends Microbiol., 2014, 22(8), 438-445.
[http://dx.doi.org/10.1016/j.tim.2014.04.007] [PMID: 24842194]
[301]
Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. (Weinheim), 2018, 351(9), e1800141.
[http://dx.doi.org/10.1002/ardp.201800141] [PMID: 30048015]
[302]
Yadav, V.; Talwar, P. Repositioning of fluoroquinolones from antibiotic to anti-cancer agents: An underestimated truth. Biomed. Pharmacother., 2019, 111, 934-946.
[http://dx.doi.org/10.1016/j.biopha.2018.12.119] [PMID: 30841473]
[303]
Pham, T.D.M.; Ziora, Z.M.; Blaskovich, M.A.T. Quinolone antibiotics. MedChemComm, 2019, 10(10), 1719-1739.
[http://dx.doi.org/10.1039/C9MD00120D] [PMID: 31803393]
[304]
Sharma, P.C.; Goyal, R.; Sharma, A.; Sharma, D.; Saini, N.; Rajak, H.; Sharma, S.; Thakur, V.K. Insights on fluoroquinolones in cancer therapy: Chemistry and recent developments. Mater. Today Chem., 2020, 17, 100296.
[http://dx.doi.org/10.1016/j.mtchem.2020.100296]
[305]
Suaifan, G.A.R.Y.; Mohammed, A.A.M. Fluoroquinolones structural and medicinal developments (2013-2018): Where are we now? Bioorg. Med. Chem., 2019, 27(14), 3005-3060.
[http://dx.doi.org/10.1016/j.bmc.2019.05.038] [PMID: 31182257]
[306]
Blondeau, J.M. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv. Ophthalmol., 2004, 49(2)(Suppl. 2), S73-S78.
[http://dx.doi.org/10.1016/j.survophthal.2004.01.005] [PMID: 15028482]
[307]
Jacoby, G.A. Mechanisms of resistance to quinolones. Clin. Infect. Dis., 2005, 41(Suppl. 2), S120-S126.
[http://dx.doi.org/10.1086/428052] [PMID: 15942878]
[308]
Shiu, J.; Ting, G.; Kiang, T.K.L. Clinical pharmacokinetics and pharmacodynamics of delafloxacin. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(3), 305-317.
[http://dx.doi.org/10.1007/s13318-018-0520-8] [PMID: 30324277]
[309]
Markham, A. Delafloxacin: First global approval. Drugs, 2017, 77(13), 1481-1486.
[http://dx.doi.org/10.1007/s40265-017-0790-5] [PMID: 28748399]
[310]
Scott, L.J. Delafloxacin: A review in acute bacterial skin and skin structure infections. Drugs, 2020, 80(12), 1247-1258.
[http://dx.doi.org/10.1007/s40265-020-01358-0] [PMID: 32666425]
[311]
Jorgensen, S.C.J.; Mercuro, N.J.; Davis, S.L.; Rybak, M.J. Delafloxacin: Place in therapy and review of microbiologic, clinical and pharmacologic properties. Infect. Dis. Ther., 2018, 7(2), 197-217.
[http://dx.doi.org/10.1007/s40121-018-0198-x] [PMID: 29605887]
[312]
Tulkens, P.M.; Van Bambeke, F.; Zinner, S.H. Profile of a novel anionic fluoroquinolone-delafloxacin. Clin. Infect. Dis., 2019, 68(3)(Suppl. 3), S213-S222.
[http://dx.doi.org/10.1093/cid/ciy1079] [PMID: 30957164]
[313]
Saravolatz, L.D.; Stein, G.E. Delafloxacin: A new anti-methicillin-resistant Staphylococcus aureus fluoroquinolone. Clin. Infect. Dis., 2019, 68(6), 1058-1062.
[http://dx.doi.org/10.1093/cid/ciy600] [PMID: 30060092]
[314]
Kocsis, B.; Domokos, J.; Szabo, D. Chemical structure and pharmacokinetics of novel quinolone agents represented by avarofloxacin, delafloxacin, finafloxacin, zabofloxacin and nemonoxacin. Ann. Clin. Microbiol. Antimicrob., 2016, 15(1), 34.
[http://dx.doi.org/10.1186/s12941-016-0150-4] [PMID: 27215369]
[315]
Jin, H.E.; Lee, K.R.; Kang, I.H.; Chung, S.J.; Shim, C.K. Determination of zabofloxacin in rat plasma by liquid chromatography with mass spectrometry and its application to pharmacokinetic study. J. Pharm. Biomed. Anal., 2011, 54(4), 873-877.
[http://dx.doi.org/10.1016/j.jpba.2010.11.001] [PMID: 21112170]
[316]
Park, H-S.; Oh, S-H.; Kim, H-S.; Choi, D-R.; Kwak, J-H. Antimicrobial activity of zabofloxacin against clinically isolated Streptococcus pneumoniae. Molecules, 2016, 21(11), 1562.
[http://dx.doi.org/10.3390/molecules21111562] [PMID: 27869677]
[317]
Han, H.; Kim, S.E.; Shin, K.H.; Lim, C.; Lim, K.S.; Yu, K.S.; Cho, J.Y. Comparison of pharmacokinetics between new quinolone antibiotics: The zabofloxacin hydrochloride capsule and the zabofloxacin aspartate tablet. Curr. Med. Res. Opin., 2013, 29(10), 1349-1355.
[http://dx.doi.org/10.1185/03007995.2013.825591] [PMID: 23865727]
[318]
Kocsis, B.; Szabo, D. New treatment options for lower respiratory tract infections. Expert Opin. Pharmacother., 2017, 18(13), 1345-1355.
[http://dx.doi.org/10.1080/14656566.2017.1363179] [PMID: 28762839]
[319]
Sellarès-Nadal, J.; Burgos, J.; Falcó, V.; Almirante, B. Investigational and experimental drugs for community-acquired pneumonia: The current evidence. J. Exp. Pharmacol., 2020, 12, 529-538.
[http://dx.doi.org/10.2147/JEP.S259286] [PMID: 33239925]
[320]
Jones, R.N.; Biedenbach, D.J.; Ambrose, P.G.; Wikler, M.A. Zabofloxacin (DW-224a) activity against Neisseria gonorrhoeae including quinolone-resistant strains. Diagn. Microbiol. Infect. Dis., 2008, 62(1), 110-112.
[http://dx.doi.org/10.1016/j.diagmicrobio.2008.05.010] [PMID: 18620833]
[321]
Rhee, C.K.; Chang, J.H.; Choi, E.G.; Kim, H.K.; Kwon, Y-S.; Kyung, S.Y.; Lee, J-H.; Park, M.J.; Yoo, K.H.; Oh, Y.M. Zabofloxacin versus moxifloxacin in patients with COPD exacerbation: A multicenter, double-blind, double-dummy, randomized, controlled, Phase III, non-inferiority trial. Int. J. Chron. Obstruct. Pulmon. Dis., 2015, 10, 2265-2275.
[http://dx.doi.org/10.2147/COPD.S90948] [PMID: 26543359]
[322]
Bader, M.S.; Loeb, M.; Leto, D.; Brooks, A.A. Treatment of urinary tract infections in the era of antimicrobial resistance and new antimicrobial agents. Postgrad. Med., 2020, 132(3), 234-250.
[http://dx.doi.org/10.1080/00325481.2019.1680052] [PMID: 31608743]
[323]
Bartoletti, R.; Cai, T.; Perletti, G.; M.E., Wagenlehner F.; Bjerklund Johansen, T.E. Finafloxacin for the treatment of urinary tract infections. Expert Opin. Investig. Drugs, 2015, 24(7), 957-963.
[http://dx.doi.org/10.1517/13543784.2015.1052401] [PMID: 26068714]
[324]
McKeage, K. Finafloxacin: First global approval. Drugs, 2015, 75(6), 687-693.
[http://dx.doi.org/10.1007/s40265-015-0384-z] [PMID: 25808831]
[325]
Taubert, M.; Chiesa, J.; Lückermann, M.; Fischer, C.; Dalhoff, A.; Fuhr, U. Pharmacokinetics of intravenous finafloxacin in healthy volunteers. Antimicrob. Agents Chemother., 2017, 61(10), e01122-e01117.
[http://dx.doi.org/10.1128/AAC.01122-17] [PMID: 28784673]
[326]
Adam, H.J.; Laing, N.M.; King, C.R.; Lulashnyk, B.; Hoban, D.J.; Zhanel, G.G. In vitro activity of nemonoxacin, a novel nonfluorinated quinolone, against 2,440 clinical isolates. Antimicrob. Agents Chemother., 2009, 53(11), 4915-4920.
[http://dx.doi.org/10.1128/AAC.00078-09] [PMID: 19738018]
[327]
Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother., 2018, 103, 923-938.
[http://dx.doi.org/10.1016/j.biopha.2018.04.021] [PMID: 29710509]
[328]
Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 92(3), 479-497.
[http://dx.doi.org/10.1007/s00253-011-3557-z] [PMID: 21904817]
[329]
Alt, S.; Mitchenall, L.A.; Maxwell, A.; Heide, L. Inhibition of DNA gyrase and DNA topoisomerase IV of Staphylococcus aureus and Escherichia coli by aminocoumarin antibiotics. J. Antimicrob. Chemother., 2011, 66(9), 2061-2069.
[http://dx.doi.org/10.1093/jac/dkr247] [PMID: 21693461]
[330]
Vanden Broeck, A.; McEwen, A.G.; Chebaro, Y.; Potier, N.; Lamour, V. Structural basis for DNA gyrase interaction with coumermycin A1. J. Med. Chem., 2019, 62(8), 4225-4231.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01928] [PMID: 30920824]
[331]
Bisacchi, G.S.; Manchester, J.I. A new-class antibacterial-almost. Lessons in drug discovery and development: A critical analysis of more than 50 years of effort toward ATPase inhibitors of DNA gyrase and topoisomerase IV. ACS Infect. Dis., 2015, 1(1), 4-41.
[http://dx.doi.org/10.1021/id500013t] [PMID: 27620144]
[332]
O’Riordan, W.; Tiffany, C.; Scangarella-Oman, N.; Perry, C.; Hossain, M.; Ashton, T.; Dumont, E. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed Gram-positive acute bacterial skin and skin structure infections. Antimicrob. Agents Chemother., 2017, 61(6), e02095-e02016.
[http://dx.doi.org/10.1128/AAC.02095-16] [PMID: 28373199]
[333]
Tse-Dinh, Y.C. Targeting bacterial topoisomerases: How to counter mechanisms of resistance. Future Med. Chem., 2016, 8(10), 1085-1100.
[http://dx.doi.org/10.4155/fmc-2016-0042] [PMID: 27285067]
[334]
Flamm, R.K.; Farrell, D.J.; Rhomberg, P.R.; Scangarella-Oman, N.E.; Sader, H.S. Gepotidacin (GSK2140944) in vitro activity against Gram-positive and Gram-negative bacteria. Antimicrob. Agents Chemother., 2017, 61(7), e00468-e17.
[http://dx.doi.org/10.1128/AAC.00468-17] [PMID: 28483959]
[335]
Gibson, E.G.; Bax, B.; Chan, P.F.; Osheroff, N. Mechanistic and structural basis for the actions of the antibacterial gepotidacin against Staphylococcus aureus gyrase. ACS Infect. Dis., 2019, 5(4), 570-581.
[http://dx.doi.org/10.1021/acsinfecdis.8b00315] [PMID: 30757898]
[336]
Bradford, P.A.; Miller, A.A.; O’Donnell, J.; Mueller, J.P. Zoliflodacin: An oral spiropyrimidinetrione antibiotic for the treatment of Neisseria gonorrheae, including multi-drug-resistant isolates. ACS Infect. Dis., 2020, 6(6), 1332-1345.
[http://dx.doi.org/10.1021/acsinfecdis.0c00021] [PMID: 32329999]
[337]
Taylor, S.N.; Marrazzo, J.; Batteiger, B.E.; Hook, E.W., III; Seña, A.C.; Long, J.; Wierzbicki, M.R.; Kwak, H.; Johnson, S.M.; Lawrence, K.; Mueller, J. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N. Engl. J. Med., 2018, 379(19), 1835-1845.
[http://dx.doi.org/10.1056/NEJMoa1706988] [PMID: 30403954]
[338]
Unemo, M.; Golparian, D.; Eyre, D.W. Antimicrobial resistance in Neisseria gonorrhoeae and treatment of gonorrhea. Methods Mol. Biol., 2019, 1997, 37-58.
[http://dx.doi.org/10.1007/978-1-4939-9496-0_3] [PMID: 31119616]
[339]
Zhanel, G.G.; Shroeder, C.; Vercaigne, L.; Gin, A.S.; Embil, J.; Hoban, D.J. A critical review of oxazolidinones: An alternative or replacement for glycopeptides and streptogramins? Can. J. Infect. Dis., 2001, 12(6), 379-390.
[http://dx.doi.org/10.1155/2001/260651] [PMID: 18159365]
[340]
Daly, J.S.; Eliopoulos, G.M.; Reiszner, E.; Moellering, R.C., Jr Activity and mechanism of action of DuP 105 and DuP 721, new oxazolidinone compounds. J. Antimicrob. Chemother., 1988, 21(6), 721-730.
[http://dx.doi.org/10.1093/jac/21.6.721] [PMID: 3410799]
[341]
Bharath, Y.; Alugubelli, G.R.; Sreenivasulu, R.; Rao, M.V.B. Design, synthesis of novel oxazolidino-amides/sulfonamides conjugates and their impact on antibacterial activity. Chem. Pap., 2018, 72, 457-468.
[http://dx.doi.org/10.1007/s11696-017-0298-1]
[342]
Bozdogan, B.; Appelbaum, P.C. Oxazolidinones: Activity, mode of action, and mechanism of resistance. Int. J. Antimicrob. Agents, 2004, 23(2), 113-119.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.11.003] [PMID: 15013035]
[343]
Ament, P.W.; Jamshed, N.; Horne, J.P. Linezolid: Its role in the treatment of gram-positive, drug-resistant bacterial infections. Am. Fam. Physician, 2002, 65(4), 663-670.
[PMID: 11871684]
[344]
Shinabarger, D. Mechanism of action of the oxazolidinone antibacterial agents. Expert Opin. Investig. Drugs, 1999, 8(8), 1195-1202.
[http://dx.doi.org/10.1517/13543784.8.8.1195] [PMID: 15992144]
[345]
Zhanel, G.G.; Love, R.; Adam, H.; Golden, A.; Zelenitsky, S.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.; Rubinstein, E.; Walkty, A.; Gin, A.S.; Gilmour, M.; Hoban, D.J.; Lynch, J.P., III; Karlowsky, J.A. Tedizolid: A novel oxazolidinone with potent activity against multidrug-resistant gram-positive pathogens. Drugs, 2015, 75(3), 253-270.
[http://dx.doi.org/10.1007/s40265-015-0352-7] [PMID: 25673021]
[346]
Gerding, D.N.; Cornely, O.A.; Grill, S.; Kracker, H.; Marrast, A.C.; Nord, C.E.; Talbot, G.H.; Buitrago, M.; Gheorghe Diaconescu, I.; Murta de Oliveira, C.; Preotescu, L.; Pullman, J.; Louie, T.J.; Wilcox, M.H. Cadazolid for the treatment of Clostridium difficile infection: Results of two double-blind, placebo-controlled, non-inferiority, randomised phase 3 trials. Lancet Infect. Dis., 2019, 19(3), 265-274.
[http://dx.doi.org/10.1016/S1473-3099(18)30614-5] [PMID: 30709665]
[347]
Kali, A.; Charles, M.V.P.; Srirangaraj, S. Cadazolid: A new hope in the treatment of Clostridium difficile infection. Australas. Med. J., 2015, 8(8), 253-262.
[http://dx.doi.org/10.4066/AMJ.2015.2441] [PMID: 26392822]
[348]
Meng, J.; Zhong, D.; Li, L.; Yuan, Z.; Yuan, H.; Xie, C.; Zhou, J.; Li, C.; Gordeev, M.F.; Liu, J.; Chen, X. Metabolism of MRX-I, a novel antibacterial oxazolidinone, in humans: the oxidative ring opening of 2,3-Dihydropyridin-4-one catalyzed by non-P450 enzymes. Drug Metab. Dispos., 2015, 43(5), 646-659.
[http://dx.doi.org/10.1124/dmd.114.061747] [PMID: 25710940]
[349]
Wu, J.; Cao, G.; Wu, H.; Chen, Y.; Guo, B.; Wu, X.; Yu, J.; Ni, K.; Qian, J.; Wang, L.; Wu, J.; Wang, Y.; Yuan, H.; Zhang, J.; Xi, Y. Evaluation of the effect of contezolid (MRX-I) on the corrected QT interval in a randomized, double-blind, placebo- and positive-controlled crossover study in healthy chinese volunteers. Antimicrob. Agents Chemother., 2020, 64(6), e02158-e02119.
[http://dx.doi.org/10.1128/AAC.02158-19] [PMID: 32229495]
[350]
Shoen, C.; DeStefano, M.; Hafkin, B.; Cynamon, M. In vitro and in vivo activities of contezolid (MRX-I) against Mycobacterium tuberculosis. Antimicrob. Agents Chemother., 2018, 62(8), e00493-e00418.
[http://dx.doi.org/10.1128/AAC.00493-18] [PMID: 29784848]
[351]
Wu, J.; Wu, H.; Wang, Y.; Chen, Y.; Guo, B.; Cao, G.; Wu, X.; Yu, J.; Wu, J.; Zhu, D.; Guo, Y.; Yuan, H.; Hu, F.; Zhang, J. Tolerability and pharmacokinetics of contezolid at therapeutic and supratherapeutic doses in healthy Chinese subjects, and assessment of contezolid dosing regimens based on pharmacokinetic/pharmacodynamic analysis. Clin. Ther., 2019, 41(6), 1164-1174.e4.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.025] [PMID: 31126694]
[352]
Carvalhaes, C.G.; Duncan, L.R.; Wang, W.; Sader, H.S. In vitro activity and potency of the novel oxazolidinone contezolid (MRX-I) tested against Gram-positive clinical isolates from the United States and Europe. Antimicrob. Agents Chemother., 2020, 64(11), e01195-e01120.
[http://dx.doi.org/10.1128/AAC.01195-20] [PMID: 32778552]
[353]
Michalska, K.; Bocian, W.; Bednarek, E.; Pałys, B.; Cielecka-Piontek, J. Enantioselective recognition of sutezolid by cyclodextrin modified non-aqueous capillary electrophoresis and explanation of complex formation by means of infrared spectroscopy, NMR and molecular modelling. J. Pharm. Biomed. Anal., 2019, 169, 49-59.
[http://dx.doi.org/10.1016/j.jpba.2019.02.033] [PMID: 30836246]
[354]
Bahuguna, A.; Rawat, D.S. An overview of new antitubercular drugs, drug candidates, and their targets. Med. Res. Rev., 2020, 40(1), 263-292.
[http://dx.doi.org/10.1002/med.21602] [PMID: 31254295]
[355]
Wallis, R.S.; Dawson, R.; Friedrich, S.O.; Venter, A.; Paige, D.; Zhu, T.; Silvia, A.; Gobey, J.; Ellery, C.; Zhang, Y.; Eisenach, K.; Miller, P.; Diacon, A.H. Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One, 2014, 9(4), e94462.
[http://dx.doi.org/10.1371/journal.pone.0094462] [PMID: 24732289]
[356]
Wright, H.T.; Reynolds, K.A. Antibacterial targets in fatty acid biosynthesis. Curr. Opin. Microbiol., 2007, 10(5), 447-453.
[http://dx.doi.org/10.1016/j.mib.2007.07.001] [PMID: 17707686]
[357]
Heath, R.J.; Rock, C.O. Fatty acid biosynthesis as a target for novel antibacterials. Curr. Opin. Investig. Drugs, 2004, 5(2), 146-153.
[PMID: 15043388]
[358]
Wittke, F.; Vincent, C.; Chen, J.; Heller, B.; Kabler, H.; Overcash, J.S.; Leylavergne, F.; Dieppois, G. Afabicin, a first-in-class antistaphylococcal antibiotic, in the treatment of acute bacterial skin and skin structure infections: Clinical noninferiority to vancomycin/linezolid. Antimicrob. Agents Chemother., 2020, 64(10), e00250-e20.
[http://dx.doi.org/10.1128/AAC.00250-20] [PMID: 32747361]
[359]
Ross, J.E.; Flamm, R.K.; Jones, R.N. Initial broth microdilution quality control guidelines for Debio 1452, a FabI inhibitor antimicrobial agent. Antimicrob. Agents Chemother., 2015, 59(11), 7151-7152.
[http://dx.doi.org/10.1128/AAC.01690-15] [PMID: 26324261]
[360]
Flamm, R.K.; Rhomberg, P.R.; Kaplan, N.; Jones, R.N.; Farrell, D.J. Activity of Debio1452, a FabI inhibitor with potent activity against Staphylococcus aureus and coagulase-negative Staphylococcus spp., including multidrug-resistant strains. Antimicrob. Agents Chemother., 2015, 59(5), 2583-2587.
[http://dx.doi.org/10.1128/AAC.05119-14] [PMID: 25691627]
[361]
Schiebel, J.; Chang, A.; Shah, S.; Lu, Y.; Liu, L.; Pan, P.; Hirschbeck, M.W.; Tareilus, M.; Eltschkner, S.; Yu, W.; Cummings, J.E.; Knudson, S.E.; Bommineni, G.R.; Walker, S.G.; Slayden, R.A.; Sotriffer, C.A.; Tonge, P.J.; Kisker, C. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-Acyl Carrier Protein (ACP) reductase inhibitor. J. Biol. Chem., 2014, 289(23), 15987-16005.
[http://dx.doi.org/10.1074/jbc.M113.532804] [PMID: 24739388]
[362]
Bush, K.; Bradford, P.A. β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harb. Perspect. Med., 2016, 6(8), a025247.
[http://dx.doi.org/10.1101/cshperspect.a025247] [PMID: 27329032]
[363]
Christian, S.S.; Christian, J.S. The cephalosporin antibiotics. Prim. Care Update Ob Gyns, 1997, 4(5), 168-174.
[http://dx.doi.org/10.1016/S1068-607X(97)81469-2]
[364]
Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; Lagacé-Wiens, P.R.S.; Walkty, A.J.; Noreddin, A.; Lynch Iii, J.P.; Karlowsky, J.A. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant Gram-negative bacilli. Drugs, 2019, 79(3), 271-289.
[http://dx.doi.org/10.1007/s40265-019-1055-2] [PMID: 30712199]
[365]
Choi, J.J.; McCarthy, M.W. Cefiderocol: A novel siderophore cephalosporin. Expert Opin. Investig. Drugs, 2018, 27(2), 193-197.
[http://dx.doi.org/10.1080/13543784.2018.1426745] [PMID: 29318906]
[366]
El-Lababidi, R.M.; Rizk, J.G. Cefiderocol: A siderophore cephalosporin. Ann. Pharmacother., 2020, 54(12), 1215-1231.
[http://dx.doi.org/10.1177/1060028020929988] [PMID: 32522005]
[367]
Wunderink, R.G.; Wunderink, R.G.; Matsunaga, Y.; Ari, M.; Ariyasu, M.; Echols, R.; Echols, R.; Menon, A.; Nagata, D.T.; Nagata, D.T. LB4. Efficacy and safety of cefiderocol vs. high-dose meropenem in patients with nosocomial pneumonia-results of a Phase 3, randomized, multicenter, double-blind, non-inferiority study. Open Forum Infect. Dis., 2019, 6(2), S994.
[http://dx.doi.org/10.1093/ofid/ofz415.2487]
[368]
Paech, F.; Messner, S.; Spickermann, J.; Wind, M.; Schmitt-Hoffmann, A.H.; Witschi, A.T.; Howell, B.A.; Church, R.J.; Woodhead, J.; Engelhardt, M.; Krähenbühl, S.; Maurer, M. Mechanisms of hepatotoxicity associated with the monocyclic β-lactam antibiotic BAL30072. Arch. Toxicol., 2017, 91(11), 3647-3662.
[http://dx.doi.org/10.1007/s00204-017-1994-x] [PMID: 28536862]
[369]
Russo, T.A.; Page, M.G.; Beanan, J.M.; Olson, R.; Hujer, A.M.; Hujer, K.M.; Jacobs, M.; Bajaksouzian, S.; Endimiani, A.; Bonomo, R.A. In vivo and in vitro activity of the siderophore monosulfactam BAL30072 against Acinetobacter baumannii. J. Antimicrob. Chemother., 2011, 66(4), 867-873.
[http://dx.doi.org/10.1093/jac/dkr013] [PMID: 21393224]
[370]
Straubinger, M.; Blenk, H.; Naber, K.G.; Wagenlehner, F.M.E. Urinary concentrations and antibacterial activity of BAL30072, a novel siderophore monosulfactam, against uropathogens after intravenous administration in healthy subjects. Antimicrob. Agents Chemother., 2016, 60(6), 3309-3315.
[http://dx.doi.org/10.1128/AAC.02425-15] [PMID: 26976871]
[371]
Thakuria, B.; Lahon, K. The beta lactam antibiotics as an empirical therapy in a developing country: An update on their current status and recommendations to counter the resistance against them. J. Clin. Diagn. Res., 2013, 7(6), 1207-1214.
[http://dx.doi.org/10.7860/JCDR/2013/5239.3052] [PMID: 23905143]
[372]
Gatermann, S.; Marre, R. Comparative in vitro activities of amoxicillin-clavulanate, ampicillin-sulbactam and piperacillin-tazobactam against strains of Escherichia coli and Proteus mirabilis harbouring known beta-lactamases. Infection, 1991, 19(2), 106-109.
[http://dx.doi.org/10.1007/BF01645578] [PMID: 1646771]
[373]
Zasowski, E.J.; Rybak, J.M.; Rybak, M.J. The β-lactams strike back: Ceftazidime-avibactam. Pharmacotherapy, 2015, 35(8), 755-770.
[http://dx.doi.org/10.1002/phar.1622] [PMID: 26289307]
[374]
Giacobbe, D.R.; Bassetti, M.; De Rosa, F.G.; Del Bono, V.; Grossi, P.A.; Menichetti, F.; Pea, F.; Rossolini, G.M.; Tumbarello, M.; Viale, P.; Viscoli, C. Ceftolozane/tazobactam: Place in therapy. Expert Rev. Anti Infect. Ther., 2018, 16(4), 307-320.
[http://dx.doi.org/10.1080/14787210.2018.1447381] [PMID: 29493397]
[375]
Cluck, D.; Lewis, P.; Stayer, B.; Spivey, J.; Moorman, J. Ceftolozane-tazobactam: A new-generation cephalosporin. Am. J. Health Syst. Pharm., 2015, 72(24), 2135-2146.
[http://dx.doi.org/10.2146/ajhp150049] [PMID: 26637512]
[376]
Cho, J.C.; Zmarlicka, M.T.; Shaeer, K.M.; Pardo, J. Meropenem/Vaborbactam, the first carbapenem/β-lactamase inhibitor combination. Ann. Pharmacother., 2018, 52(8), 769-779.
[http://dx.doi.org/10.1177/1060028018763288] [PMID: 29514462]
[377]
Dhillon, S. Meropenem/Vaborbactam: A review in complicated urinary tract infections. Drugs, 2018, 78(12), 1259-1270.
[http://dx.doi.org/10.1007/s40265-018-0966-7] [PMID: 30128699]
[378]
Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; Gin, A.S.; Hoban, D.J.; Lynch, J.P., III; Karlowsky, J.A. Imipenem-relebactam and meropenem-vaborbactam: Two novel carbapenem-β-lactamase inhibitor combinations. Drugs, 2018, 78(1), 65-98.
[http://dx.doi.org/10.1007/s40265-017-0851-9] [PMID: 29230684]
[379]
Jorgensen, S.C.J.; Rybak, M.J. Meropenem and vaborbactam: Stepping up the battle against carbapenem-resistant Enterobacteriaceae. Pharmacotherapy, 2018, 38(4), 444-461.
[http://dx.doi.org/10.1002/phar.2092] [PMID: 29427523]
[380]
Smith, J.R.; Rybak, J.M.; Claeys, K.C. Imipenem-cilastatin-relebactam: A novel β-lactam-β-lactamase inhibitor combination for the treatment of multidrug-resistant Gram-negative infections. Pharmacotherapy, 2020, 40(4), 343-356.
[http://dx.doi.org/10.1002/phar.2378] [PMID: 32060929]
[381]
Zhang, B.; Zhu, Z.; Jia, W.; Qu, F.; Huang, B.; Shan, B.; Yu, H.; Tang, Y.; Chen, L.; Du, H. In vitro activity of aztreonam-avibactam against metallo-β-lactamase-producing Enterobacteriaceae-A multicenter study in China. Int. J. Infect. Dis., 2020, 97, 11-18.
[http://dx.doi.org/10.1016/j.ijid.2020.05.075] [PMID: 32473388]
[382]
ClinicalTrials.gov is a database of privately and publicly funded clinical studies conducted around the world. Available from: https://clinicaltrials.gov/ (Accessed October 16, 2021).

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy