Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of Vitamins in Neurodegenerative Diseases: A Review

Author(s): Ravi Ranjan Kumar, Lovekesh Singh, Amandeep Thakur, Shamsher Singh and Bhupinder Kumar*

Volume 21, Issue 9, 2022

Published on: 11 January, 2022

Page: [766 - 773] Pages: 8

DOI: 10.2174/1871527320666211119122150

Price: $65

Abstract

Background: Vitamins are the micronutrients required for boosting the immune system and managing any future infection. Vitamins are involved in neurogenesis, a defense mechanism working in neurons, metabolic reactions, neuronal survival, and neuronal transmission. Their deficiency leads to abnormal functions in the brain like oxidative stress, mitochondrial dysfunction, accumulation of proteins (synuclein, Aβ plaques), neurodegeneration, and excitotoxicity.

Methods: In this review, we have compiled various reports collected from PubMed, Scholar Google, Research gate, and Science direct. The findings were evaluated, compiled, and represented in this manuscript.

Conclusion: The deficiency of vitamins in the body causes various neurological disorders like Alzheimer’s disease, Parkinson’s disease, Huntington's disease, and depression. We have discussed the role of vitamins in neurological disorders and the normal human body. Depression is linked to a deficiency of vitamin-C and vitamin B. In the case of Alzheimer’s disease, there is a lack of vitamin- B1, B12, and vitamin-A, which results in Aβ-plaques. Similarly, in Parkinson’s disease, vitamin- D deficiency leads to a decrease in the level of dopamine, and imbalance in vitamin D leads to accumulation of synuclein. In MS, vitamin-C and vitamin-D deficiency causes demyelination of neurons. In Huntington's disease, vitamin- C deficiency decreases the antioxidant level, enhances oxidative stress, and disrupts the glucose cycle. vitamin B5 deficiency in Huntington's disease disrupts the synthesis of acetylcholine and hormones in the brain.

Keywords: Vitamin, Alzheimer’s disease, parkinson’s disease, multiple sclerosis, Huntington disease, glucose cycle.

Graphical Abstract
[1]
Semba RD. The discovery of the vitamins. Int J Vitam Nutr Res 2012; 82(5): 310-5.
[http://dx.doi.org/10.1024/0300-9831/a000124] [PMID: 23798048]
[2]
McDowell LR. Vitamins in animal and human nutrition. (1st [2] ed.), New York: John Wiley & Sons 2008.
[3]
Stanger O, Ed. Water soluble vitamins: clinical research and future application. (1st ed). Netherlands: Springer 2011.
[http://dx.doi.org/10.1007/978-94-007-2199-9]
[4]
Downing D, Anthony HM, Birtwhistle S, et al. Effective nutritional medicine: The application of nutrition to major health problems: British society for allergy and environmental medicine with the british society for nutritional medicine. J Nutr Environ Med 1996; 6(2): 191-232.
[http://dx.doi.org/10.3109/13590849609001045]
[5]
Bender DA. Nutritional biochemistry of the vitamins (2nd ed.). 2003; pp. 514.
[http://dx.doi.org/10.1017/CBO9780511615191]
[6]
Magill A, Ryan E, Hill D, Solomon T. Hunter's tropical medicine and emerging infectious disease: expert consult-online and print. Elsevier health sciences (9th ed). 2012.
[7]
Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World J Gastroenterol 2015; 21(17): 5191-209.
[http://dx.doi.org/10.3748/wjg.v21.i17.5191] [PMID: 25954093]
[8]
Czernichow S, Hercberg S. Interventional studies concerning the role of antioxidant vitamins in cardiovascular diseases: A review. J Nutr Health Aging 2001; 5(3): 188-95.
[PMID: 11458291]
[9]
Martin A, Youdim K, Szprengiel A, Shukitt-Hale B, Joseph J. Roles of vitamins E and C on neurodegenerative diseases and cognitive performance. Nutr Rev 2002; 60(10 Pt 1): 308-26.
[http://dx.doi.org/10.1301/002966402320583433] [PMID: 12392148]
[10]
Qiao H, Li MX, Xu C, Chen HB, An SC, Ma XM. Dendritic spines in depression: What we learned from animal models. Neural Plast 2016; 2016: 8056370.
[http://dx.doi.org/10.1155/2016/8056370] [PMID: 26881133]
[11]
Khandelwal PJ, Herman AM, Moussa CE. Inflammation in the early stages of neurodegenerative pathology. J Neuroimmunol 2011; 238(1-2): 1-11.
[http://dx.doi.org/10.1016/j.jneuroim.2011.07.002] [PMID: 21820744]
[12]
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol 2017; 9(7): a028035.
[http://dx.doi.org/10.1101/cshperspect.a028035] [PMID: 28062563]
[13]
Tardy AL, Pouteau E, Marquez D, Yilmaz C, Scholey A. Vitamins and minerals for energy, fatigue and cognition: A narrative review of the biochemical and clinical evidence. Nutrients 2020; 12(1): 228.
[http://dx.doi.org/10.3390/nu12010228] [PMID: 31963141]
[14]
Wainwright PE, Colombo J. Nutrition and the development of cognitive functions: Interpretation of behavioral studies in animals and human infants. Am J Clin Nutr 2006; 84(5): 961-70.
[http://dx.doi.org/10.1093/ajcn/84.5.961] [PMID: 17093144]
[15]
Fernandes de Abreu DA, Eyles D, Féron F. Vitamin D, a neuro-immunomodulator: Implications for neurodegenerative and autoimmune diseases. Psych Neuroendocrinal 2009; 34(1)(Suppl. 1): S265-77.
[http://dx.doi.org/10.1016/j.psyneuen.2009.05.023] [PMID: 19545951]
[16]
Kalueff AV, Minasyan A, Tuohimaa P. Anticonvulsant effects of 1,25-dihydroxyvitamin D in chemically induced seizures in mice. Brain Res Bull 2005; 67(1-2): 156-60.
[http://dx.doi.org/10.1016/j.brainresbull.2005.06.022] [PMID: 16140175]
[17]
Cass WA, Smith MP, Peters LE. Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci 2006; 1074(1): 261-71.
[http://dx.doi.org/10.1196/annals.1369.023] [PMID: 17105922]
[18]
Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW. Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry 2008; 65(5): 508-12.
[http://dx.doi.org/10.1001/archpsyc.65.5.508] [PMID: 18458202]
[19]
Cook CC, Hallwood PM, Thomson AD. B Vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol Alcohol 1998; 33(4): 317-36.
[http://dx.doi.org/10.1093/oxfordjournals.alcalc.a008400] [PMID: 9719389]
[20]
Rao AV, Balachandran B. Role of oxidative stress and antioxidants in neurodegenerative diseases. Nutr Neurosci 2002; 5(5): 291-309.
[http://dx.doi.org/10.1080/1028415021000033767] [PMID: 12385592]
[21]
Kesby JP, Eyles DW, Burne TH, McGrath JJ. The effects of vitamin D on brain development and adult brain function. Mol Cell Endocrinol 2011; 347(1-2): 121-7.
[http://dx.doi.org/10.1016/j.mce.2011.05.014] [PMID: 21664231]
[22]
Eyles DW, Feron F, Cui X, et al. Developmental vitamin D deficiency causes abnormal brain development. Psychneuro 2009; 34(Suppl. 1): S247-57.
[http://dx.doi.org/10.1016/j.psyneuen.2009.04.015] [PMID: 19500914]
[23]
Lv L, Tan X, Peng X, et al. The relationships of vitamin D, vitamin D receptor gene polymorphisms, and vitamin D supplementation with Parkinson’s disease. Transl Neurodegener 2020; 9(1): 34.
[http://dx.doi.org/10.1186/s40035-020-00213-2] [PMID: 32867847]
[24]
Bottiglieri T. Folate, vitamin B12, and neuropsychiatric disorders. Nutr Rev 1996; 54(12): 382-90.
[http://dx.doi.org/10.1111/j.1753-4887.1996.tb03851.x] [PMID: 9155210]
[25]
Carney MW. Serum folate values in 423 psychiatric patients. BMJ 1967; 4(5578): 512-6.
[http://dx.doi.org/10.1136/bmj.4.5578.512] [PMID: 6065984]
[26]
Behl C. Vitamin E and other antioxidants in neuroprotection. Int J Vitam Nutr Res 1999; 69(3): 213-9.
[http://dx.doi.org/10.1024/0300-9831.69.3.213] [PMID: 10389030]
[27]
Heo JH, Hyon-Lee , Lee KM. The possible role of antioxidant vitamin C in Alzheimer’s disease treatment and prevention. Am J Alzheimers Dis Other Demen 2013; 28(2): 120-5.
[http://dx.doi.org/10.1177/1533317512473193] [PMID: 23307795]
[28]
Sil S, Ghosh T, Gupta P, Ghosh R, Kabir SN, Roy A. Dual role of vitamin C on the neuroinflammation mediated neurodegeneration and memory impairments in colchicine induced rat model of Alzheimer disease. J Mol Neurosci 2016; 60(4): 421-35.
[http://dx.doi.org/10.1007/s12031-016-0817-5] [PMID: 27665568]
[29]
Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: The Cache County Study. Arch Neurol 2004; 61(1): 82-8.
[http://dx.doi.org/10.1001/archneur.61.1.82] [PMID: 14732624]
[30]
Tafti M, Ghyselinck NB. Functional implication of the vitamin A signaling pathway in the brain. Arch Neurol 2007; 64(12): 1706-11.
[http://dx.doi.org/10.1001/archneur.64.12.1706] [PMID: 18071033]
[31]
Kumar RR, Sahu B, Pathania S, Singh PK, Akhtar MJ, Kumar B. Piperazine, a key substructure for antidepressants: Its role in developments and structure-activity relationships. ChemMedChem 2021; 16(12): 1878-901.
[http://dx.doi.org/10.1002/cmdc.202100045] [PMID: 33751807]
[32]
Caplan LR, Ahmed I. Depression and neurological disease. Their distinction and association. Gen Hosp Psychiatry 1992; 14(3): 177-85.
[http://dx.doi.org/10.1016/0163-8343(92)90080-T] [PMID: 1318243]
[33]
Gupta P, Tiwari S, Haria J. Relationship between depression and vitamin C status: A study on rural patients from Western Uttar Pradesh in India. Int J Sci Stud 2014; 1(4): 37-9.
[34]
Kumar A, Rinwa P, Kaur G, Machawal L. Stress: Neurobiology, consequences and management. J Pharm Bioallied Sci 2013; 5(2): 91-7.
[http://dx.doi.org/10.4103/0975-7406.111818] [PMID: 23833514]
[35]
Naidu KA. Vitamin C in human health and disease is still a mystery? An overview. Nutr J 2003; 2(1): 7.
[http://dx.doi.org/10.1186/1475-2891-2-7] [PMID: 14498993]
[36]
Brito MA, Vaz AR, Silva SL, et al. N-methyl-aspartate receptor and neuronal nitric oxide synthase activation mediate bilirubin-induced neurotoxicity. Mol Med 2010; 16(9-10): 372-80.
[http://dx.doi.org/10.2119/molmed.2009.00152] [PMID: 20593111]
[37]
Su X, Shen Z, Yang Q, et al. Vitamin C kills thyroid cancer cells through ROS-dependent inhibition of MAPK/ERK and PI3K/AKT pathways via distinct mechanisms. Theranostics 2019; 9(15): 4461-73.
[http://dx.doi.org/10.7150/thno.35219] [PMID: 31285773]
[38]
Khademi S. Compensatory responses to oxidant stresses in vitro and in vivo. PhD Thesis, Colorado State University: Colorado, Fall 2013. Available from: http://hdl.handle.net/10217/80951
[39]
Kocot J, Luchowska-Kocot D, Kiełczykowska M, Musik I, Kurzepa J. Does vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients 2017; 9(7): 659.
[http://dx.doi.org/10.3390/nu9070659] [PMID: 28654017]
[40]
Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr 2019; 6: 48.
[http://dx.doi.org/10.3389/fnut.2019.00048] [PMID: 31058161]
[41]
Mikkelsen K, Stojanovska L, Prakash M, Apostolopoulos V. The effects of vitamin B on the immune/cytokine network and their involvement in depression. Maturitas 2017; 96: 58-71.
[http://dx.doi.org/10.1016/j.maturitas.2016.11.012] [PMID: 28041597]
[42]
Mikkelsen K, Stojanovska L, Apostolopoulos V. The effects of vitamin B in depression. Curr Med Chem 2016; 23(38): 4317-37.
[http://dx.doi.org/10.2174/0929867323666160920110810] [PMID: 27655070]
[43]
Hvas AM, Juul S, Bech P, Nexø E. Vitamin B6 level is associated with symptoms of depression. Psychother Psychosom 2004; 73(6): 340-3.
[http://dx.doi.org/10.1159/000080386] [PMID: 15479988]
[44]
Coppen A, Bolander-Gouaille C. Treatment of depression: time to consider folic acid and vitamin B12. J Psychopharmacol 2005; 19(1): 59-65.
[http://dx.doi.org/10.1177/0269881105048899] [PMID: 15671130]
[45]
Kumar B, Thakur A, Dwivedi AR, Kumar R, Kumar V. Multi-target-directed ligands as an effective strategy for the treatment of Alzheimer’s disease. Curr Med Chem 2022; 29(10): 1757-803.
[http://dx.doi.org/10.2174/0929867328666210512005508] [PMID: 33982650]
[46]
Elwinger K, Fisher C, Jeroch H, Sauveur B, Tiller H, Whitehead CC. A brief history of poultry nutrition over the last hundred years. Worlds Poult Sci J 2016; 72(4): 701-20.
[http://dx.doi.org/10.1017/S004393391600074X]
[47]
Lopes da Silva S, Vellas B, Elemans S, et al. Plasma nutrient status of patients with Alzheimer’s disease: Systematic review and meta-analysis. Alzheimers Dement 2014; 10(4): 485-502.
[http://dx.doi.org/10.1016/j.jalz.2013.05.1771] [PMID: 24144963]
[48]
Gibson GE, Peterson C. Aging decreases oxidative metabolism and the release and synthesis of acetylcholine. J Neurochem 1981; 37(4): 978-84.
[http://dx.doi.org/10.1111/j.1471-4159.1981.tb04484.x] [PMID: 7320734]
[49]
Mann PJG, Quastel JH. Vitamin B 1 and acetylcholine formation in isolated brain. Nature 1940; 145(3683): 856-7.
[http://dx.doi.org/10.1038/145856a0]
[50]
Wu F, Xu K, Liu L, et al. Vitamin B12 enhances nerve repair and improves functional recovery after traumatic brain injury by inhibiting ER stress-induced neuron injury. Front Pharmacol 2019; 10: 406.
[http://dx.doi.org/10.3389/fphar.2019.00406] [PMID: 31105562]
[51]
Carlezon WA, Duman RS, Nestler EJ, Cha Molstad H, Keller DM, Yochum GS. Developmental disorders. Trends Neurosci 2005; 28: 436-45.
[http://dx.doi.org/10.1016/j.biopsych.2007.08.003] [PMID: 15982754]
[52]
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14(10): 2013-54.
[http://dx.doi.org/10.1089/ars.2010.3208] [PMID: 20649473]
[53]
Burns A, Bernabei R, Bullock R, et al. Safety and efficacy of galantamine (Reminyl) in severe Alzheimer’s disease (the SERAD study): A randomised, placebo-controlled, double-blind trial. Lancet Neurol 2009; 8(1): 39-47.
[http://dx.doi.org/10.1016/S1474-4422(08)70261-8] [PMID: 19042161]
[54]
Kook SY, Lee KM, Kim Y, et al. High-dose of vitamin C supplementation reduces amyloid plaque burden and ameliorates pathological changes in the brain of 5XFAD mice. Cell Death Dis 2014; 5(2): e1083-3.
[http://dx.doi.org/10.1038/cddis.2014.26] [PMID: 24577081]
[55]
Paleologos M, Cumming RG, Lazarus R. Cohort study of vitamin C intake and cognitive impairment. Am J Epidemiol 1998; 148(1): 45-50.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a009559] [PMID: 9663403]
[56]
Dursun E, Alaylıoğlu M, Bilgiç B, et al. Vitamin D deficiency might pose a greater risk for ApoEɛ4 non-carrier Alzheimer’s disease patients. Neurol Sci 2016; 37(10): 1633-43.
[http://dx.doi.org/10.1007/s10072-016-2647-1] [PMID: 27357856]
[57]
Park HA, Ellis AC. Dietary antioxidants and Parkinson’s disease. Antioxidants 2020; 9(7): 570.
[http://dx.doi.org/10.3390/antiox9070570] [PMID: 32630250]
[58]
Shah SA, Yoon GH, Kim HO, Kim MO. Vitamin C neuroprotection against dose-dependent glutamate-induced neurodegeneration in the postnatal brain. Neurochem Res 2015; 40(5): 875-84.
[http://dx.doi.org/10.1007/s11064-015-1540-2] [PMID: 25701025]
[59]
Franco-Iborra S, Vila M, Perier C. Mitochondrial quality control in neurodegenerative diseases: focus on Parkinson’s disease and Huntington’s disease. Front Neurosci 2018; 12: 342.
[http://dx.doi.org/10.3389/fnins.2018.00342] [PMID: 29875626]
[60]
Marashly ET, Bohlega SA. Riboflavin has neuroprotective potential: Focus on Parkinson’s disease and migraine. Front Neurol 2017; 8: 333.
[http://dx.doi.org/10.3389/fneur.2017.00333] [PMID: 28775706]
[61]
Gold J, Shoaib A, Gorthy G, Grossberg GT. The role of vitamin D in cognitive disorders in older adults. Vascular 2018; 5: 41-6.
[http://dx.doi.org/10.17925/USN.2018.14.1.41]
[62]
Yu YX, Yu XD, Cheng QZ, Tang L, Shen MQ. The association of serum vitamin K2 levels with Parkinson’s disease: From basic case-control study to big data mining analysis. Aging (Albany NY) 2020; 12(16): 16410-9.
[http://dx.doi.org/10.18632/aging.103691] [PMID: 32862152]
[63]
Glass M, Dragunow M, Faull RLM. The pattern of neurodegeneration in Huntington’s disease: A comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience 2000; 97(3): 505-19.
[http://dx.doi.org/10.1016/S0306-4522(00)00008-7] [PMID: 10828533]
[64]
Pop-Busui R, Sima A, Stevens M. Diabetic neuropathy and oxidative stress. Diabetes Metab Res Rev 2006; 22(4): 257-73.
[http://dx.doi.org/10.1002/dmrr.625] [PMID: 16506271]
[65]
Patassini S, Begley P, Xu J, et al. Cerebral vitamin B5 (D-pantothenic acid) deficiency as a potential cause of metabolic perturbation and neurodegeneration in Huntington’s disease. Metabolites 2019; 9(6): 113.
[http://dx.doi.org/10.3390/metabo9060113] [PMID: 31212603]
[66]
Gominak SC. Vitamin D deficiency changes the intestinal microbiome reducing B vitamin production in the gut. The resulting lack of pantothenic acid adversely affects the immune system, producing a “pro-inflammatory” state associated with atherosclerosis and autoimmunity. Med Hypotheses 2016; 94: 103-7.
[http://dx.doi.org/10.1016/j.mehy.2016.07.007] [PMID: 27515213]
[67]
Goldenberg MM. Multiple sclerosis review. P&T 2012; 37(3): 175-84.
[PMID: 22605909]
[68]
Liu Z, Zhou T, Ziegler AC, Dimitrion P, Zuo L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxid Med Cell Longev 2017; 2017: 2525967.
[http://dx.doi.org/10.1155/2017/2525967] [PMID: 28785371]
[69]
Babri S, Mehrvash F, Mohaddes G, Hatami H, Mirzaie F. Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats. Adv Pharm Bull 2015; 5(1): 83-7.
[http://dx.doi.org/10.5681/apb.2015.011] [PMID: 25789223]
[70]
Rolf L, Muris AH, Hupperts R, Damoiseaux J. Illuminating vitamin D effects on B cells-the multiple sclerosis perspective. Immunology 2016; 147(3): 275-84.
[http://dx.doi.org/10.1111/imm.12572] [PMID: 26714674]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy