Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Formulating the Structural Aspects of Various Benzimidazole Cognates

Author(s): Prayaga Rajappan Krishnendu, Vishal Payyalot Koyiparambath, Vaishnav Bhaskar, Babu Arjun and Subin Mary Zachariah*

Volume 22, Issue 6, 2022

Published on: 29 December, 2021

Page: [473 - 492] Pages: 20

DOI: 10.2174/1568026621666211201122752

Price: $65

Abstract

Background: Benzimidazole derivatives are widely used in clinical practice as potential beneficial specialists. Recently, the neuroprotective effect of derivatives of benzimidazole moiety has also shown positive outcomes.

Objectives: To develop favourable molecules for various neurodegenerative disorders using the versatile chemical behaviour of the benzimidazole scaffold.

Methods: About 25 articles were collected that discussed various benzimidazole derivatives and categorized them under various subheadings based on the targets such as BACE 1, JNK, MAO, choline esterase enzyme, oxidative stress, mitochondrial dysfunction in which they act. The structural aspects of various benzimidazole derivatives were also studied.

Conclusion: To manage various neurodegenerative disorders, a multitargeted approach will be the most hopeful stratagem. Some benzimidazole derivatives can be considered for future studies, which are mentioned in the discussed articles.

Keywords: Neurodegenerative disorder, Benzimidazole, Antioxidant, Multi-target approach, Neuroprotection, Acetylcholine esterase.

Graphical Abstract
[1]
Holzgrabe, U.; Kapková, P.; Alptüzün, V.; Scheiber, J.; Kugelmann, E. Targeting acetylcholinesterase to treat neurodegeneration. Expert Opin. Ther. Targets, 2007, 11(2), 161-179.
[http://dx.doi.org/10.1517/14728222.11.2.161] [PMID: 17227232]
[2]
Tabrizi, S.J.; Ghosh, R.; Leavitt, B.R. Huntingtin Lowering Strategies for Disease Modification in Huntington’s Disease. Neuron, 2019, 101(5), 801-819.
[http://dx.doi.org/10.1016/j.neuron.2019.01.039] [PMID: 30844400]
[3]
Husna Ibrahim, N.; Yahaya, M.F.; Mohamed, W.; Teoh, S.L.; Hui, C.K.; Kumar, J. Pharmacotherapy of alzheimer’s disease: seeking clarity in a time of uncertainty. Front. Pharmacol., 2020, 11, 261.
[http://dx.doi.org/10.3389/fphar.2020.00261] [PMID: 32265696]
[4]
Hayes, M.T. Parkinson’s disease and parkinsonism. Am. J. Med., 2019, 132(7), 802-807.
[http://dx.doi.org/10.1016/j.amjmed.2019.03.001] [PMID: 30890425]
[5]
Gireud, M.; Sirisaengtaksin, N.; Bean, A.J. Molecular Mechanisms of Neurological Disease.From Molecules to Networks; Byrne, J.H.; Heidelberger, R.; Waxham, M.N., Eds.; Academic Press, 2014, pp. 639-661.
[http://dx.doi.org/10.1016/B978-0-12-397179-1.00021-X]
[6]
Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple sclerosis. Lancet, 2018, 391(10130), 1622-1636.
[http://dx.doi.org/10.1016/S0140-6736(18)30481-1] [PMID: 29576504]
[7]
Liberski, P.P.; Gajos, A.; Sikorska, B.; Lindenbaum, S. Kuru, the first human prion disease. Viruses, 2019, 11(3), 232.
[http://dx.doi.org/10.3390/v11030232] [PMID: 30866511]
[8]
Outeiro, T.F.; Koss, D.J.; Erskine, D.; Walker, L.; Kurzawa-Akanbi, M.; Burn, D.; Donaghy, P.; Morris, C.; Taylor, J.P.; Thomas, A.; Attems, J.; McKeith, I. Dementia with Lewy bodies: an update and outlook. Mol. Neurodegener., 2019, 14(1), 5.
[http://dx.doi.org/10.1186/s13024-019-0306-8] [PMID: 30665447]
[9]
Huang, L.; Zhang, L. Neural stem cell therapies and hypoxic-ischemic brain injury. Prog. Neurobiol., 2019, 173, 1-17.
[http://dx.doi.org/10.1016/j.pneurobio.2018.05.004] [PMID: 29758244]
[10]
Liao, Z.; Bu, Y.; Li, M.; Han, R.; Zhang, N.; Hao, J.; Jiang, W. Remote ischemic conditioning improves cognition in patients with subcortical ischemic vascular dementia. BMC Neurol., 2019, 19(1), 206.
[http://dx.doi.org/10.1186/s12883-019-1435-y] [PMID: 31443692]
[11]
Jellinger, K.A. Basic mechanisms of neurodegeneration: a critical update. J. Cell. Mol. Med., 2010, 14(3), 457-487.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01010.x] [PMID: 20070435]
[12]
Imran, M.; Al Kury, L.T.; Nadeem, H.; Shah, F.A.; Abbas, M.; Naz, S.; Khan, A.U.; Li, S. Benzimidazole containing acetamide derivatives attenuate neuroinflammation and oxidative stress in ethanol-induced neurodegeneration. Biomolecules, 2020, 10(1), 108.
[http://dx.doi.org/10.3390/biom10010108] [PMID: 31936383]
[13]
Jampilek, J. Heterocycles in medicinal chemistry. Molecules, 2019, 24(21), 10-13.
[http://dx.doi.org/10.3390/molecules24213839] [PMID: 31731387]
[14]
Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204]
[15]
Yamani, A.; Zdżalik-Bielecka, D.; Lipner, J.; Stańczak, A.; Piórkowska, N.; Stańczak, P.S.; Olejkowska, P.; Hucz-Kalitowska, J.; Magdycz, M.; Dzwonek, K.; Dubiel, K.; Lamparska-Przybysz, M.; Popiel, D.; Pieczykolan, J.; Wieczorek, M. Discovery and optimization of novel pyrazole-benzimidazole CPL304110, as a potent and selective inhibitor of fibroblast growth factor receptors FGFR (1-3). Eur. J. Med. Chem., 2021, 210, 112990.
[http://dx.doi.org/10.1016/j.ejmech.2020.112990] [PMID: 33199155]
[16]
Hwang, J.S.; Schilf, R.; Drach, J.C.; Townsend, L.B.; Bogner, E. Susceptibilities of human cytomegalovirus clinical isolates and other herpesviruses to new acetylated, tetrahalogenated benzimidazole D-ribonucleosides. Antimicrob. Agents Chemother., 2009, 53(12), 5095-5101.
[http://dx.doi.org/10.1128/AAC.00809-09] [PMID: 19786605]
[17]
Zhou, W.; Zhang, W.; Peng, Y.; Jiang, Z.H.; Zhang, L.; Du, Z. Design, synthesis and anti-tumor activity of novel benzimidazole-chalcone hybrids as non-intercalative topoisomerase II catalytic inhibitors. Molecules, 2020, 25(14), 3180.
[http://dx.doi.org/10.3390/molecules25143180] [PMID: 32664629]
[18]
Vyas, V.K.; Ghate, M. Substituted benzimidazole derivatives as angiotensin II-AT1 receptor antagonist: a review. Mini Rev. Med. Chem., 2010, 10(14), 1366-1384.
[http://dx.doi.org/10.2174/138955710793564151] [PMID: 20937029]
[19]
Zarrinmayeh, H.; Nunes, A.M.; Ornstein, P.L.; Zimmerman, D.M.; Arnold, M.B.; Schober, D.A.; Gackenheimer, S.L.; Bruns, R.F.; Hipskind, P.A.; Britton, T.C.; Cantrell, B.E.; Gehlert, D.R. Synthesis and evaluation of a series of novel 2-[(4-chlorophenoxy)methyl]benzimidazoles as selective neuropeptide Y Y1 receptor antagonists. J. Med. Chem., 1998, 41(15), 2709-2719.
[http://dx.doi.org/10.1021/jm9706630] [PMID: 9667962]
[20]
Li, X.Q.; Andersson, T.B.; Ahlström, M.; Weidolf, L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab. Dispos., 2004, 32(8), 821-827.
[http://dx.doi.org/10.1124/dmd.32.8.821] [PMID: 15258107]
[21]
Ajani, O.O.; Aderohunmu, D.V.; Ikpo, C.O.; Adedapo, A.E.; Olanrewaju, I.O. Functionalized benzimidazole scaffolds: privileged heterocycle for drug design in therapeutic medicine. Arch. Pharm. (Weinheim), 2016, 349(7), 475-506.
[http://dx.doi.org/10.1002/ardp.201500464] [PMID: 27213292]
[22]
Tahlan, S.; Kumar, S.; Narasimhan, B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: a review. BMC Chem., 2019, 13(1), 101.
[http://dx.doi.org/10.1186/s13065-019-0625-4] [PMID: 31410412]
[23]
Rahim, F.; Zaman, K.; Taha, M.; Ullah, H.; Ghufran, M.; Wadood, A.; Rehman, W.; Uddin, N.; Shah, S.A.A.; Sajid, M.; Nawaz, F.; Khan, K.M. Synthesis, in vitro alpha-glucosidase inhibitory potential of benzimidazole bearing bis-Schiff bases and their molecular docking study. Bioorg. Chem., 2020, 94, 103394.
[http://dx.doi.org/10.1016/j.bioorg.2019.103394] [PMID: 31699396]
[24]
Dinparast, L.; Valizadeh, H.; Bahadori, M.B.; Soltani, S.; Asghari, B.; Rashidi, M.R. Design, Synthesis, α-Glucosidase Inhibitory Activity, Molecular Docking and QSAR Studies of Benzimidazole Derivatives. J. Mol. Struct., 2016, 1114, 84-94.
[http://dx.doi.org/10.1016/j.molstruc.2016.02.005]
[25]
Cheong, J.E.; Zaffagni, M.; Chung, I.; Xu, Y.; Wang, Y.; Jernigan, F.E.; Zetter, B.R.; Sun, L. Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. Eur. J. Med. Chem., 2018, 144, 372-385.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.037] [PMID: 29288939]
[26]
Shojaei, P.; Mokhtari, B.; Ghorbanpoor, M. Synthesis, in vitro antifungal evaluation and docking studies of novel derivatives of imidazoles and benzimidazoles. Med. Chem. Res., 2019, 28, 1359-1367.
[http://dx.doi.org/10.1007/s00044-019-02369-7]
[27]
Karaburun, A.Ç. grı; Çavuşo glu, B.K.; Çevik, U.A.; Osmaniye, D.; Sa glık, B.N.; Levent, S.; Özkay, Y.; Atlı, Ö.; Koparal, A.S.; Kaplancıklı, Z.A Synthesis and antifungal potential of some novel benzimidazole-1,3,4-oxadiazole compounds. Molecules, 2019, 24, 1-14.
[http://dx.doi.org/10.3390/molecules24010191]
[28]
Mohanty, S.K.; Khuntia, A.; Yellasubbaiah, N.; Ayyanna, C.; Naga Sudha, B.; Harika, M.S. Design, synthesis of novel azo derivatives of benzimidazole as potent antibacterial and anti tubercular agents. Beni. Suef Univ. J. Basic Appl. Sci., 2018, 7, 646-651.
[http://dx.doi.org/10.1016/j.bjbas.2018.07.009]
[29]
Mishra, V.R.; Ghanavatkar, C.W.; Mali, S.N.; Qureshi, S.I.; Chaudhari, H.K.; Sekar, N. Design, synthesis, antimicrobial activity and computational studies of novel azo linked substituted benzimidazole, benzoxazole and benzothiazole derivatives. Comput. Biol. Chem., 2019, 78, 330-337.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.01.003] [PMID: 30639681]
[30]
Liu, H.B.; Gao, W.W.; Tangadanchu, V.K.R.; Zhou, C.H.; Geng, R.X. Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 143, 66-84.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.027] [PMID: 29172083]
[31]
Florio, R.; Veschi, S.; di Giacomo, V.; Pagotto, S.; Carradori, S.; Verginelli, F.; Cirilli, R.; Casulli, A.; Grassadonia, A.; Tinari, N.; Cataldi, A.; Amoroso, R.; Cama, A.; De Lellis, L. The benzimidazole-based anthelmintic parbendazole: a repurposed drug candidate that synergizes with gemcitabine in pancreatic cancer. Cancers (Basel), 2019, 11(12), 2042.
[http://dx.doi.org/10.3390/cancers11122042] [PMID: 31861153]
[32]
Kharitonova, M.I.; Konstantinova, I.D.; Miroshnikov, A.I. Benzimidazole nucleosides: antiviral and antitumour activities and methods of synthesis. Russ. Chem. Rev., 2018, 87, 1111-1138.
[http://dx.doi.org/10.1070/RCR4832]
[33]
Pan, T.; He, X.; Chen, B.; Chen, H.; Geng, G.; Luo, H.; Zhang, H.; Bai, C. Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein. Eur. J. Med. Chem., 2015, 95, 500-513.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.050] [PMID: 25847768]
[34]
Gurjar, A.S.; Solanki, V.S.; Meshram, A.R.; Vishwakarma, S.S. Exploring beta amyloid cleavage enzyme-1 inhibition and neuroprotective role of benzimidazole analogues as anti-alzheimer agents. J. Chin. Chem. Soc. (Taipei), 2020, 67, 864-873.
[http://dx.doi.org/10.1002/jccs.201900200]
[35]
Wang, X.J.; Xi, M.Y.; Fu, J.H.; Zhang, F.R.; Cheng, G.F.; Yin, D.L.; You, Q.D. Synthesis, biological evaluation and SAR studies of benzimidazole derivatives as h 1-antihistamine agents. Chin. Chem. Lett., 2012, 23, 707-710.
[http://dx.doi.org/10.1016/j.cclet.2012.04.020]
[36]
Noor, A.; Qazi, N.G.; Nadeem, H.; Khan, A.; Paracha, R.Z.; Ali, F.; Saeed, A. Synthesis, characterization, anti-ulcer action and molecular docking evaluation of novel benzimidazole-pyrazole hybrids. Chem. Cent. J., 2017, 11, 1-13.
[http://dx.doi.org/10.1186/s13065-017-0314-0]
[37]
Maghraby, M.T.E.; Abou-Ghadir, O.M.F.; Abdel-Moty, S.G.; Ali, A.Y.; Salem, O.I.A. Novel class of benzimidazole-thiazole hybrids: the privileged scaffolds of potent anti-inflammatory activity with dual inhibition of cyclooxygenase and 15-lipoxygenase enzymes. Bioorg. Med. Chem., 2020, 28(7), 115403.
[http://dx.doi.org/10.1016/j.bmc.2020.115403] [PMID: 32127262]
[38]
Kumar, J.R.; Jawahar, L.J.; Pathak, D.P. Synthesis of benzimidazole derivatives: as anti-hypertensive agents. E-J. Chem., 2006, 3, 278-285.
[http://dx.doi.org/10.1155/2006/765712]
[39]
Zachariah, S.M. In silico drug design of some novel compounds as an alternative for the anti IBD drug tofacitinib. Res. J. Chem. Environ., 2020, 24, 11-17.
[40]
Soria Lopez, J.A.; González, H.M.; Léger, G.C. Alzheimer’s disease. Handb. Clin. Neurol., 2019, 167, 231-255.
[http://dx.doi.org/10.1016/B978-0-12-804766-8.00013-3] [PMID: 31753135]
[41]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[42]
Barage, S.H.; Sonawane, K.D. Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer’s disease. Neuropeptides, 2015, 52, 1-18.
[http://dx.doi.org/10.1016/j.npep.2015.06.008] [PMID: 26149638]
[43]
Kametani, F.; Hasegawa, M. Reconsideration of amyloid hypothesis and tau hypothesis in alzheimer’s disease. Front. Neurosci., 2018, 12, 25.
[http://dx.doi.org/10.3389/fnins.2018.00025] [PMID: 29440986]
[44]
Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim. Biophys. Acta, 2014, 1842(8), 1240-1247.
[http://dx.doi.org/10.1016/j.bbadis.2013.10.015] [PMID: 24189435]
[45]
Galimberti, D.; Scarpini, E. Old and new acetylcholinesterase inhibitors for Alzheimer’s disease. Expert Opin. Investig. Drugs, 2016, 25(10), 1181-1187.
[http://dx.doi.org/10.1080/13543784.2016.1216972] [PMID: 27459153]
[46]
Kabir, M.T.; Uddin, M.S.; Begum, M.M.; Thangapandiyan, S.; Rahman, M.S.; Aleya, L.; Mathew, B.; Ahmed, M.; Barreto, G.E.; Ashraf, G.M. Cholinesterase inhibitors for alzheimer’s disease: multitargeting strategy based on anti-alzheimer’s drugs repositioning. Curr. Pharm. Des., 2019, 25(33), 3519-3535.
[http://dx.doi.org/10.2174/1381612825666191008103141] [PMID: 31593530]
[47]
Kabir, M.T.; Sufian, M.A.; Uddin, M.S.; Begum, M.M.; Akhter, S.; Islam, A.; Mathew, B.; Islam, M.S.; Amran, M.S.; Md Ashraf, G. NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for alzheimer’s therapy. Curr. Pharm. Des., 2019, 25(33), 3506-3518.
[http://dx.doi.org/10.2174/1381612825666191011102444] [PMID: 31604413]
[48]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[49]
Krishnendu, P.R.; Arjun, B.; Vibina, K.; Nivea Cleo, T.S.; Drisya, N.K.; Mohandas, R.; Zachariah, S.M. Review on evaluating the role of nsaids for the treatment of alzheimer’s disease. Int. J. Appl. Pharm., 2021, 13, 91-94.
[50]
Koyiparambath, V.P.; Oh, J.M.; Khames, A.; Abdelgawad, M.A.; Nair, A.S.; Nath, L.R.; Gambacorta, N.; Ciriaco, F.; Nicolotti, O.; Kim, H.; Mathew, B. Trimethoxylated Halogenated Chalcones as Dual Inhibitors of MAO-B and BACE-1 for the Treatment of Neurodegenerative Disorders. Pharmaceutics, 2021, 13, 850.
[51]
Ali, S.; Asad, M.H.H.B.; Maity, S.; Zada, W.; Rizvanov, A.A.; Iqbal, J.; Babak, B.; Hussain, I. Fluoro-benzimidazole derivatives to cure Alzheimer’s disease: in-silico studies, synthesis, structure-activity relationship and in vivo evaluation for β secretase enzyme inhibition. Bioorg. Chem., 2019, 88, 102936.
[http://dx.doi.org/10.1016/j.bioorg.2019.102936] [PMID: 31054426]
[52]
Fang, Y.; Zhou, H.; Gu, Q.; Xu, J. Synthesis and evaluation of tetrahydroisoquinoline-benzimidazole hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2019, 167, 133-145.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.008] [PMID: 30771601]
[53]
Vangavaragu, J.R.; Valasani, K.R.; Gan, X.; Yan, S.S. Identification of human presequence protease (hPreP) agonists for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 76, 506-516.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.046] [PMID: 24602793]
[54]
Kim, T.; Yang, H.Y.; Park, B.G.; Jung, S.Y.; Park, J.H.; Park, K.D.; Min, S.J.; Tae, J.; Yang, H.; Cho, S.; Cho, S.J.; Song, H.; Mook-Jung, I.; Lee, J.; Pae, A.N. Discovery of benzimidazole derivatives as modulators of mitochondrial function: a potential treatment for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 1172-1192.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.017] [PMID: 27855359]
[55]
Wu, Q.; Wu, W.; Jacevic, V.; Franca, T.C.C.; Wang, X.; Kuca, K. Selective inhibitors for JNK signalling: a potential targeted therapy in cancer. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 574-583.
[http://dx.doi.org/10.1080/14756366.2020.1720013] [PMID: 31994958]
[56]
Yarza, R.; Vela, S.; Solas, M.; Ramirez, M.J. c-jun n-terminal kinase (JNK) signaling as a therapeutic target for alzheimer’s disease. Front. Pharmacol., 2016, 6, 321.
[http://dx.doi.org/10.3389/fphar.2015.00321] [PMID: 26793112]
[57]
Nogueiras, R.; Sabio, G. Brain JNK and metabolic disease. Diabetologia, 2021, 64(2), 265-274.
[http://dx.doi.org/10.1007/s00125-020-05327-w] [PMID: 33200240]
[58]
Kim, M.H.; Ryu, J.S.; Hah, J.M. 3D-QSAR studies of 1,2-diaryl-1H-benzimidazole derivatives as JNK3 inhibitors with protective effects in neuronal cells. Bioorg. Med. Chem. Lett., 2013, 23(6), 1639-1642.
[http://dx.doi.org/10.1016/j.bmcl.2013.01.082] [PMID: 23416008]
[59]
Kim, M.H.; Lee, J.; Jung, K.; Kim, M.; Park, Y.J.; Ahn, H.; Kwon, Y.H.; Hah, J.M. Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1H-benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorg. Med. Chem., 2013, 21(8), 2271-2285.
[http://dx.doi.org/10.1016/j.bmc.2013.02.021] [PMID: 23498914]
[60]
Guglielmi, P.; Carradori, S.; Ammazzalorso, A.; Secci, D. Novel approaches to the discovery of selective human monoamine oxidase-B inhibitors: is there room for improvement? Expert Opin. Drug Discov., 2019, 14(10), 995-1035.
[http://dx.doi.org/10.1080/17460441.2019.1637415] [PMID: 31268358]
[61]
Mathew, B.; Parambi, D.G.T.; Mathew, G.E.; Uddin, M.S.; Inasu, S.T.; Kim, H.; Marathakam, A.; Unnikrishnan, M.K.; Carradori, S. Emerging therapeutic potentials of dual-acting MAO and AChE inhibitors in Alzheimer’s and Parkinson’s diseases. Arch. Pharm. (Weinheim), 2019, 352(11), e1900177.
[http://dx.doi.org/10.1002/ardp.201900177] [PMID: 31478569]
[62]
Mathew, B.; Carradori, S.; Guglielmi, P.; Uddin, M.S.; Kim, H. New aspects of monoamine oxidase b inhibitors: the key role of halogens to open the golden door. Curr. Med. Chem., 2021, 28(2), 266-283.
[http://dx.doi.org/10.2174/0929867327666200121165931] [PMID: 31965939]
[63]
Carradori, S.; Secci, D.; Petzer, J.P. MAO inhibitors and their wider applications: a patent review. Expert Opin. Ther. Pat., 2018, 28(3), 211-226.
[http://dx.doi.org/10.1080/13543776.2018.1427735] [PMID: 29324067]
[64]
Can, O.D.; Osmaniye, D.; Demir Özkay, Ü.; Sağlık, B.N.; Levent, S.; Ilgın, S.; Baysal, M.; Özkay, Y.; Kaplancıklı, Z.A. MAO enzymes inhibitory activity of new benzimidazole derivatives including hydrazone and propargyl side chains. Eur. J. Med. Chem., 2017, 131, 92-106.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.009] [PMID: 28301816]
[65]
Can, N.; Evik, U.A.; Saglık, B.M.N.; Zkay, Y.; Atlı, Z.; Baysal, M. Zkay, mide D.; Can, Z.G R. D. Pharmacological and Toxicological Screening of Novel Benzimidazole-Morpholine Derivatives as Dual-Acting Inhibitors. Molecules, 2017, 22.
[66]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[67]
Beitz, J.M. School of Nursing-Camden, Rutgers University, 311 N. 5. Front. Biosci., 2014, 6, 65-74.
[http://dx.doi.org/10.2741/S415]
[68]
Anastassova, N.; Aluani, D.; Kostadinov, A.; Rangelov, M.; Todorova, N.; Hristova-Avakumova, N.; Argirova, M.; Lumov, N.; Kondeva-Burdina, M.; Tzankova, V.; Yancheva, D. Evaluation of the combined activity of benzimidazole arylhydrazones as new anti-Parkinsonian agents: monoamine oxidase-B inhibition, neuroprotection and oxidative stress modulation. Neural Regen. Res., 2021, 16(11), 2299-2309.
[http://dx.doi.org/10.4103/1673-5374.309843] [PMID: 33818516]
[69]
Casey, D.A.; Antimisiaris, D.; O’Brien, J. Drugs for Alzheimer’s disease: are they effective? P&T, 2010, 35(4), 208-211.
[PMID: 20498822]
[70]
Dinparast, L. Cholinesterases Inhibitory Activity of 1 H-benzimidazole derivatives. Biointerface Res. Appl. Chem., 2021, 11, 10739-10745.
[71]
Poduslo, S.E.; Huang, R.; Huang, J.; Smith, S. Genome screen of late-onset Alzheimer’s extended pedigrees identifies TRPC4AP by haplotype analysis. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2009, 150B(1), 50-55.
[http://dx.doi.org/10.1002/ajmg.b.30767] [PMID: 18449908]
[72]
Zhu, J.; Wu, C.F.; Li, X.; Wu, G.S.; Xie, S.; Hu, Q.N.; Deng, Z.; Zhu, M.X.; Luo, H.R.; Hong, X.; Wu, C.; Li, X.; Wu, G.; Xie, S.; Hu, Q.; Deng, Z. Synthesis, biological evaluation and molecular modeling of substituted 2-aminobenzimidazoles as novel inhibitors of acetylcholinesterase and butyrylcholinesterase. Bioorg. Med. Chem., 2013, 21(14), 4218-4224.
[http://dx.doi.org/10.1016/j.bmc.2013.05.001] [PMID: 23719283]
[73]
Matysiak, J.; Skrzypek, A.; Karpińska, M.; Czarnecka, K.; Szymański, P.; Bajda, M.; Niewiadomy, A. Biological evaluation, molecular docking, and SAR studies of novel 2-(2,4-dihydroxy-phenyl)-1H-benzimidazole analogues. Biomolecules, 2019, 9(12), 1-17.
[http://dx.doi.org/10.3390/biom9120870] [PMID: 31842463]
[74]
Alpan, A.S.; Sarıkaya, G.; Çoban, G.; Parlar, S.; Armagan, G.; Alptüzün, V. Mannich-benzimidazole derivatives as antioxidant and anticholinesterase inhibitors: synthesis, biological evaluations, and molecular docking study. Arch. Pharm. (Weinheim), 2017, 350(7), 1-15.
[http://dx.doi.org/10.1002/ardp.201600351] [PMID: 28379621]
[75]
Unsal-Tan, O.; Ozadali-Sari, K.; Ayazgok, B.; Küçükkılınç, T.T.; Balkan, A. Novel 2-arylbenzimidazole derivatives as multi-targeting agents to treat alzheimer’s disease. Med. Chem. Res., 2017, 26, 1506-1515.
[http://dx.doi.org/10.1007/s00044-017-1874-1]
[76]
Sarıkaya, G.; Çoban, G.; Parlar, S.; Tarikogullari, A.H.; Armagan, G.; Erdoğan, M.A.; Alptüzün, V.; Alpan, A.S. Multifunctional cholinesterase inhibitors for Alzheimer’s disease: Synthesis, biological evaluations, and docking studies of o/p-propoxyphenylsubstituted-1H-benzimidazole derivatives. Arch. Pharm. (Weinheim), 2018, 351.
[http://dx.doi.org/10.1002/ardp.201800076] [PMID: 29984517]
[77]
Ozadali-Sari, K.; Tüylü Küçükkılınç, T.; Ayazgok, B.; Balkan, A.; Unsal-Tan, O. Novel multi-targeted agents for Alzheimer’s disease: Synthesis, biological evaluation, and molecular modeling of novel 2-[4-(4-substitutedpiperazin-1-yl)phenyl]benzimidazoles. Bioorg. Chem., 2017, 72, 208-214.
[http://dx.doi.org/10.1016/j.bioorg.2017.04.018] [PMID: 28478328]
[78]
Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem., 2008, 51(3), 347-372.
[http://dx.doi.org/10.1021/jm7009364] [PMID: 18181565]
[79]
Santos, M.A.; Chand, K.; Chaves, S. Recent progress in repositioning Alzheimer’s disease drugs based on a multitarget strategy. Future Med. Chem., 2016, 8(17), 2113-2142.
[http://dx.doi.org/10.4155/fmc-2016-0103] [PMID: 27774814]
[80]
Unzeta, M.; Esteban, G.; Bolea, I.; Fogel, W.A.; Ramsay, R.R.; Youdim, M.B.H.; Tipton, K.F.; Marco-Contelles, J. Multi-target directed donepezil-like ligands for alzheimer’s disease. Front. Neurosci., 2016, 10, 205.
[http://dx.doi.org/10.3389/fnins.2016.00205] [PMID: 27252617]
[81]
Piemontese, L.; Tomás, D.; Hiremathad, A.; Capriati, V.; Candeias, E.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Donepezil structure-based hybrids as potential multifunctional anti-Alzheimer’s drug candidates. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 1212-1224.
[http://dx.doi.org/10.1080/14756366.2018.1491564] [PMID: 30160188]
[82]
Chaves, S.; Resta, S.; Rinaldo, F.; Costa, M.; Josselin, R.; Gwizdala, K.; Piemontese, L.; Capriati, V.; Pereira-Santos, A.R.; Cardoso, S.M.; Santos, M.A. Design, synthesis, and in vitro evaluation of hydroxybenzimidazole-donepezil analogues as multitarget-directed ligands for the treatment of alzheimer’s disease. Molecules, 2020, 25(4), 985.
[http://dx.doi.org/10.3390/molecules25040985] [PMID: 32098407]
[83]
Costa, M.; Josselin, R.; Silva, D.F.; Cardoso, S.M.; May, N.V.; Chaves, S.; Santos, M.A. Donepezil-based hybrids as multifunctional anti-alzheimer’s disease chelating agents: effect of positional isomerization. J. Inorg. Biochem., 2020, 206, 111039.
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111039] [PMID: 32171933]
[84]
Imran, M.; Shah, F.A.; Nadeem, H.; Zeb, A.; Faheem, M.; Naz, S.; Bukhari, A.; Ali, T.; Li, S. Synthesis and biological evaluation of benzimidazole derivatives as potential neuroprotective agents in an ethanol-induced rodent model. ACS Chem. Neurosci., 2021, 12(3), 489-505.
[http://dx.doi.org/10.1021/acschemneuro.0c00659] [PMID: 33430586]
[85]
Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205.
[http://dx.doi.org/10.1124/jpet.116.237503] [PMID: 27754930]
[86]
Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules, 2019, 24(8), 1-20.
[http://dx.doi.org/10.3390/molecules24081583] [PMID: 31013638]
[87]
Watson, N.; Diamandis, T.; Gonzales-Portillo, C.; Reyes, S.; Borlongan, C.V. Melatonin as an antioxidant for stroke neuroprotection. Cell Transplant., 2016, 25(5), 883-891.
[http://dx.doi.org/10.3727/096368915X689749] [PMID: 26497887]
[88]
Anastassova, N.; Yancheva, D.; Hristova-Avakumova, N.; Hadjimitova, V.; Traykov, T.; Aluani, D.; Tzankova, V.; Kondeva-Burdina, M. New benzimidazole-aldehyde hybrids as neuroprotectors with hypochlorite and superoxide radical-scavenging activity. Pharmacol. Rep., 2020, 72(4), 846-856.
[http://dx.doi.org/10.1007/s43440-020-00077-3] [PMID: 32125683]
[89]
Bhat, S.A.; Henry, R.J.; Blanchard, A.C.; Stoica, B.A.; Loane, D.J.; Faden, A.I. Enhanced Akt/GSK-3β/CREB signaling mediates the anti-inflammatory actions of mGluR5 positive allosteric modulators in microglia and following traumatic brain injury in male mice. J. Neurochem., 2021, 156(2), 225-248.
[http://dx.doi.org/10.1111/jnc.14954] [PMID: 31926033]
[90]
He, X.; Lakkaraju, S.K.; Hanscom, M.; Zhao, Z.; Wu, J.; Stoica, B.; MacKerell, A.D., Jr; Faden, A.I.; Xue, F. Acyl-2-aminobenzimidazoles: a novel class of neuroprotective agents targeting mGluR5. Bioorg. Med. Chem., 2015, 23(9), 2211-2220.
[http://dx.doi.org/10.1016/j.bmc.2015.02.054] [PMID: 25801156]
[91]
Yao, Y.X.; Jia, N.N.; Cao, Y.N.; Chen, X.X.; Gao, F.; Liang, X.X. Copper-catalyzed synthesis, bio-evaluation, and in silico studies of 2-aryl-n-alkylbenzimidazoles as neuroprotective agents. Catalysts, 2018, 8.
[http://dx.doi.org/10.3390/catal8100433]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy