Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models

Author(s): Sergio Terracina, Giampiero Ferraguti, Luigi Tarani, Marisa Patrizia Messina, Marco Lucarelli, Mario Vitali, Simone De Persis, Antonio Greco, Antonio Minni, Antonella Polimeni, Mauro Ceccanti, Carla Petrella and Marco Fiore*

Volume 20, Issue 6, 2022

Published on: 11 April, 2022

Page: [1158 - 1173] Pages: 16

DOI: 10.2174/1570159X19666211101111430

Price: $65

Abstract

Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.

Keywords: Neurotrophins, brain, fetal alcohol spectrum disorders, fetal alcohol syndrome, epigenetics, paternal preconceptual alcohol consumption, transgenerational changes.

Graphical Abstract
[1]
Baigent, M. Managing patients with dual diagnosis in psychiatric practice. Curr. Opin. Psychiatry, 2012, 25(3), 201-205.
[http://dx.doi.org/10.1097/YCO.0b013e3283523d3d] [PMID: 22449766]
[2]
Schottenbauer, M.A.; Hommer, D.; Weingartner, H. Memory deficits among alcoholics: performance on a selective reminding task. Neuropsychol. Dev. Cogn. B. Aging Neuropsychol. Cogn., 2007, 14(5), 505-516.
[http://dx.doi.org/10.1080/13825580600681305] [PMID: 17828626]
[3]
Coleman, L.G., Jr; He, J.; Lee, J.; Styner, M.; Crews, F.T. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol. Clin. Exp. Res., 2011, 35(4), 671-688.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01385.x] [PMID: 21223304]
[4]
Crews, F.T.; Vetreno, R.P. Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology (Berl.), 2016, 233(9), 1543-1557.
[http://dx.doi.org/10.1007/s00213-015-3906-1] [PMID: 25787746]
[5]
Ernst, M.; Luckenbaugh, D.A.; Moolchan, E.T.; Leff, M.K.; Allen, R.; Eshel, N.; London, E.D.; Kimes, A. Behavioral predictors of substance-use initiation in adolescents with and without attention-deficit/hyperactivity disorder. Pediatrics, 2006, 117(6), 2030-2039.
[http://dx.doi.org/10.1542/peds.2005-0704] [PMID: 16740845]
[6]
Coriale, G.; Battagliese, G.; Pisciotta, F.; Attilia, M.L.; Porrari, R.; De Rosa, F.; Vitali, M.; Carito, V.; Messina, M.P.; Greco, A.; Fiore, M.; Ceccanti, M. Behavioral responses in people affected by alcohol use disorder and psychiatric comorbidity: correlations with addiction severity. Ann. Ist. Super. Sanita, 2019, 55(2), 131-142.
[http://dx.doi.org/10.4415/ANN_19_02_05.31264636] [PMID: 31264636]
[7]
Ceci, F.M.; Ceccanti, M.; Petrella, C.; Vitali, M.; Messina, M.P.; Chaldakov, G.N.; Greco, A.; Ralli, M.; Lucarelli, M.; Angeloni, A.; Fiore, M.; Ferraguti, G. Alcohol drinking, apolipoprotein polymorphisms and the risk of cardiovascular diseases. Curr. Neurovasc. Res., 2021, 18(1), 150-161.
[http://dx.doi.org/10.2174/1567202618666210406123503] [PMID: 33823779]
[8]
Ceccanti, M.; Hamilton, D.; Coriale, G.; Carito, V.; Aloe, L.; Chaldakov, G.; Romeo, M.; Ceccanti, M.; Iannitelli, A.; Fiore, M. Spatial learning in men undergoing alcohol detoxification. Physiol. Behav., 2015, 149, 324-330.
[http://dx.doi.org/10.1016/j.physbeh.2015.06.034] [PMID: 26143187]
[9]
Ceccanti, M.; Coriale, G.; Hamilton, D.A.; Carito, V.; Coccurello, R.; Scalese, B.; Ciafrè, S.; Codazzo, C.; Messina, M.P.; Chaldakov, G.N.; Fiore, M. Virtual Morris task responses in individuals in an abstinence phase from alcohol. Can. J. Physiol. Pharmacol., 2018, 96(2), 128-136.
[http://dx.doi.org/10.1139/cjpp-2017-0013] [PMID: 28763626]
[10]
Ceccanti, M.; Iannitelli, A.; Fiore, M. Italian Guidelines for the treatment of alcohol dependence. Riv. Psichiatr., 2018, 53(3), 105-106.
[http://dx.doi.org/10.1708/2925.29410.29912210] [PMID: 29912210]
[11]
Ernst, C.; Deleva, V.; Deng, X.; Sequeira, A.; Pomarenski, A.; Klempan, T.; Ernst, N.; Quirion, R.; Gratton, A.; Szyf, M.; Turecki, G. Alternative splicing, methylation state, and expression profile of tropomyosin-related kinase B in the frontal cortex of suicide completers. Arch. Gen. Psychiatry, 2009, 66(1), 22-32.
[http://dx.doi.org/10.1001/archpsyc.66.1.22] [PMID: 19124685]
[12]
Kleiber, M.L.; Laufer, B.I.; Stringer, R.L.; Singh, S.M. Third trimester-equivalent ethanol exposure is characterized by an acute cellular stress response and an ontogenetic disruption of genes critical for synaptic establishment and function in mice. Dev. Neurosci., 2014, 36(6), 499-519.
[http://dx.doi.org/10.1159/000365549] [PMID: 25278313]
[13]
Laufer, B.I.; Mantha, K.; Kleiber, M.L.; Diehl, E.J.; Addison, S.M.F.; Singh, S.M. Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice. Dis. Model. Mech., 2013, 6(4), 977-992.
[http://dx.doi.org/10.1242/dmm.010975] [PMID: 23580197]
[14]
Lussier, A.A.; Bodnar, T.S.; Mingay, M.; Morin, A.M.; Hirst, M.; Kobor, M.S.; Weinberg, J. Prenatal alcohol exposure: Profiling developmental DNA methylation patterns in central and peripheral tissues. Front. Genet., 2018, 9, 610.
[http://dx.doi.org/10.3389/fgene.2018.00610] [PMID: 30568673]
[15]
Resendiz, M.; Mason, S.; Lo, C-L.; Zhou, F.C. Epigenetic regulation of the neural transcriptome and alcohol interference during development. Front. Genet., 2014, 5, 285.
[http://dx.doi.org/10.3389/fgene.2014.00285] [PMID: 25206361]
[16]
Ciafrè, S.; Ferraguti, G.; Greco, A.; Polimeni, A.; Ralli, M.; Ceci, F.M.; Ceccanti, M.; Fiore, M. Alcohol as an early life stressor: Epigenetics, metabolic, neuroendocrine and neurobehavioral implications. Neurosci. Biobehav. Rev., 2020, 118, 654-668.
[http://dx.doi.org/10.1016/j.neubiorev.2020.08.018] [PMID: 32976915]
[17]
Ciafrè, S.; Carito, V.; Tirassa, P.; Ferraguti, G.; Attilia, M.L.; Ciolli, P.; Messina, M.P.; Ceccanti, M.; Fiore, M. Ethanol consumption and innate neuroimmunity. Biomed. Rev., 2017, 28, 49-61.
[http://dx.doi.org/10.14748/bmr.v28.4451]
[18]
Ciafrè, S.; Carito, V.; Ferraguti, G.; Greco, A.; Chaldakov, G.N.; Fiore, M.; Ceccanti, M.; Ciafrè, S.; Carito, V.; Ferraguti, G. How alcohol drinking affects our genes: an epigenetic point of view. Biochem. Cell Biol., 2019, 97(4), 345-356.
[http://dx.doi.org/10.1139/bcb-2018-0248] [PMID: 30412425]
[19]
D’Angelo, A.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Vitali, M. Framarino dei Malatesta, M.; Fiore, M.; Ceccanti, M.; Messina, M. P. Challenges for midwives’ healthcare practice in the next decade: COVID-19 - global climate changes - aging and pregnancy - gestational alcohol abuse. Clin. Ter., 2021, 172(1), 30-36.
[http://dx.doi.org/10.7417/CT.2021.2277 ] [PMID: 33346323]
[20]
Glass, L.; Ware, A.L.; Mattson, S.N. Neurobehavioral, neurologic, and neuroimaging characteristics of fetal alcohol spectrum disorders. Handb. Clin. Neurol., 2014, 125, 435-462.
[http://dx.doi.org/10.1016/B978-0-444-62619-6.00025-2] [PMID: 25307589]
[21]
Tunc-Ozcan, E.; Sittig, L.J.; Harper, K.M.; Graf, E.N.; Redei, E.E. Hypothesis: genetic and epigenetic risk factors interact to modulate vulnerability and resilience to FASD. Front. Genet., 2014, 5(AUG), 261.
[http://dx.doi.org/10.3389/fgene.2014.00261] [PMID: 25140173]
[22]
Nash, K.; Rovet, J.; Greenbaum, R.; Fantus, E.; Nulman, I.; Koren, G. Identifying the behavioural phenotype in Fetal Alcohol Spectrum Disorder: sensitivity, specificity and screening potential. Arch. Women Ment. Health, 2006, 9(4), 181-186.
[http://dx.doi.org/10.1007/s00737-006-0130-3] [PMID: 16673042]
[23]
Messina, M.P.; D’Angelo, A.; Battagliese, G.; Coriale, G.; Tarani, L.; Pichini, S.; Rasio, D.; Parlapiano, G.; Fiore, M.; Petrella, C.; Vitali, M.; Ferraguti, G.; Ceccanti, M. Fetal alcohol spectrum disorders awareness in health professionals: implications for psychiatry. Riv. Psichiatr., 2020, 55(2), 79-89.
[http://dx.doi.org/10.1708/3333.33022.32202545] [PMID: 32202545]
[24]
Coriale, G.; Fiorentino, D.; Di Lauro, F.; Marchitelli, R.; Scalese, B.; Fiore, M.; Maviglia, M.; Ceccanti, M. Fetal Alcohol Spectrum Disorder (FASD): neurobehavioral profile, indications for diagnosis and treatment. Riv. Psichiatr., 2013, 48(5), 359-369.
[http://dx.doi.org/10.1708/1356.15062] [PMID: 24326748]
[25]
Kodituwakku, P.; Coriale, G.; Fiorentino, D.; Aragón, A.S.; Kalberg, W.O.; Buckley, D.; Gossage, J.P.; Ceccanti, M.; May, P.A. Neurobehavioral characteristics of children with fetal alcohol spectrum disorders in communities from Italy: Preliminary results. Alcohol. Clin. Exp. Res., 2006, 30(9), 1551-1561.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00187.x] [PMID: 16930218]
[26]
Carito, V.; Ceccanti, M.; Ferraguti, G.; Coccurello, R.; Ciafrè, S.; Tirassa, P.; Fiore, M. NGF and BDNF alterations by prenatal alcohol exposure. Curr. Neuropharmacol., 2019, 17(4), 308-317.
[http://dx.doi.org/10.2174/1570159X15666170825101308] [PMID: 28847297]
[27]
Popova, S.; Lange, S.; Probst, C.; Gmel, G.; Rehm, J. Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: a systematic review and meta-analysis. Lancet Glob. Health, 2017, 5(3), e290-e299.
[http://dx.doi.org/10.1016/S2214-109X(17)30021-9] [PMID: 28089487]
[28]
Weinberg, N.Z. Cognitive and behavioral deficits associated with parental alcohol use. J. Am. Acad. Child Adolesc. Psychiatry, 1997, 36(9), 1177-1186.
[http://dx.doi.org/10.1097/00004583-199709000-00009] [PMID: 9291718]
[29]
Hoyme, H.E.; Kalberg, W.O.; Elliott, A.J.; Blankenship, J.; Buckley, D.; Marais, A-S.; Manning, M.A.; Robinson, L.K.; Adam, M.P.; Abdul-Rahman, O.; Jewett, T.; Coles, C.D.; Chambers, C.; Jones, K.L.; Adnams, C.M.; Shah, P.E.; Riley, E.P.; Charness, M.E.; Warren, K.R.; May, P.A. Updated clinical guidelines for diagnosing fetal alcohol spectrum disorders. Pediatrics, 2016, 138(2), e20154256-e20154256.
[http://dx.doi.org/10.1542/peds.2015-4256] [PMID: 27464676]
[30]
Ferraguti, G.; Ciolli, P.; Carito, V.; Battagliese, G.; Mancinelli, R.; Ciafrè, S.; Tirassa, P.; Ciccarelli, R.; Cipriani, A.; Messina, M.P.; Fiore, M.; Ceccanti, M. Ethylglucuronide in the urine as a marker of alcohol consumption during pregnancy: Comparison with four alcohol screening questionnaires. Toxicol. Lett., 2017, 275, 49-56.
[http://dx.doi.org/10.1016/j.toxlet.2017.04.016] [PMID: 28455000]
[31]
Aragón, A.S.; Coriale, G.; Fiorentino, D.; Kalberg, W.O.; Buckley, D.; Gossage, J.P.; Ceccanti, M.; Mitchell, E.R.; May, P.A. Neuropsychological characteristics of Italian children with fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res., 2008, 32(11), 1909-1919.
[http://dx.doi.org/10.1111/j.1530-0277.2008.00775.x] [PMID: 18715277]
[32]
Fiorentino, D.; Coriale, G.; Spagnolo, P.A.; Prastaro, A.; Attilia, M.L.; Mancinelli, R.; Ceccanti, M. Fetal alcohol syndrome disorders: Experience on the field. The lazio study preliminary report. Ann. Ist. Super. Sanita, 2006, 42(1), 52-57.
[PMID: 16801726]
[33]
Ferraguti, G.; Merlino, L.; Battagliese, G.; Piccioni, M.G.; Barbaro, G.; Carito, V.; Messina, M.P.; Scalese, B.; Coriale, G.; Fiore, M.; Ceccanti, M. Fetus morphology changes by second-trimester ultrasound in pregnant women drinking alcohol. Addict. Biol., 2020, 25(3)e12724
[http://dx.doi.org/10.1111/adb.12724] [PMID: 30811093]
[34]
May, P.A.; Fiorentino, D.; Phillip Gossage, J.; Kalberg, W.O.; Eugene Hoyme, H.; Robinson, L.K.; Coriale, G.; Jones, K.L.; del Campo, M.; Tarani, L.; Romeo, M.; Kodituwakku, P.W.; Deiana, L.; Buckley, D.; Ceccanti, M. Epidemiology of FASD in a province in Italy: Prevalence and characteristics of children in a random sample of schools. Alcohol. Clin. Exp. Res., 2006, 30(9), 1562-1575.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00188.x] [PMID: 16930219]
[35]
Cook, J.L.; Green, C.R.; Lilley, C.M.; Anderson, S.M.; Baldwin, M.E.; Chudley, A.E.; Conry, J.L.; LeBlanc, N.; Loock, C.A.; Lutke, J.; Mallon, B.F.; McFarlane, A.A.; Temple, V.K.; Rosales, T. Fetal alcohol spectrum disorder: a guideline for diagnosis across the lifespan. CMAJ, 2016, 188(3), 191-197.
[http://dx.doi.org/10.1503/cmaj.141593] [PMID: 26668194]
[36]
Thanh, N.X.; Jonsson, E. Life expectancy of people with fetal alcohol syndrome. J. Popul. Ther. Clin. Pharmacol., 2016, 23(1), 53-59.
[PMID: 26962962]
[37]
Finegersh, A.; Rompala, G.R.; Martin, D.I.; Homanics, G.E. Drinking beyond a lifetime: New and emerging insights into paternal alcohol exposure on subsequent generations. Alcohol, 2015, 49(5), 461-470.
[http://dx.doi.org/10.1016/j.alcohol.2015.02.008] [PMID: 25887183]
[38]
Prescott, C.A.; Kendler, K.S. Genetic and environmental contributions to alcohol abuse and dependence in a population-based sample of male twins. Am. J. Psychiatry, 1999, 156(1), 34-40.
[http://dx.doi.org/10.1176/ajp.156.1.34] [PMID: 9892295]
[39]
Young-Wolff, K.C.; Enoch, M.A.; Prescott, C.A. The influence of gene-environment interactions on alcohol consumption and alcohol use disorders: a comprehensive review. Clin. Psychol. Rev., 2011, 31(5), 800-816.
[http://dx.doi.org/10.1016/j.cpr.2011.03.005] [PMID: 21530476]
[40]
Ystrom, E.; Reichborn-Kjennerud, T.; Aggen, S.H.; Kendler, K.S. Alcohol dependence in men: reliability and heritability. Alcohol. Clin. Exp. Res., 2011, 35(9), 1716-1722.
[http://dx.doi.org/10.1111/j.1530-0277.2011.01518.x] [PMID: 21676009]
[41]
Popova, S.; Lange, S.; Shield, K.; Burd, L.; Rehm, J. Prevalence of fetal alcohol spectrum disorder among special subpopulations: a systematic review and meta-analysis. Addiction, 2019, 114(7), 1150-1172.
[http://dx.doi.org/10.1111/add.14598] [PMID: 30831001]
[42]
Wilhoit, L.F.; Scott, D.A.; Simecka, B.A. Fetal alcohol spectrum disorders: Characteristics, complications, and treatment. Community Ment. Health J., 2017, 53(6), 711-718.
[http://dx.doi.org/10.1007/s10597-017-0104-0] [PMID: 28168434]
[43]
Gupta, K.K.; Gupta, V.K.; Shirasaka, T. An update on fetal alcohol syndrome-pathogenesis, risks, and treatment. Alcohol. Clin. Exp. Res., 2016, 40(8), 1594-1602.
[http://dx.doi.org/10.1111/acer.13135] [PMID: 27375266]
[44]
Sittig, L.J.; Shukla, P.K.; Herzing, L.B.K.; Redei, E.E. Strain-specific vulnerability to alcohol exposure in utero via hippocampal parent-of-origin expression of deiodinase-III. FASEB J., 2011, 25(7), 2313-2324.
[http://dx.doi.org/10.1096/fj.10-179234] [PMID: 21429942]
[45]
Ledda, R.; Battagliese, G.; Attilia, F.; Rotondo, C.; Pisciotta, F.; Gencarelli, S.; Greco, A.; Fiore, M.; Ceccanti, M.; Attilia, M.L.M.L. Drop-out, relapse and abstinence in a cohort of alcoholic people under detoxification. Physiol. Behav., 2019, 198, 67-75.
[http://dx.doi.org/10.1016/j.physbeh.2018.10.009] [PMID: 30336230]
[46]
Rando, O.J.; Simmons, R.A. I’m eating for two: parental dietary effects on offspring metabolism. Cell, 2015, 161(1), 93-105.
[http://dx.doi.org/10.1016/j.cell.2015.02.021] [PMID: 25815988]
[47]
Bedi, Y.; Chang, R.C.; Gibbs, R.; Clement, T.M.; Golding, M.C. Alterations in sperm-inherited noncoding RNAs associate with late-term fetal growth restriction induced by preconception paternal alcohol use. Reprod. Toxicol., 2019, 87(87), 11-20.
[http://dx.doi.org/10.1016/j.reprotox.2019.04.006] [PMID: 31051257]
[48]
Abel, E. Paternal contribution to fetal alcohol syndrome. Addict. Biol., 2004, 9(2), 127-133.
[http://dx.doi.org/10.1080/13556210410001716980] [PMID: 15223537]
[49]
Sarkar, D.K. Male germline transmits fetal alcohol epigenetic marks for multiple generations: a review. Addict. Biol., 2016, 21(1), 23-34.
[http://dx.doi.org/10.1111/adb.12186] [PMID: 25581210]
[50]
Rompala, G.R.; Homanics, G.E. Intergenerational effects of alcohol: A review of paternal preconception ethanol exposure studies and epigenetic mechanisms in the male germline. Alcohol. Clin. Exp. Res., 2019, 43(6), 1032-1045.
[http://dx.doi.org/10.1111/acer.14029] [PMID: 30908630]
[51]
Schardt, C.; Adams, M.B.; Owens, T.; Keitz, S.; Fontelo, P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak., 2007, 7, 16.
[http://dx.doi.org/10.1186/1472-6947-7-16] [PMID: 17573961]
[52]
Bilotta, F.; Terracina, S.; Lamperti, M. NIRS - evidence- or eminence- based practice? Anaesthesia. Blackwell Publishing Ltd, 2018. (July), 912-913.
[http://dx.doi.org/10.1111/anae.14338.29890002]
[53]
Lemoine, P.; Harousseau, H.; Borteyru, J.P.; Menuet, J.C. Children of alcoholic parents observed anomalies: Discussion of 127 cases. Ouest Med. Ther. Drug Monit., 1968. (April), 476-482.
[54]
Abel, E.L. Alcohol consumption does not affect fathers but does affect their offspring in the forced swimming test. Pharmacol. Toxicol., 1991, 68(1), 68-69.
[http://dx.doi.org/10.1111/j.1600-0773.1991.tb01211.x] [PMID: 2008415]
[55]
Knezovich, J.G.; Ramsay, M. The effect of preconception paternal alcohol exposure on epigenetic remodeling of the h19 and RASGRF1 imprinting control regions in mouse offspring. Front. Genet., 2012, 3, 10.
[http://dx.doi.org/10.3389/fgene.2012.00010] [PMID: 22371710]
[56]
Lee, H.J.; Ryu, J.S.; Choi, N.Y.; Park, Y.S.; Kim, Y. Transgenerational effects of paternal alcohol exposure in mouse offspring. Animal Cells Syst. (Seoul), 2013, 17(6), 429-434.
[http://dx.doi.org/10.1080/19768354.2013.865675]
[57]
Abel, E.L. Paternal and maternal alcohol consumption: effects on offspring in two strains of rats. Alcohol. Clin. Exp. Res., 1989, 13(4), 533-541.
[http://dx.doi.org/10.1111/j.1530-0277.1989.tb00373.x] [PMID: 2679211]
[58]
Chang, R.C.; Skiles, W.M.; Chronister, S.S.; Wang, H.; Sutton, G.I.; Bedi, Y.S.; Snyder, M.; Long, C.R.; Golding, M.C. DNA methylation-independent growth restriction and altered developmental programming in a mouse model of preconception male alcohol exposure. Epigenetics, 2017, 12(10), 841-853.
[http://dx.doi.org/10.1080/15592294.2017.1363952] [PMID: 28816587]
[59]
Bhatia, S.; Drake, D.M.; Miller, L.; Wells, P.G. Oxidative stress and DNA damage in the mechanism of fetal alcohol spectrum disorders. Birth Defects Res., 2019, 111(12), 714-748.
[http://dx.doi.org/10.1002/bdr2.1509] [PMID: 31033255]
[60]
Brocardo, P.S.; Gil-Mohapel, J.; Christie, B.R. The role of oxidative stress in fetal alcohol spectrum disorders. Brain Res. Brain Res. Rev., 2011, 67(1-2), 209-225.
[http://dx.doi.org/10.1016/j.brainresrev.2011.02.001] [PMID: 21315761]
[61]
Miller-Pinsler, L.; Wells, P.G. Deficient DNA repair exacerbates ethanol-initiated DNA oxidation and embryopathies in OGG1 knockout mice: gender risk and protection by a free radical spin trapping agent. Arch. Toxicol., 2016, 90(2), 415-425.
[http://dx.doi.org/10.1007/s00204-014-1397-1] [PMID: 25354798]
[62]
Halliwell, B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol., 2006, 141(2), 312-322.
[http://dx.doi.org/10.1104/pp.106.077073] [PMID: 16760481]
[63]
Harwell, B. Biochemistry of oxidative stress. In: Biochemical Society Transactions. Biochem. Soc. Trans., 2007, 35, 1147-1150.
[http://dx.doi.org/10.1042/BST0351147]
[64]
Chu, J.; Tong, M.; de la Monte, S.M. Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol., 2007, 113(6), 659-673.
[http://dx.doi.org/10.1007/s00401-007-0199-4] [PMID: 17431646]
[65]
Wells, P.G.; Bhatia, S.; Drake, D.M.; Miller-Pinsler, L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Res. C Embryo Today, 2016, 108(2), 108-130.
[http://dx.doi.org/10.1002/bdrc.21134] [PMID: 27345013]
[66]
Sokoloff, L. Energetics of functional activation in neural tissues. Neurochem. Res., 1999, 24(2), 321-329.
[http://dx.doi.org/10.1023/A:1022534709672] [PMID: 9972882]
[67]
Gerlach, M.; Ben-Shachar, D.; Riederer, P.; Youdim, M.B.H. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem., 1994, 793-807.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63030793.x] [PMID: 7519659]
[68]
Bergamini, C.M.; Gambetti, S.; Dondi, A.; Cervellati, C. Oxygen, reactive oxygen species and tissue damage. Curr. Pharm. Des., 2004, 10(14), 1611-1626.
[http://dx.doi.org/10.2174/1381612043384664] [PMID: 15134560]
[69]
Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol., 1992, 32(S1)(Suppl.), S22-S27.
[http://dx.doi.org/10.1002/ana.410320706] [PMID: 1510377]
[70]
Miller, L.; Shapiro, A.M.; Wells, P.G. Embryonic catalase protects against ethanol-initiated DNA oxidation and teratogenesis in acatalasemic and transgenic human catalase-expressing mice. Toxicol. Sci., 2013, 134(2), 400-411.
[http://dx.doi.org/10.1093/toxsci/kft122] [PMID: 23733920]
[71]
Dong, J.; Sulik, K.K.; Chen, S.Y. The role of NOX enzymes in ethanol-induced oxidative stress and apoptosis in mouse embryos. Toxicol. Lett., 2010, 193(1), 94-100.
[http://dx.doi.org/10.1016/j.toxlet.2009.12.012] [PMID: 20026259]
[72]
Hill, A.J.; Drever, N.; Yin, H.; Tamayo, E.; Saade, G.; Bytautiene, E. The role of NADPH oxidase in a mouse model of fetal alcohol syndrome. Am. J. Obstet. Gynecol., 2014, 210(5), 466.e1-466.e5.
[http://dx.doi.org/10.1016/j.ajog.2013.12.019] [PMID: 24334207]
[73]
Miller-Pinsler, L.; Sharma, A.; Wells, P.G. Enhanced NADPH oxidases and reactive oxygen species in the mechanism of methanol-initiated protein oxidation and embryopathies in vivo and in embryo culture. Arch. Toxicol., 2016, 90(3), 717-730.
[http://dx.doi.org/10.1007/s00204-015-1482-0] [PMID: 25726414]
[74]
Heaton, M.B.; Madorsky, I.; Paiva, M.; Siler-Marsiglio, K.I.; Vitamin, E. Vitamin E amelioration of ethanol neurotoxicity involves modulation of apoptotis-related protein levels in neonatal rat cerebellar granule cells. Brain Res. Dev. Brain Res., 2004, 150(2), 117-124.
[http://dx.doi.org/10.1016/j.devbrainres.2004.03.010] [PMID: 15158075]
[75]
Shirpoor, A.; Salami, S.; Khadem-Ansari, M.H.; Minassian, S.; Yegiazarian, M. Protective effect of vitamin E against ethanol-induced hyperhomocysteinemia, DNA damage, and atrophy in the developing male rat brain. Alcohol. Clin. Exp. Res., 2009, 33(7), 1181-1186.
[http://dx.doi.org/10.1111/j.1530-0277.2009.00941.x] [PMID: 19389196]
[76]
Marino, M.D.; Aksenov, M.Y.; Kelly, S.J.; Vitamin, E. Vitamin E protects against alcohol-induced cell loss and oxidative stress in the neonatal rat hippocampus. Int. J. Dev. Neurosci., 2004, 22(5-6), 363-377.
[http://dx.doi.org/10.1016/j.ijdevneu.2004.04.005] [PMID: 15380836]
[77]
Wentzel, P.; Rydberg, U.; Eriksson, U.J. Antioxidative treatment diminishes ethanol-induced congenital malformations in the rat. Alcohol. Clin. Exp. Res., 2006, 30(10), 1752-1760.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00208.x] [PMID: 17010142]
[78]
Cano, M.J.; Ayala, A.; Murillo, M.L.; Carreras, O. Protective effect of folic acid against oxidative stress produced in 21-day postpartum rats by maternal-ethanol chronic consumption during pregnancy and lactation period. Free Radic. Res., 2001, 34(1), 1-8.
[http://dx.doi.org/10.1080/10715760100300011] [PMID: 11234991]
[79]
Chen, S.Y.; Dehart, D.B.; Sulik, K.K. Protection from ethanol-induced limb malformations by the superoxide dismutase/catalase mimetic, EUK-134. FASEB J., 2004, 18(11), 1234-1236.
[http://dx.doi.org/10.1096/fj.03-0850fje] [PMID: 15208273]
[80]
Lee, S.R.; Kim, M.R.; Yon, J.M.; Baek, I.J.; Park, C.G.; Lee, B.J.; Yun, Y.W.; Nam, S.Y. Black ginseng inhibits ethanol-induced teratogenesis in cultured mouse embryos through its effects on antioxidant activity. Toxicol. In Vitro, 2009, 23(1), 47-52.
[http://dx.doi.org/10.1016/j.tiv.2008.10.001] [PMID: 18992320]
[81]
Mitchell, J.J.; Paiva, M.; Heaton, M.B. The antioxidants vitamin E and β-carotene protect against ethanol-induced neurotoxicity in embryonic rat hippocampal cultures. Alcohol, 1999, 17(2), 163-168.
[http://dx.doi.org/10.1016/S0741-8329(98)00051-2] [PMID: 10064385]
[82]
Peng, Y.; Kwok, K.H.H.; Yang, P.H.; Ng, S.S.M.; Liu, J.; Wong, O.G.; He, M.L.; Kung, H.F.; Lin, M.C.M. Ascorbic acid inhibits ROS production, NF-kappa B activation and prevents ethanol-induced growth retardation and microencephaly. Neuropharmacology, 2005, 48(3), 426-434.
[http://dx.doi.org/10.1016/j.neuropharm.2004.10.018] [PMID: 15721175]
[83]
Siler-Marsiglio, K.I.; Shaw, G.; Heaton, M.B. Pycnogenol and vitamin E inhibit ethanol-induced apoptosis in rat cerebellar granule cells. J. Neurobiol., 2004, 59(3), 261-271.
[http://dx.doi.org/10.1002/neu.10311] [PMID: 15146544]
[84]
Miller, L.; Shapiro, A.M.; Cheng, J.; Wells, P.G. The free radical spin trapping agent phenylbutylnitrone reduces fetal brain DNA oxidation and postnatal cognitive deficits caused by in utero exposure to a non-structurally teratogenic dose of ethanol: a role for oxidative stress. Free Radic. Biol. Med., 2013, 60, 223-232.
[http://dx.doi.org/10.1016/j.freeradbiomed.2013.02.015] [PMID: 23485582]
[85]
Miller-Pinsler, L.; Wells, P.G. Embryonic catalase protects against ethanol embryopathies in acatalasemic mice and transgenic human catalase-expressing mice in embryo culture. Toxicol. Appl. Pharmacol., 2015, 287(3), 232-239.
[http://dx.doi.org/10.1016/j.taap.2015.06.007] [PMID: 26074427]
[86]
Carito, V.; Venditti, A.; Bianco, A.; Ceccanti, M.; Serrilli, A.M.; Chaldakov, G.; Tarani, L.; De Nicolò, S.; Fiore, M. Effects of olive leaf polyphenols on male mouse brain NGF, BDNF and their receptors TrkA, TrkB and p75. Nat. Prod. Res., 2014, 28(22), 1970-1984.
[http://dx.doi.org/10.1080/14786419.2014.918977] [PMID: 24865115]
[87]
Carito, V.; Ceccanti, M.; Tarani, L.; Ferraguti, G.; Chaldakov, G.N.; Fiore, M. Neurotrophins’ modulation by olive polyphenols. Curr. Med. Chem., 2016, 23(28), 3189-3197.
[http://dx.doi.org/10.2174/0929867323666160627104022] [PMID: 27356540]
[88]
Petrella, C.; Carito, V.; Carere, C.; Ferraguti, G.; Ciafrè, S.; Natella, F.; Bello, C.; Greco, A.; Ralli, M.; Mancinelli, R.; Messina, M.P.; Fiore, M.; Ceccanti, M. Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition, 2020, 79-80110783
[http://dx.doi.org/10.1016/j.nut.2020.110783] [PMID: 32569950]
[89]
Carito, V.; Ceccanti, M.; Cestari, V.; Natella, F.; Bello, C.; Coccurello, R.; Mancinelli, R.; Fiore, M. Olive polyphenol effects in a mouse model of chronic ethanol addiction. Nutrition, 2017, 33, 65-69.
[http://dx.doi.org/10.1016/j.nut.2016.08.014] [PMID: 27908553]
[90]
Ceccanti, M.; Valentina, C.; Vitali, M.; Iannuzzi, S.; Tarani, L.; De Nicolo, S.; Ceccanti, M.M.; Ciafre, S.; Tirassa, P.; Capriglione, I. Serum BDNF and NGF modulation by olive polyphenols in alcoholics during withdrawal. J. Alcohol. Drug Depend., 2015, 03(04)
[http://dx.doi.org/10.4172/2329-6488.1000214]
[91]
Chianese, R.; Coccurello, R.; Viggiano, A.; Scafuro, M.; Fiore, M.; Coppola, G.; Operto, F.F.; Fasano, S.; Laye, S.; Pierantoni, R.; Meccariello, R. Impact of dietary fats on brain functions. Curr. Neuropharmacol., 2018, 16(7), 1059-1085.
[http://dx.doi.org/10.2174/1570159X15666171017102547] [PMID: 29046155]
[92]
Fiore, M.; Messina, M.P.; Petrella, C.; D’Angelo, A.; Greco, A.; Ralli, M.; Ferraguti, G.; Tarani, L.; Vitali, M.; Ceccanti, M. Antioxidant properties of plant polyphenols in the counteraction of alcohol-abuse induced damage: Impact on the mediterranean diet. J. Funct. Foods, 2020, 71104012
[http://dx.doi.org/10.1016/j.jff.2020.104012]
[93]
Ceccanti, M.; De Nicolò, S.; Mancinelli, R.; Chaldakov, G.; Carito, V.; Ceccanti, M.; Laviola, G.; Tirassa, P.; Fiore, M. NGF and BDNF long-term variations in the thyroid, testis and adrenal glands of a mouse model of fetal alcohol spectrum disorders. Ann. Ist. Super. Sanita, 2013, 49(4), 383-390.
[http://dx.doi.org/10.4415/ANN-13-04-11.24334784] [PMID: 24334784]
[94]
Solfrizzi, V.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Santamato, A.; Ranieri, M.; Fiore, P.; Capurso, A.; Panza, F. Lifestyle-related factors in predementia and dementia syndromes. Expert Rev. Neurother., 2008, 8(1), 133-158.
[http://dx.doi.org/10.1586/14737175.8.1.133] [PMID: 18088206]
[95]
De Nicolò, S.; Carito, V.; Fiore, M.; Laviola, G. Aberrant behavioral and neurobiologic profiles in rodents exposed to ethanol or red wine early in development. Curr. Dev. Disord. Rep., 2014, 1(3), 173-180.
[http://dx.doi.org/10.1007/s40474-014-0023-5]
[96]
Fiore, M.; Mancinelli, R.; Aloe, L.; Laviola, G.; Sornelli, F.; Vitali, M.; Ceccanti, M. Hepatocyte growth factor, vascular endothelial growth factor, glial cell-derived neurotrophic factor and nerve growth factor are differentially affected by early chronic ethanol or red wine intake. Toxicol. Lett., 2009, 188(3), 208-213.
[http://dx.doi.org/10.1016/j.toxlet.2009.04.013] [PMID: 19397965]
[97]
Ceccanti, M.; Mancinelli, R.; Tirassa, P.; Laviola, G.; Rossi, S.; Romeo, M.; Fiore, M. Early exposure to ethanol or red wine and long-lasting effects in aged mice. A study on nerve growth factor, brain-derived neurotrophic factor, hepatocyte growth factor, and vascular endothelial growth factor. Neurobiol. Aging, 2012, 33(2), 359-367.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.03.005] [PMID: 20382450]
[98]
Fiore, M.; Laviola, G.; Aloe, L.; di Fausto, V.; Mancinelli, R.; Ceccanti, M. Early exposure to ethanol but not red wine at the same alcohol concentration induces behavioral and brain neurotrophin alterations in young and adult mice. Neurotoxicology, 2009, 30(1), 59-71.
[http://dx.doi.org/10.1016/j.neuro.2008.11.009] [PMID: 19100286]
[99]
Anderson, R.A., Jr; Willis, B.R.; Oswald, C.; Reddy, J.M.; Beyler, S.A.; Zaneveld, L.J.D. Hormonal imbalance and alterations in testicular morphology induced by chronic ingestion of ethanol. Biochem. Pharmacol., 1980, 29(10), 1409-1419.
[http://dx.doi.org/10.1016/0006-2952(80)90437-2] [PMID: 7190392]
[100]
Condorelli, R.A.; Calogero, A.E.; Vicari, E.; La Vignera, S. Chronic consumption of alcohol and sperm parameters: our experience and the main evidences. Andrologia, 2015, 47(4), 368-379.
[http://dx.doi.org/10.1111/and.12284] [PMID: 24766499]
[101]
Emanuele, N.V.; LaPaglia, N.; Benefield, J.; Emanuele, M.A. Ethanol-induced hypogonadism is not dependent on activation of the hypothalamic-pituitary-adrenal axis. Endocr. Res., 2001, 27(4), 465-472.
[http://dx.doi.org/10.1081/ERC-100107869] [PMID: 11794469]
[102]
Muthusami, K.R.; Chinnaswamy, P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil. Steril., 2005, 84(4), 919-924.
[http://dx.doi.org/10.1016/j.fertnstert.2005.04.025] [PMID: 16213844]
[103]
Emanuele, N.V.; LaPagli, N.; Steiner, J.; Colantoni, A.; Van Thiel, D.H.; Emanuele, M.A. Peripubertal paternal EtOH exposure. Endocrine, 2001, 14(2), 213-219.
[http://dx.doi.org/10.1385/ENDO:14:2:213] [PMID: 11394639]
[104]
Henriksen, T.B.; Hjollund, N.H.; Jensen, T.K.; Bonde, J.P.; Andersson, A.M.; Kolstad, H.; Ernst, E.; Giwercman, A.; Skakkebaek, N.E.; Olsen, J. Alcohol consumption at the time of conception and spontaneous abortion. Am. J. Epidemiol., 2004, 160(7), 661-667.
[http://dx.doi.org/10.1093/aje/kwh259] [PMID: 15383410]
[105]
Klonoff-Cohen, H.; Lam-Kruglick, P.; Gonzalez, C. Effects of maternal and paternal alcohol consumption on the success rates of in vitro fertilization and gamete intrafallopian transfer. Fertil. Steril., 2003, 79(2), 330-339.
[http://dx.doi.org/10.1016/S0015-0282(02)04582-X] [PMID: 12568842]
[106]
Aronson, H.; Gilbert, A. Preadolescent sons of male alcoholics. Arch. Gen. Psychiatry, 1963, 28, 238-243.
[107]
Bonassi, E.; Sperone Bona, P.; Trevisio, A. Paternal alcoholism as a risk factor in the psycho-affective development of the child. Minerva Pediatr., 1974, 26(36), 1801-1809.
[PMID: 4431395]
[108]
Ervin, C.S.; Little, R.E.; Streissguth, A.P.; Beck, D.E. Alcoholic fathering and its relation to child’s intellectual development: a pilot investigation. Alcohol. Clin. Exp. Res., 1984, 8(4), 362-365.
[http://dx.doi.org/10.1111/j.1530-0277.1984.tb05681.x] [PMID: 6385758]
[109]
Abel, E.L.; Lee, J.A. Paternal alcohol exposure affects offspring behavior but not body or organ weights in mice. Alcohol. Clin. Exp. Res., 1988, 12(3), 349-355.
[http://dx.doi.org/10.1111/j.1530-0277.1988.tb00205.x] [PMID: 3044161]
[110]
Tarter, R.E.; Hegedus, A.M.; Goldstein, G.; Shelly, C.; Alterman, A.I. Adolescent sons of alcoholics: neuropsychological and personality characteristics. Alcohol. Clin. Exp. Res., 1984, 8(2), 216-222.
[http://dx.doi.org/10.1111/j.1530-0277.1984.tb05842.x] [PMID: 6375434]
[111]
Gabrielli, W.F., Jr; Mednick, S.A. Intellectual performance in children of alcoholics. J. Nerv. Ment. Dis., 1983, 171(7), 444-447.
[http://dx.doi.org/10.1097/00005053-198307000-00009] [PMID: 6864203]
[112]
Hegedus, A.M.; Alterman, A.I.; Tarter, R.E. Learning achievement in sons of alcoholics. Alcohol. Clin. Exp. Res., 1984, 8(3), 330-333.
[http://dx.doi.org/10.1111/j.1530-0277.1984.tb05522.x] [PMID: 6377954]
[113]
Ledig, M.; Misslin, R.; Vogel, E.; Holownia, A.; Copin, J.C.; Tholey, G. Paternal alcohol exposure: developmental and behavioral effects on the offspring of rats. Neuropharmacology, 1998, 37(1), 57-66.
[http://dx.doi.org/10.1016/S0028-3908(97)00185-8] [PMID: 9680259]
[114]
Pihl, R.O.; Peterson, J.; Finn, P. Inherited predisposition to alcoholism: characteristics of sons of male alcoholics. J. Abnorm. Psychol., 1990, 99(3), 291-301.
[http://dx.doi.org/10.1037/0021-843X.99.3.291] [PMID: 2212280]
[115]
Hollander, J.; McNivens, M.; Pautassi, R.M.; Nizhnikov, M.E. Offspring of male rats exposed to binge alcohol exhibit heightened ethanol intake at infancy and alterations in T-maze performance. Alcohol, 2019, 76(203), 65-71.
[http://dx.doi.org/10.1016/j.alcohol.2018.07.013] [PMID: 30583252]
[116]
Rompala, G.R.; Finegersh, A.; Slater, M.; Homanics, G.E. Paternal preconception alcohol exposure imparts intergenerational alcohol-related behaviors to male offspring on a pure C57BL/6J background. Alcohol, 2017, 60, 169-177.
[http://dx.doi.org/10.1016/j.alcohol.2016.11.001] [PMID: 27876231]
[117]
Ferraguti, G.; Codazzo, C.; Petrella, C.; Coccurello, R.; Ceccanti, M.; Fiore, M. Brainstem expression of SLC6A4, HTR2C, NGF, BDNF, TRKANGF, TRKBBDNF and P75NTR following paternal alcohol exposure in the male mouse. Biomed. Rev., 2020, 31, 75-89.
[http://dx.doi.org/10.14748/bmr.v31.7707]
[118]
Martellucci, S.; Ralli, M.; Attanasio, G.; Russo, F.Y.; Marcelli, V.; Greco, A.; Gallo, A.; Fiore, M.; Petrella, C.; Ferraguti, G.; Ceccanti, M.; de Vincentiis, M. Alcohol binge-drinking damage on the vestibulo-oculomotor reflex. Eur. Arch. Otorhinolaryngol., 2021, 278(1), 41-48.
[http://dx.doi.org/10.1007/s00405-020-06052-1] [PMID: 32449024]
[119]
Schandler, S.L.; Thomas, C.S.; Cohen, M.J. Spatial learning deficits in preschool children of alcoholics. Alcohol. Clin. Exp. Res., 1995, 19(4), 1067-1072.
[http://dx.doi.org/10.1111/j.1530-0277.1995.tb00990.x] [PMID: 7485818]
[120]
Ozkaragoz, T.; Satz, P.; Noble, E.P. Neuropsychological functioning in sons of active alcoholic, recovering alcoholic, and social drinking fathers. Alcohol, 1997, 14(1), 31-37.
[http://dx.doi.org/10.1016/S0741-8329(96)00084-5] [PMID: 9014021]
[121]
Cservenka, A.; Fair, D.A.; Nagel, B.J. Emotional processing and brain activity in youth at high risk for alcoholism. Alcohol. Clin. Exp. Res., 2014, 38(7), 1912-1923.
[http://dx.doi.org/10.1111/acer.12435] [PMID: 24890898]
[122]
Rompala, G.R.; Finegersh, A.; Homanics, G.E. Paternal preconception ethanol exposure blunts hypothalamic-pituitary-adrenal axis responsivity and stress-induced excessive fluid intake in male mice. Alcohol, 2016, 53, 19-25.
[http://dx.doi.org/10.1016/j.alcohol.2016.03.006] [PMID: 27286933]
[123]
Finegersh, A.; Homanics, G.E. Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One, 2014, 9(6)e99078
[http://dx.doi.org/10.1371/journal.pone.0099078] [PMID: 24896617]
[124]
Aloe, L. Alcohol intake during prenatal life affects neuroimmune mediators and brain neurogenesis. Ann. Ist. Super. Sanita, 2006, 42(1), 17-21.
[125]
Ciafrè, S.; Ferraguti, G.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Greco, A.; Chaldakov, G.N.G.N.; Rosso, P.; Fico, E.; Messina, M.P.M.P.; Carito, V.; Tarani, L.; Ceccanti, M.; Fiore, M. Nerve growth factor in the psychiatric brain. Riv. Psichiatr., 2020, 55(1), 4-15.
[http://dx.doi.org/10.1708/3301.32713.32051620] [PMID: 32051620]
[126]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Tirassa, P.; Iannitelli, A.; Ralli, M.; Vitali, M.; Ceccanti, M.; Chaldakov, G.N.; Versacci, P.; Fiore, M. Nerve growth factor, stress and diseases. Curr. Med. Chem., 2021, 28(15), 2943-2959.
[http://dx.doi.org/10.2174/0929867327999200818111654] [PMID: 32811396]
[127]
D’Angelo, A.; Ceccanti, M.; Petrella, C.; Greco, A.; Tirassa, P.; Rosso, P.; Ralli, M.; Ferraguti, G.; Fiore, M.; Messina, M.P.M.P. Role of neurotrophins in pregnancy, delivery and postpartum. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 247, 32-41.
[http://dx.doi.org/10.1016/j.ejogrb.2020.01.046] [PMID: 32058187]
[128]
Ceci, F.M.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Iannitelli, A.; Carito, V.; Tirassa, P.; Chaldakov, G.N.; Messina, M.P.; Ceccanti, M.; Fiore, M. Nerve growth factor in alcohol use disorders. Curr. Neuropharmacol., 2021, 19(1), 45-60.
[http://dx.doi.org/10.2174/1570159X18666200429003239] [PMID: 32348226]
[129]
Ceccanti, M.; Coccurello, R.; Carito, V.; Ciafrè, S.; Ferraguti, G.; Giacovazzo, G.; Mancinelli, R.; Tirassa, P.; Chaldakov, G.N.; Pascale, E.; Ceccanti, M.; Codazzo, C.; Fiore, M. Paternal alcohol exposure in mice alters brain NGF and BDNF and increases ethanol-elicited preference in male offspring. Addict. Biol., 2016, 21(4), 776-787.
[http://dx.doi.org/10.1111/adb.12255] [PMID: 25940002]
[130]
Heaton, M.B.; Paiva, M.; Madorsky, I.; Shaw, G. Ethanol effects on neonatal rat cortex: comparative analyses of neurotrophic factors, apoptosis-related proteins, and oxidative processes during vulnerable and resistant periods. Brain Res. Dev. Brain Res., 2003, 145(2), 249-262.
[http://dx.doi.org/10.1016/j.devbrainres.2003.08.005] [PMID: 14604765]
[131]
Heaton, M.B.; Paiva, M.; Madorsky, I.; Mayer, J.; Moore, D.B. Effects of ethanol on neurotrophic factors, apoptosis-related proteins, endogenous antioxidants, and reactive oxygen species in neonatal striatum: relationship to periods of vulnerability. Brain Res. Dev. Brain Res., 2003, 140(2), 237-252.
[http://dx.doi.org/10.1016/S0165-3806(02)00610-7] [PMID: 12586429]
[132]
Davis, M.I. Ethanol-BDNF interactions: still more questions than answers. Pharmacol. Ther., 2008, 118(1), 36-57.
[http://dx.doi.org/10.1016/j.pharmthera.2008.01.003] [PMID: 18394710]
[133]
Huang, M.C.; Chen, C.H.; Chen, C.H.; Liu, S.C.; Ho, C.J.; Shen, W.W.; Leu, S.J. Alterations of serum brain-derived neurotrophic factor levels in early alcohol withdrawal. Alcohol Alcohol., 2008, 43(3), 241-245.
[http://dx.doi.org/10.1093/alcalc/agm172] [PMID: 18326550]
[134]
Benzerouk, F.; Gierski, F.; Gorwood, P.; Ramoz, N.; Stefaniak, N.; Hübsch, B.; Kaladjian, A.; Limosin, F. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and its implication in executive functions in adult offspring of alcohol-dependent probands. Alcohol, 2013, 47(4), 271-274.
[http://dx.doi.org/10.1016/j.alcohol.2013.03.001] [PMID: 23582695]
[135]
Popova, N.K.; Ilchibaeva, T.V.; Antonov, E.V.; Pershina, A.V.; Bazovkina, D.V.; Naumenko, V.S. On the interaction between BDNF and serotonin systems: The effects of long-term ethanol consumption in mice. Alcohol, 2020, 87, 1-15.
[http://dx.doi.org/10.1016/j.alcohol.2020.04.002] [PMID: 32330588]
[136]
Manni, L.; Aloe, L.; Fiore, M. Changes in cognition induced by social isolation in the mouse are restored by electro-acupuncture. Physiol. Behav., 2009, 98(5), 537-542.
[http://dx.doi.org/10.1016/j.physbeh.2009.08.011] [PMID: 19733189]
[137]
Tarani, L.; Carito, V.; Ferraguti, G.; Petrella, C.; Greco, A.; Ralli, M.; Messina, M.P.; Rasio, D.; De Luca, E.; Putotto, C.; Versacci, P.; Ceccanti, M.; Fiore, M. Neuroinflammatory markers in the serum of prepubertal children with down syndrome. J. Immunol. Res., 2020, 20206937154
[http://dx.doi.org/10.1155/2020/6937154] [PMID: 32280719]
[138]
Pacitti, F.; Bersani, G.; Aloe, L.; Caredda, M.; Orsi, P.; Quartini, A.; Vitali, M.; Ceccanti, M.; Tirassa, P.; Fiore, M.; Iannitelli, A. Nerve growth factor serum levels in treatment-resistant schizophrenic patients following electroconvulsive therapy. Clin. Ter., 2021, 171(1), e67-e74.
[http://dx.doi.org/10.7417/CT.2021.2286.33346332] [PMID: 33346332]
[139]
De Simone, R.; Aloe, L. Influence of ethanol consumption on brain nerve growth factor and its target cells in developing and adult rodents. Ann. Ist. Super. Sanita, 1993, 29(1), 179-183.
[140]
Caroleo, M.C.; Costa, N.; Tirassa, P.; Aloe, L. Nerve growth factor produced by activated human monocytes/macrophages is severely affected by ethanol. Alcohol, 2004, 34(2-3), 107-114.
[http://dx.doi.org/10.1016/j.alcohol.2004.06.005] [PMID: 15902903]
[141]
Angelucci, F.; Fiore, M.; Cozzari, C.; Aloe, L. Prenatal ethanol effects on NGF level, NPY and ChAT immunoreactivity in mouse entorhinal cortex: a preliminary study. Neurotoxicol. Teratol., 1999, 21(4), 415-425.
[http://dx.doi.org/10.1016/S0892-0362(99)00005-7] [PMID: 10440485]
[142]
Aloe, L.; Tirassa, P. The effect of long-term alcohol intake on brain NGF-target cells of aged rats. Alcohol, 1992, 9(4), 299-304.
[http://dx.doi.org/10.1016/0741-8329(92)90070-Q] [PMID: 1322141]
[143]
Beeler, E.; Nobile, Z.L.; Homanics, G.E. Paternal preconception every-other-day ethanol drinking alters behavior and ethanol consumption in offspring. Brain Sci., 2019, 9(3)E56
[http://dx.doi.org/10.3390/brainsci9030056] [PMID: 30845665]
[144]
Levi-Montalcini, R. The nerve growth factor 35 years later. Science (80-. ), 1987, 237(4819), 1154-1162.
[145]
Barde, Y.A. Neurotrophic factors: an evolutionary perspective. J. Neurobiol., 1994, 25(11), 1329-1333.
[http://dx.doi.org/10.1002/neu.480251102] [PMID: 7852988]
[146]
Fiore, M.; Korf, J.; Angelucci, F.; Talamini, L.; Aloe, L. Prenatal exposure to methylazoxymethanol acetate in the rat alters neurotrophin levels and behavior: considerations for neurodevelopmental diseases. Physiol. Behav., 2000, 71(1-2), 57-67.
[http://dx.doi.org/10.1016/S0031-9384(00)00310-3] [PMID: 11134686]
[147]
Fiore, M.; Korf, J.; Antonelli, A.; Talamini, L.; Aloe, L. Long-lasting effects of prenatal MAM treatment on water maze performance in rats: associations with altered brain development and neurotrophin levels. Neurotoxicol. Teratol., 2002, 24(2), 179-191.
[http://dx.doi.org/10.1016/S0892-0362(01)00214-8] [PMID: 11943506]
[148]
Angelucci, F.; Piermaria, J.; Gelfo, F.; Shofany, J.; Tramontano, M.; Fiore, M.; Caltagirone, C.; Peppe, A. The effects of motor rehabilitation training on clinical symptoms and serum BDNF levels in Parkinson’s disease subjects. Can. J. Physiol. Pharmacol., 2016, 94(4), 455-461.
[http://dx.doi.org/10.1139/cjpp-2015-0322] [PMID: 26863448]
[149]
Angelucci, F.; Cimino, M.; Balduini, W.; Piltillo, L.; Aloe, L. Prenatal exposure to ethanol causes differential effects in nerve growth factor and its receptor in the basal forebrain of preweaning and adult rats. J. Neural Transplant. Plast., 1997, 6(2), 63-71.
[http://dx.doi.org/10.1155/NP.1997.63] [PMID: 9306238]
[150]
Fiore, M.; Chaldakov, G.N.; Aloe, L. Nerve growth factor as a signaling molecule for nerve cells and also for the neuroendocrine-immune systems. Rev. Neurosci., 2009, 20(2), 133-145.
[http://dx.doi.org/10.1515/REVNEURO.2009.20.2.133] [PMID: 19774790]
[151]
Li, Z.; Ding, M.; Thiele, C.J.; Luo, J. Ethanol inhibits brain-derived neurotrophic factor-mediated intracellular signaling and activator protein-1 activation in cerebellar granule neurons. Neuroscience, 2004, 126(1), 149-162.
[http://dx.doi.org/10.1016/j.neuroscience.2004.03.028] [PMID: 15145081]
[152]
Heberlein, A.; Schuster, R.; Kleimann, A.; Groh, A.; Kordon, A.; Opfermann, B.; Lichtinghagen, R.; Gröschl, M.; Kornhuber, J.; Bleich, S.; Frieling, H.; Hillemacher, T. Joint effects of the epigenetic alteration of neurotrophins and cytokine signaling: A possible exploratory model of affective symptoms in alcohol-dependent patients? Alcohol Alcohol., 2017, 52(3), 277-281.
[http://dx.doi.org/10.1093/alcalc/agw100] [PMID: 28430931]
[153]
Amendola, T.; Fiore, M.; Aloe, L. Postnatal changes in nerve growth factor and brain derived neurotrophic factor levels in the retina, visual cortex, and geniculate nucleus in rats with retinitis pigmentosa. Neurosci. Lett., 2003, 345(1), 37-40.
[http://dx.doi.org/10.1016/S0304-3940(03)00491-9] [PMID: 12809983]
[154]
Schulte-Herbrüggen, O.; Braun, A.; Rochlitzer, S.; Jockers-Scherübl, M.C.; Hellweg, R. Neurotrophic factors--a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr. Med. Chem., 2007, 14(22), 2318-2329.
[http://dx.doi.org/10.2174/092986707781745578] [PMID: 17896980]
[155]
Tirassa, P.; Rosso, P.; Iannitelli, A. Ocular nerve growth factor (NGF) and NGF eye drop application as paradigms to investigate NGF neuroprotective and reparative actions. Methods Mol. Biol., 2018, 1727, 19-38.
[http://dx.doi.org/10.1007/978-1-4939-7571-6_2] [PMID: 29222770]
[156]
Aloe, L.; Skaper, S.D.; Leon, A.; Levi-Montalcini, R. Nerve growth factor and autoimmune diseases. Autoimmunity, 1994, 19(2), 141-150.
[http://dx.doi.org/10.3109/08916939409009542] [PMID: 7772704]
[157]
Bersani, G.; Iannitelli, A.; Fiore, M.; Angelucci, F.; Aloe, L. Data and hypotheses on the role of nerve growth factor and other neurotrophins in psychiatric disorders. Med. Hypotheses, 2000, 55(3), 199-207.
[http://dx.doi.org/10.1054/mehy.1999.1044] [PMID: 10985909]
[158]
Barde, Y-A. Biological Roles of Neurotrophins. In: Neurotrophic Factors; Hefti, F., Ed.; Springer-Verlag: Berlin, Heidelberg, 1999, pp. 1-31.
[http://dx.doi.org/10.1007/978-3-642-59920-0_1]
[159]
Ceni, C.; Unsain, N.; Zeinieh, M.P.; Barker, P.A. Neurotrophins in the regulation of cellular survival and death. Handb. Exp. Pharmacol., 2014, 220, 193-221.
[http://dx.doi.org/10.1007/978-3-642-45106-5_8] [PMID: 24668474]
[160]
Chao, M.V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci., 2003, 4(4), 299-309.
[http://dx.doi.org/10.1038/nrn1078] [PMID: 12671646]
[161]
Hempstead, B.L. Deciphering proneurotrophin actions. Handb. Exp. Pharmacol., 2014, 220, 17-32.
[http://dx.doi.org/10.1007/978-3-642-45106-5_2] [PMID: 24668468]
[162]
Lu, B.; Nagappan, G.; Lu, Y. BDNF and synaptic plasticity, cognitive function, and dysfunction. Handb. Exp. Pharmacol., 2014, 220, 223-250.
[http://dx.doi.org/10.1007/978-3-642-45106-5_9] [PMID: 24668475]
[163]
Bruscolini, A.; Sacchetti, M.; La Cava, M.; Nebbioso, M.; Iannitelli, A.; Quartini, A.; Lambiase, A.; Ralli, M.; de Virgilio, A.; Greco, A. Quality of life and neuropsychiatric disorders in patients with Graves’ Orbitopathy: Current concepts. Autoimmun. Rev., 2018, 17(7), 639-643.
[http://dx.doi.org/10.1016/j.autrev.2017.12.012] [PMID: 29729448]
[164]
Quartini, A.; Pacitti, F.; Bersani, G.; Iannitelli, A. From Adolescent Neurogenesis to Schizophrenia: Opportunities. Challenges and Promising Interventions. Biomed. Rev., 2017, 28, 66-73.
[http://dx.doi.org/10.14748/bmr.v28.4452]
[165]
Tore, F.; Tonchev, A.; Fiore, M.; Tuncel, N.; Atanassova, P.; Aloe, L.; Chaldakov, G. From adipose tissue protein secretion to adipopharmacology of disease. Immunol. Endocr. Metab. Agents Med. Chem., 2007, 7(2), 149-155.
[http://dx.doi.org/10.2174/187152207780363712]
[166]
Chaldakov, G.N.; Aloe, L.; Tonchev, A.B.; Fiore, M. From homo obesus to homo diabesus: Neuroadipology insight. In: Molecular Mechanisms Underpinning the Development of Obesity; Springer: New York, 2014, pp. 167-178.
[http://dx.doi.org/10.1007/978-3-319-12766-8_11]
[167]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Aloe, L. Neuroadipology: a novel component of neuroendocrinology. Cell Biol. Int., 2010, 34(10), 1051-1053.
[http://dx.doi.org/10.1042/CBI20100509] [PMID: 20825365]
[168]
Chaldakov, G.N.; Fiore, M.; Ghenev, P.I.; Stankulov, I.S.; Aloe, L. Atherosclerotic lesions: Possible interactive involvement of intima, adventitia and associated adipose tissue. Int. Med. J., 2000, 7(1), 43-49.
[169]
Chaldakov, G.N.; Fiore, M.; Tonchev, A.B.; Dimitrov, D.; Pancheva, R.; Rancic, G.; Aloe, L. Homo obesus: a metabotrophin-deficient species. Pharmacology and nutrition insight. Curr. Pharm. Des., 2007, 13(21), 2176-2179.
[http://dx.doi.org/10.2174/138161207781039616] [PMID: 17627549]
[170]
Budni, J.; Bellettini-Santos, T.; Mina, F.; Garcez, M.L.; Zugno, A.I. The involvement of BDNF, NGF and GDNF in aging and Alzheimer’s disease. Aging Dis., 2015, 6(5), 331-341.
[http://dx.doi.org/10.14336/AD.2015.0825] [PMID: 26425388]
[171]
Miranda, M.; Morici, J.F.; Zanoni, M.B.; Bekinschtein, P. Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front. Cell. Neurosci., 2019, 13, 363.
[http://dx.doi.org/10.3389/fncel.2019.00363] [PMID: 31440144]
[172]
Vega, S.R.; Kleinert, J.; Sulprizio, M.; Hollmann, W.; Bloch, W.; Strüder, H.K. Responses of serum neurotrophic factors to exercise in pregnant and postpartum women. Psychoneuroendocrinology, 2011, 36(2), 220-227.
[http://dx.doi.org/10.1016/j.psyneuen.2010.07.012] [PMID: 20692101]
[173]
Boschen, K.E.; Klintsova, A.Y. Neurotrophins in the brain: Interaction with alcohol exposure during development. Vitam. Horm., 2017, 104, 197-242.
[http://dx.doi.org/10.1016/bs.vh.2016.10.008] [PMID: 28215296]
[174]
Feng, M-J.; Yan, S-E.; Yan, Q-S. Effects of prenatal alcohol exposure on brain-derived neurotrophic factor and its receptor tyrosine kinase B in offspring. Brain Res., 2005, 1042(2), 125-132.
[http://dx.doi.org/10.1016/j.brainres.2005.02.017] [PMID: 15854584]
[175]
Han, J.Y.; Kwon, H.J.; Ha, M.; Paik, K.C.; Lim, M.H.; Gyu Lee, S.; Yoo, S.J.; Kim, E.J. The effects of prenatal exposure to alcohol and environmental tobacco smoke on risk for ADHD: a large population-based study. Psychiatry Res., 2015, 225(1-2), 164-168.
[http://dx.doi.org/10.1016/j.psychres.2014.11.009] [PMID: 25481018]
[176]
Abel, E.L. Paternal alcohol exposure and hyperactivity in rat offspring: effects of amphetamine. Neurotoxicol. Teratol., 1993, 15(6), 445-449.
[http://dx.doi.org/10.1016/0892-0362(93)90063-T] [PMID: 8302247]
[177]
Conner, K.E.; Bottom, R.T.; Huffman, K.J. The impact of paternal alcohol consumption on offspring brain and behavioral development. Alcohol. Clin. Exp. Res., 2020, 44(1), 125-140.
[http://dx.doi.org/10.1111/acer.14245] [PMID: 31746471]
[178]
Jamerson, P.A.; Wulser, M.J.; Kimler, B.F. Neurobehavioral effects in rat pups whose sires were exposed to alcohol. Brain Res. Dev. Brain Res., 2004, 149(2), 103-111.
[http://dx.doi.org/10.1016/j.devbrainres.2003.12.010] [PMID: 15063090]
[179]
Kim, P.; Choi, C.S.; Park, J.H.; Joo, S.H.; Kim, S.Y.; Ko, H.M.; Kim, K.C.; Jeon, S.J.; Park, S.H.; Han, S.H.; Ryu, J.H.; Cheong, J.H.; Han, J.Y.; Ko, K.N.; Shin, C.Y. Chronic exposure to ethanol of male mice before mating produces attention deficit hyperactivity disorder-like phenotype along with epigenetic dysregulation of dopamine transporter expression in mouse offspring. J. Neurosci. Res., 2014, 92(5), 658-670.
[http://dx.doi.org/10.1002/jnr.23275] [PMID: 24510599]
[180]
Meek, L.R.; Myren, K.; Sturm, J.; Burau, D. Acute paternal alcohol use affects offspring development and adult behavior. Physiol. Behav., 2007, 91(1), 154-160.
[http://dx.doi.org/10.1016/j.physbeh.2007.02.004] [PMID: 17433387]
[181]
Hutchinson, D.; Youssef, G.J.; McCormack, C.; Wilson, J.; Allsop, S.; Najman, J.; Elliott, E.; Burns, L.; Jacobs, S.; Honan, I. Correction to: Prenatal alcohol exposure and infant gross motor development: A prospective cohort study. BMC Pediatr., 2019, 19, 149.
[http://dx.doi.org/10.1186/s12887-019-1516-5]
[182]
McCormack, C.; Hutchinson, D.; Burns, L.; Youssef, G.; Wilson, J.; Elliott, E.; Allsop, S.; Najman, J.; Jacobs, S.; Rossen, L.; Olsson, C.; Mattick, R. Maternal and partner prenatal alcohol use and infant cognitive development. Drug Alcohol Depend., 2018, 185, 330-338.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.12.038] [PMID: 29499553]
[183]
Abel, E.L. Paternal alcohol consumption affects grooming response in rat offspring. Alcohol, 1991, 8(1), 21-23.
[http://dx.doi.org/10.1016/0741-8329(91)91168-2] [PMID: 2006980]
[184]
Abel, E.L.; Tan, S.E. Effects of paternal alcohol consumption on pregnancy outcome in rats. Neurotoxicol. Teratol., 1988, 10(3), 187-192.
[http://dx.doi.org/10.1016/0892-0362(88)90016-5] [PMID: 3211095]
[185]
Zuccolo, L.; DeRoo, L.A.; Wills, A.K.; Smith, G.D.; Suren, P.; Roth, C.; Stoltenberg, C.; Magnus, P.; Smith, G.D.; Suren, P. Erratum: Pre-conception and prenatal alcohol exposure from mothers and fathers drinking and head circumference: results from the Norwegian Mother-Child Study (MoBa). Sci. Rep., 2017, 7, 45877.
[http://dx.doi.org/10.1038/srep45877] [PMID: 28436988]
[186]
Abel, E.L. Paternal behavioral mutagenesis. Neurotoxicology, 1989, 10(3), 335-345.
[187]
Liang, F.; Diao, L.; Jiang, N.; Zhang, J.; Wang, H-J.; Zhou, W-H.; Huang, G-Y.; Ma, D. Chronic exposure to ethanol in male mice may be associated with hearing loss in offspring. Asian J. Androl., 2015, 17(6), 985-990.
[http://dx.doi.org/10.4103/1008-682X.160267] [PMID: 26262775]
[188]
Liang, F.; Diao, L.; Liu, J.; Jiang, N.; Zhang, J.; Wang, H.; Zhou, W.; Huang, G.; Ma, D. Paternal ethanol exposure and behavioral abnormities in offspring: associated alterations in imprinted gene methylation. Neuropharmacology, 2014, 81, 126-133.
[http://dx.doi.org/10.1016/j.neuropharm.2014.01.025] [PMID: 24486713]
[189]
Przybycien-Szymanska, M.M.; Rao, Y.S.; Prins, S.A.; Pak, T.R. Parental binge alcohol abuse alters F1 generation hypothalamic gene expression in the absence of direct fetal alcohol exposure. PLoS One, 2014, 9(2)e89320
[http://dx.doi.org/10.1371/journal.pone.0089320] [PMID: 24586686]
[190]
Xia, R.; Jin, L.; Li, D.; Liang, H.; Yang, F.; Chen, J.; Yuan, W.; Miao, M. Association between paternal alcohol consumption before conception and anogenital distance of offspring. Alcohol. Clin. Exp. Res., 2018, 42(4), 735-742.
[http://dx.doi.org/10.1111/acer.13595] [PMID: 29315635]
[191]
Hazlett, L.D.; Barrett, R.P.; Berk, R.S.; Abel, E.L. Maternal and paternal alcohol consumption increase offspring susceptibility to Pseudomonas aeruginosa ocular infection. Ophthalmic Res., 1989, 21(5), 381-387.
[http://dx.doi.org/10.1159/000266905] [PMID: 2513544]
[192]
Nelson, B.K.; Brightwell, W.S.; MacKenzie-Taylor, D.R.; Burg, J.R.; Massari, V.J. Neurochemical, but not behavioral, deviations in the offspring of rats following prenatal or paternal inhalation exposure to ethanol. Neurotoxicol. Teratol., 1988, 10(1), 15-22.
[http://dx.doi.org/10.1016/0892-0362(88)90062-1] [PMID: 2895419]
[193]
Little, R.E.; Sing, C.F. Father’s drinking and infant birth weight: report of an association. Teratology, 1987, 36(1), 59-65.
[http://dx.doi.org/10.1002/tera.1420360109] [PMID: 3672378]
[194]
Abel, E.L. Paternal alcohol consumption: effects of age of testing and duration of paternal drinking in mice. Teratology, 1989, 40(5), 467-474.
[http://dx.doi.org/10.1002/tera.1420400509] [PMID: 2623636]
[195]
Chang, R.C.; Wang, H.; Bedi, Y.; Golding, M.C. Preconception paternal alcohol exposure exerts sex-specific effects on offspring growth and long-term metabolic programming. Epigenetics Chromatin, 2019, 12(1), 9.
[http://dx.doi.org/10.1186/s13072-019-0254-0] [PMID: 30670059]
[196]
Chang, R.C.; Thomas, K.N.; Bedi, Y.S.; Golding, M.C. Programmed increases in LXRα induced by paternal alcohol use enhance offspring metabolic adaptation to high-fat diet induced obesity. Mol. Metab., 2019, 30, 161-172.
[http://dx.doi.org/10.1016/j.molmet.2019.09.016] [PMID: 31767168]
[197]
Abel, E.L. Rat offspring sired by males treated with alcohol. Alcohol, 1993, 10(3), 237-242.
[http://dx.doi.org/10.1016/0741-8329(93)90042-M] [PMID: 8507394]
[198]
Sittig, L.J.; Redei, E.E. Paternal genetic contribution influences fetal vulnerability to maternal alcohol consumption in a rat model of fetal alcohol spectrum disorder. PLoS One, 2010, 5(4)e10058
[http://dx.doi.org/10.1371/journal.pone.0010058] [PMID: 20383339]
[199]
Tanaka, H.; Suzuki, N.; Arima, M. Experimental studies on the influence of male alcoholism on fetal development. Brain Dev., 1982, 4(1), 1-6.
[http://dx.doi.org/10.1016/S0387-7604(82)80094-6]
[200]
Rompala, G.R.; Mounier, A.; Wolfe, C.M.; Lin, Q.; Lefterov, I.; Homanics, G.E. Heavy chronic intermittent ethanol exposure alters small noncoding RNAs in mouse sperm and epididymosomes. Front. Genet., 2018, 9, 32.
[http://dx.doi.org/10.3389/fgene.2018.00032] [PMID: 29472946]
[201]
Ouko, L.A.; Shantikumar, K.; Knezovich, J.; Haycock, P.; Schnugh, D.J.; Ramsay, M. Effect of alcohol consumption on CpG methylation in the differentially methylated regions of H19 and IG-DMR in male gametes: implications for fetal alcohol spectrum disorders. Alcohol. Clin. Exp. Res., 2009, 33(9), 1615-1627.
[http://dx.doi.org/10.1111/j.1530-0277.2009.00993.x] [PMID: 19519716]
[202]
Haycock, P.C.; Ramsay, M. Exposure of mouse embryos to ethanol during preimplantation development: effect on DNA methylation in the h19 imprinting control region. Biol. Reprod., 2009, 81(4), 618-627.
[http://dx.doi.org/10.1095/biolreprod.108.074682] [PMID: 19279321]
[203]
Gundogan, F.; Elwood, G.; Longato, L.; Tong, M.; Feijoo, A.; Carlson, R.I.; Wands, J.R.; de la Monte, S.M. Impaired placentation in fetal alcohol syndrome. Placenta, 2008, 29(2), 148-157.
[http://dx.doi.org/10.1016/j.placenta.2007.10.002] [PMID: 18054075]
[204]
Shukla, P.K.; Sittig, L.J.; Ullmann, T.M.; Redei, E.E. Candidate placental biomarkers for intrauterine alcohol exposure. Alcohol. Clin. Exp. Res., 2011, 35(3), 559-565.
[http://dx.doi.org/10.1111/j.1530-0277.2010.01373.x] [PMID: 21143252]
[205]
Rathod, R.S.; Ferguson, C.; Seth, A.; Baratta, A.M.; Plasil, S.L.; Homanics, G.E. Effects of paternal preconception vapor alcohol exposure paradigms on behavioral responses in offspring. Brain Sci., 2020, 10(9), 1-23.
[http://dx.doi.org/10.3390/brainsci10090658] [PMID: 32971974]
[206]
Kagan-Krieger, S.; Selby, P.; Vohra, S.; Koren, G. Paternal alcohol exposure and turner syndrome. Alcohol Alcohol., 2002, 37(6), 613-617.
[http://dx.doi.org/10.1093/alcalc/37.6.613] [PMID: 12414557]
[207]
Radford, E.J. Exploring the extent and scope of epigenetic inheritance. Nat. Rev. Endocrinol., 2018, 14(6), 345-355.
[http://dx.doi.org/10.1038/s41574-018-0005-5] [PMID: 29666451]
[208]
Mead, E.A.; Sarkar, D.K. Fetal alcohol spectrum disorders and their transmission through genetic and epigenetic mechanisms. Front. Genet., 2014, 5, 154.
[http://dx.doi.org/10.3389/fgene.2014.00154] [PMID: 24917878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy