Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Advances in Pyrazole Based Scaffold as Cyclin-dependent Kinase 2 Inhibitors for the Treatment of Cancer

Author(s): Jahara Shaikh, Kavitkumar Patel* and Tabassum Khan

Volume 22, Issue 8, 2022

Published on: 13 January, 2022

Page: [1197 - 1215] Pages: 19

DOI: 10.2174/1389557521666211027104957

Price: $65

Abstract

The transformation of a normal cell into a tumor cell is one of the initial steps in cell cycle deregulation. The cell cycle is regulated by cyclin-dependent kinases (CDKs) that belong to the protein kinase family. CDK2 is an enchanting target for specific genotype tumors since cyclin E is selective for CDK2 and the deregulation of specific cancer types. Thus, CDKs inhibitor, specifically CDK2/cyclin A-E, has the potential to be a valid cancer target as per the currently undergoing clinical trials. Most of the pyrazole scaffolds have shown selectivity and potency for CDK2 inhibitors. This review aims at examining pyrazole and pyrazole fused with other heterocyclic rings for antiproliferative activity. Based on the in vitro and molecular docking studies, the most potent analogues for CDK2 inhibition are exhibited by IC50 value. Moreover, the review emphasizes the various lead analogs of pyrazole hybrids which can be very potent and selective for anti-cancer drugs.

Keywords: Cyclin-Dependent Kinase (CDK) inhibitor, cell cycle, CDK2 inhibitors, pyrazole derivatives, SAR, anti-cancer agents.

Graphical Abstract
[1]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancer Medical Science, 2012, 6(16), , ed16..
[PMID: 24883085]
[2]
Ali, I.; Wani, W.A.; Saleem, K. Cancer scenario in India with future perspectives. Cancer Ther., 2011, 8(A), 56-70.
[3]
Hu, Y.; Fu, L. Targeting cancer stem cells: A new therapy to cure cancer patients. Am. J. Cancer Res., 2012, 2(3), 340-356.
[PMID: 22679565]
[4]
Release, P. Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Int. Agency Res. Cancer, 2018, 1-3.
[5]
Blackadar, C.B. Historical review of the causes of cancer. World J. Clin. Oncol., 2016, 7(1), 54-86.
[http://dx.doi.org/10.5306/wjco.v7.i1.54] [PMID: 26862491]
[6]
Hartmann, J.T.; Haap, M.; Kopp, H-G.; Lipp, H-P. Tyrosine kinase inhibitors - a review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10(5), 470-481.
[http://dx.doi.org/10.2174/138920009788897975] [PMID: 19689244]
[7]
Rajkumar, S.V.; Richardson, P.G.; Hideshima, T.; Anderson, K.C. Proteasome inhibition as a novel therapeutic target in human cancer. J. Clin. Oncol., 2005, 23(3), 630-639.
[http://dx.doi.org/10.1200/JCO.2005.11.030] [PMID: 15659509]
[8]
Zaytseva, Y.Y.; Valentino, J.D.; Gulhati, P.; Evers, B.M. mTOR inhibitors in cancer therapy. Cancer Lett., 2012, 319(1), 1-7.
[http://dx.doi.org/10.1016/j.canlet.2012.01.005] [PMID: 22261336]
[9]
Yang, J.; Nie, J.; Ma, X.; Wei, Y.; Peng, Y.; Wei, X. Targeting PI3K in cancer: Mechanisms and advances in clinical trials. Mol. Cancer, 2019, 18(1), 26.
[http://dx.doi.org/10.1186/s12943-019-0954-x] [PMID: 30782187]
[10]
Acharya, M.R.; Sparreboom, A.; Venitz, J.; Figg, W.D. Rational development of histone deacetylase inhibitors as anticancer agents: A review. Mol. Pharmacol., 2005, 68(4), 917-932.
[http://dx.doi.org/10.1124/mol.105.014167] [PMID: 15955865]
[11]
Tremblay, M.R.; Nesler, M.; Weatherhead, R.; Castro, A.C. Recent patents for Hedgehog pathway inhibitors for the treatment of malignancy. Expert Opin. Ther. Pat., 2009, 19(8), 1039-1056.
[http://dx.doi.org/10.1517/13543770903008551] [PMID: 19505195]
[12]
Perez-Perez, M-J.; Priego, E-M.; Hernandez, A-I.; Camarasa, M-J.; Balzarini, J.; Liekens, S. Thymidine phosphorylase inhibitors: Recent developments and potential therapeutic applications. Med. Chem., 2005, 5(12), 1113-1123.
[13]
Gunasinghe, N.P.A.D.; Wells, A.; Thompson, E.W.; Hugo, H.J. Mesenchymal-Epithelial Transition (MET) as a mechanism for metastatic colonisation in breast cancer. Cancer Metastasis Rev., 2012, 31(3-4), 469-478.
[http://dx.doi.org/10.1007/s10555-012-9377-5] [PMID: 22729277]
[14]
Malínková, V.; Vylíčil, J.; Kryštof, V. Cyclin-dependent kinase inhibitors for cancer therapy: A patent review (2009 - 2014). Expert Opin. Ther. Pat., 2015, 25(9), 953-970.
[http://dx.doi.org/10.1517/13543776.2015.1045414] [PMID: 26161698]
[15]
Sánchez-Martínez, C.; Lallena, M.J.; Sanfeliciano, S.G.; de Dios, A. Cyclin dependent kinase (CDK) inhibitors as anticancer drugs: Recent advances (2015-2019). Bioorg. Med. Chem. Lett., 2019, 29(20), , 126637..
[http://dx.doi.org/10.1016/j.bmcl.2019.126637] [PMID: 31477350]
[16]
Toogood, P.L. Cyclin-dependent kinase inhibitors for treating cancer. Med. Res. Rev., 2001, 21(6), 487-498.
[http://dx.doi.org/10.1002/med.1021] [PMID: 11607930]
[17]
Keen, N.; Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nat. Rev. Cancer, 2004, 4(12), 927-936.
[http://dx.doi.org/10.1038/nrc1502] [PMID: 15573114]
[18]
Herbst, R.S. Review of epidermal growth factor receptor biology. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(2)(Suppl.), 21-26.
[http://dx.doi.org/10.1016/j.ijrobp.2003.11.041] [PMID: 15142631]
[19]
Chin, L.P.; Soo, R.A.; Soong, R.; Ou, S-H.I. Targeting ROS1 with anaplastic lymphoma kinase inhibitors: A promising therapeutic strategy for a newly defined molecular subset of non-small-cell lung cancer. J. Thorac. Oncol., 2012, 7(11), 1625-1630.
[http://dx.doi.org/10.1097/JTO.0b013e31826baf83] [PMID: 23070242]
[20]
Gridelli, C.; Peters, S.; Sgambato, A.; Casaluce, F.; Adjei, A.A.; Ciardiello, F. ALK inhibitors in the treatment of advanced NSCLC. Cancer Treat. Rev., 2014, 40(2), 300-306.
[http://dx.doi.org/10.1016/j.ctrv.2013.07.002] [PMID: 23931927]
[21]
Tadesse, S.; Caldon, E.C.; Tilley, W.; Wang, S. Cyclin-dependent kinase 2 inhibitors in cancer therapy: An update. J. Med. Chem., 2019, 62(9), 4233-4251.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01469] [PMID: 30543440]
[22]
Chohan, T.A.; Qian, H.; Pan, Y.; Chen, J-Z. Cyclin-dependent kinase-2 as a target for cancer therapy: Progress in the development of CDK2 inhibitors as anti-cancer agents. Curr. Med. Chem., 2015, 22(2), 237-263.
[http://dx.doi.org/10.2174/0929867321666141106113633] [PMID: 25386824]
[23]
Asghar, U.; Witkiewicz, A.K.; Turner, N.C.; Knudsen, E.S. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat. Rev. Drug Discov., 2015, 14(2), 130-146.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[24]
Knockaert, M.; Greengard, P.; Meijer, L. Pharmacological inhibitors of cyclin-dependent kinases. Trends Pharmacol. Sci., 2002, 23(9), 417-425.
[http://dx.doi.org/10.1016/S0165-6147(02)02071-0] [PMID: 12237154]
[25]
Brasca, M.G.; Albanese, C.; Amici, R.; Ballinari, D.; Corti, L.; Croci, V.; Fancelli, D.; Fiorentini, F.; Nesi, M.; Orsini, P.; Orzi, F.; Pastori, W.; Perrone, E.; Pesenti, E.; Pevarello, P.; Riccardi-Sirtori, F.; Roletto, F.; Roussel, P.; Varasi, M.; Vulpetti, A.; Mercurio, C. 6-Substituted pyrrolo[3,4-c]pyrazoles: An improved class of CDK2 inhibitors. ChemMedChem, 2007, 2(6), 841-852.
[http://dx.doi.org/10.1002/cmdc.200600302] [PMID: 17450625]
[26]
Malumbres, M. Cyclin-dependent kinases. Genome Biol., 2014, 15(6), 122.
[http://dx.doi.org/10.1186/gb4184] [PMID: 25180339]
[27]
Krystof, V.; Uldrijan, S. Cyclin-dependent kinase inhibitors as anticancer drugs. Curr. Drug Targets, 2010, 11(3), 291-302.
[http://dx.doi.org/10.2174/138945010790711950] [PMID: 20210754]
[28]
O’Leary, B.; Finn, R.S.; Turner, N.C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol., 2016, 13(7), 417-430.
[http://dx.doi.org/10.1038/nrclinonc.2016.26] [PMID: 27030077]
[29]
Chohan, T.A.; Qayyum, A.; Rehman, K.; Tariq, M.; Akash, M.S.H. An insight into the emerging role of cyclin-dependent kinase inhibitors as potential therapeutic agents for the treatment of advanced cancers. Biomed. Pharmacother., 2018, 107, 1326-1341.
[http://dx.doi.org/10.1016/j.biopha.2018.08.116] [PMID: 30257348]
[30]
Finn, R.S.; Crown, J.P.; Lang, I.; Boer, K.; Bondarenko, I.M.; Kulyk, S.O.; Ettl, J.; Patel, R.; Pinter, T.; Schmidt, M.; Shparyk, Y.; Thummala, A.R.; Voytko, N.L.; Fowst, C.; Huang, X.; Kim, S.T.; Randolph, S.; Slamon, D.J. The cyclin-dependent kinase 4/6 inhibitor palbociclib in combination with letrozole versus letrozole alone as first-line treatment of oestrogen receptor-positive, HER2-negative, advanced breast cancer (PALOMA-1/TRIO-18): A randomised phase 2 study. Lancet Oncol., 2015, 16(1), 25-35.
[http://dx.doi.org/10.1016/S1470-2045(14)71159-3] [PMID: 25524798]
[31]
DeMichele, A.; Clark, A.S.; Tan, K.S.; Heitjan, D.F.; Gramlich, K.; Gallagher, M.; Lal, P.; Feldman, M.; Zhang, P.; Colameco, C.; Lewis, D.; Langer, M.; Goodman, N.; Domchek, S.; Gogineni, K.; Rosen, M.; Fox, K.; O’Dwyer, P. CDK 4/6 inhibitor palbociclib (PD0332991) in Rb+ advanced breast cancer: phase II activity, safety, and predictive biomarker assessment. Clin. Cancer Res., 2015, 21(5), 995-1001.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2258] [PMID: 25501126]
[32]
Kwapisz, D. Cyclin-dependent kinase 4/6 inhibitors in breast cancer: Palbociclib, ribociclib, and abemaciclib. Breast Cancer Res. Treat., 2017, 166(1), 41-54.
[http://dx.doi.org/10.1007/s10549-017-4385-3] [PMID: 28741274]
[33]
Barroso-Sousa, R.; Shapiro, G.I.; Tolaney, S.M. Clinical development of the CDK4/6 inhibitors Ribociclib and Abemaciclib in breast cancer. Breast Care (Basel), 2016, 11(3), 167-173.
[http://dx.doi.org/10.1159/000447284] [PMID: 27493615]
[34]
Curigliano, G.; Gómez Pardo, P.; Meric-Bernstam, F.; Conte, P.; Lolkema, M.P.; Beck, J.T.; Bardia, A.; Martínez García, M.; Penault-Llorca, F.; Dhuria, S.; Tang, Z.; Solovieff, N.; Miller, M.; Di Tomaso, E.; Hurvitz, S.A. Ribociclib plus letrozole in early breast cancer: A presurgical, window-of-opportunity study. Breast, 2016, 28, 191-198.
[http://dx.doi.org/10.1016/j.breast.2016.06.008] [PMID: 27336726]
[35]
Coxon, C.R.; Anscombe, E.; Harnor, S.J.; Martin, M.P.; Carbain, B.; Golding, B.T.; Hardcastle, I.R.; Harlow, L.K.; Korolchuk, S.; Matheson, C.J.; Newell, D.R.; Noble, M.E.; Sivaprakasam, M.; Tudhope, S.J.; Turner, D.M.; Wang, L.Z.; Wedge, S.R.; Wong, C.; Griffin, R.J.; Endicott, J.A.; Cano, C. Cyclin-Dependent Kinase (CDK) inhibitors: Structure-activity relationships and insights into the CDK-2 selectivity of 6-substituted 2-arylaminopurines. J. Med. Chem., 2017, 60(5), 1746-1767.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01254] [PMID: 28005359]
[36]
Vermeulen, K.; Van Bockstaele, D.R.; Berneman, Z.N. The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif., 2003, 36(3), 131-149.
[http://dx.doi.org/10.1046/j.1365-2184.2003.00266.x] [PMID: 12814430]
[37]
Grant, S.; Roberts, J.D. The use of cyclin-dependent kinase inhibitors alone or in combination with established cytotoxic drugs in cancer chemotherapy. Drug Resist. Updat., 2003, 6(1), 15-26.
[http://dx.doi.org/10.1016/S1368-7646(02)00141-3] [PMID: 12654284]
[38]
Lapenna, S.; Giordano, A. Cell cycle kinases as therapeutic targets for cancer. Nat. Rev. Drug Discov., 2009, 8(7), 547-566.
[http://dx.doi.org/10.1038/nrd2907] [PMID: 19568282]
[39]
Wang, S.; Meades, C.; Wood, G.; Osnowski, A.; Anderson, S.; Yuill, R.; Thomas, M.; Mezna, M.; Jackson, W.; Midgley, C.; Griffiths, G.; Fleming, I.; Green, S.; McNae, I.; Wu, S.Y.; McInnes, C.; Zheleva, D.; Walkinshaw, M.D.; Fischer, P.M. 2-Anilino-4-(thiazol-5-yl)pyrimidine CDK inhibitors: Synthesis, SAR analysis, X-ray crystallography, and biological activity. J. Med. Chem., 2004, 47(7), 1662-1675.
[http://dx.doi.org/10.1021/jm0309957] [PMID: 15027857]
[40]
Malumbres, M.; Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev., 2007, 17(1), 60-65.
[http://dx.doi.org/10.1016/j.gde.2006.12.008] [PMID: 17208431]
[41]
De Boer, L.; Oakes, V.; Beamish, H.; Giles, N.; Stevens, F.; Somodevilla-Torres, M.; Desouza, C.; Gabrielli, B. Cyclin A/CDK2 coordinates centrosomal and nuclear mitotic events. Oncogene, 2008, 27(31), 4261-4268.
[http://dx.doi.org/10.1038/onc.2008.74] [PMID: 18372919]
[42]
Flores, O.; Wang, Z.; Knudsen, K.E.; Burnstein, K.L. Nuclear targeting of cyclin-dependent kinase 2 reveals essential roles of cyclin-dependent kinase 2 localization and cyclin E in vitamin D-mediated growth inhibition. Endocrinology, 2010, 151(3), 896-908.
[http://dx.doi.org/10.1210/en.2009-1116] [PMID: 20147522]
[43]
Ma, T.; Van Tine, B.A.; Wei, Y.; Garrett, M.D.; Nelson, D.; Adams, P.D.; Wang, J.; Qin, J.; Chow, L.T.; Harper, J.W. Cell cycle-regulated phosphorylation of p220(NPAT) by cyclin E/CDK2 in Cajal bodies promotes histone gene transcription. Genes Dev., 2000, 14(18), 2298-2313.
[http://dx.doi.org/10.1101/gad.829500] [PMID: 10995387]
[44]
Law, M.E.; Corsino, P.E.; Narayan, S.; Law, B.K. Cyclin-dependent kinase inhibitors as anticancer therapeutics. Mol. Pharmacol., 2015, 88(5), 846-852.
[http://dx.doi.org/10.1124/mol.115.099325] [PMID: 26018905]
[45]
Cirillo, D.; Pentimalli, F.; Giordano, A. Peptides or small molecules? Different approaches to develop more effective CDK inhibitors. Curr. Med. Chem., 2011, 18(19), 2854-2866.
[http://dx.doi.org/10.2174/092986711796150496] [PMID: 21651493]
[46]
Malumbres, M.; Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci., 2005, 30(11), 630-641.
[http://dx.doi.org/10.1016/j.tibs.2005.09.005] [PMID: 16236519]
[47]
Akli, S.; Van Pelt, C.S.; Bui, T.; Meijer, L.; Keyomarsi, K. CDK2 is required for breast cancer mediated by the low-molecular-weight isoform of cyclin E. Cancer Res., 2011, 71(9), 3377-3386.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4086] [PMID: 21385896]
[48]
Cyclin-dependent kinase 2 is an ideal target for ovary tumors with elevated cyclin E1 expression Oncotarget, 2016, 25(6), 20802-20812.
[49]
Geng, Y.; Yu, Q.; Sicinska, E.; Das, M.; Schneider, J.E.; Bhattacharya, S.; Rideout, W.M.; Bronson, R.T.; Gardner, H.; Sicinski, P. Cyclin E ablation in the mouse. Cell, 2003, 114(4), 431-443.
[http://dx.doi.org/10.1016/S0092-8674(03)00645-7] [PMID: 12941272]
[50]
Ma, Y.; Fiering, S.; Black, C.; Liu, X.; Yuan, Z.; Memoli, V.A.; Robbins, D.J.; Bentley, H.A.; Tsongalis, G.J.; Demidenko, E.; Freemantle, S.J.; Dmitrovsky, E. Transgenic cyclin E triggers dysplasia and multiple pulmonary adenocarcinomas. Proc. Natl. Acad. Sci. USA, 2007, 104(10), 4089-4094.
[http://dx.doi.org/10.1073/pnas.0606537104] [PMID: 17360482]
[51]
Hydbring, P.; Bahram, F.; Su, Y.; Tronnersjö, S.; Högstrand, K.; von der Lehr, N.; Sharifi, H.R.; Lilischkis, R.; Hein, N.; Wu, S.; Vervoorts, J.; Henriksson, M.; Grandien, A.; Lüscher, B.; Larsson, L.G. Phosphorylation by CDK2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc. Natl. Acad. Sci. USA, 2010, 107(1), 58-63.
[http://dx.doi.org/10.1073/pnas.0900121106] [PMID: 19966300]
[52]
Yun, J.; Chae, H-D.; Choi, T-S.; Kim, E-H.; Bang, Y-J.; Chung, J.; Choi, K.S.; Mantovani, R.; Shin, D.Y. CDK2-dependent phosphorylation of the NF-Y transcription factor and its involvement in the p53-p21 signaling pathway. J. Biol. Chem., 2003, 278(38), 36966-36972.
[http://dx.doi.org/10.1074/jbc.M305178200] [PMID: 12857729]
[53]
Hara, E.; Hall, M.; Peters, G. CDK2-dependent phosphorylation of Id2 modulates activity of E2A-related transcription factors. EMBO J., 1997, 16(2), 332-342.
[http://dx.doi.org/10.1093/emboj/16.2.332] [PMID: 9029153]
[54]
Major, M.L.; Lepe, R.; Costa, R.H. Forkhead box M1B transcriptional activity requires binding of CDK-cyclin complexes for phosphorylation-dependent recruitment of p300/CBP coactivators. Mol. Cell. Biol., 2004, 24(7), 2649-2661.
[http://dx.doi.org/10.1128/MCB.24.7.2649-2661.2004] [PMID: 15024056]
[55]
Huang, H.; Regan, K.M.; Lou, Z.; Chen, J.; Tindall, D.J. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science, 2006, 314(5797), 294-297.
[http://dx.doi.org/10.1126/science.1130512]
[56]
Voit, R.; Grummt, I. Phosphorylation of UBF at serine 388 is required for interaction with RNA polymerase I and activation of rDNA transcription. Proc. Natl. Acad. Sci. USA, 2001, 98(24), 13631-13636.
[http://dx.doi.org/10.1073/pnas.231071698] [PMID: 11698641]
[57]
Matsuura, I.; Denissova, N.G.; Wang, G.; He, D.; Long, J.; Liu, F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature, 2004, 430(6996), 226-231.
[http://dx.doi.org/10.1038/nature02650] [PMID: 15241418]
[58]
Ziebold, U.; Bartsch, O.; Marais, R.; Ferrari, S.; Klempnauer, K-H. Phosphorylation and activation of B-Myb by cyclin A-Cdk2. Curr. Biol., 1997, 7(4), 253-260.
[http://dx.doi.org/10.1016/S0960-9822(06)00121-7] [PMID: 9094315]
[59]
Molenaar, J.J.; Ebus, M.E.; Geerts, D.; Koster, J.; Lamers, F.; Valentijn, L.J.; Westerhout, E.M.; Versteeg, R.; Caron, H.N. Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells. Proc. Natl. Acad. Sci. USA, 2009, 106(31), 12968-12973.
[http://dx.doi.org/10.1073/pnas.0901418106] [PMID: 19525400]
[60]
Hu, S.; Lu, Y.; Orr, B.; Godek, K.; Mustachio, L.M.; Kawakami, M.; Sekula, D.; Compton, D.A.; Freemantle, S.; Dmitrovsky, E. Specific CP110 phosphorylation sites mediate anaphase catastrophe after CDK2 inhibition: Evidence for cooperation with USP33 knockdown. Mol. Cancer Ther., 2015, 14(11), 2576-2585.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0443] [PMID: 26304236]
[61]
FBW7 loss promotes chromosomal instability and tumorigenesis via Cyclin E1/CDK2-mediated phosphorylation of CENP-A HHS Public Access, 2017, 77(18), 4881-4893.
[62]
Pizzuti, L.; Krasniqi, E.; Barchiesi, G.; Mazzotta, M.; Barba, M.; Amodio, A.; Massimiani, G.; Pelle, F.; Kayal, R.; Vizza, E.; Grassadonia, A.; Tomao, S.; Venuti, A.; Gamucci, T.; Marchetti, P.; Natoli, C.; Sanguineti, G.; Ciliberto, G.; Vici, P. Eribulin in triple negative metastatic breast cancer: Critic interpretation of current evidence and projection for future scenarios. J. Cancer, 2019, 10(24), 5903-5914.
[http://dx.doi.org/10.7150/jca.35109] [PMID: 31762800]
[63]
Rao, S.S.; Stoehr, J.; Dokic, D.; Wan, L.; Decker, J.T.; Konopka, K.; Thomas, A.L.; Wu, J.; Kaklamani, V.G.; Shea, L.D.; Jeruss, J.S. Synergistic effect of eribulin and CDK inhibition for the treatment of triple negative breast cancer. Oncotarget, 2017, 8(48), 83925-83939.
[http://dx.doi.org/10.18632/oncotarget.20202] [PMID: 29137393]
[64]
Pavletich, N.P. Mechanisms of cyclin-dependent kinase regulation: Structures of CDKs, their cyclin activators, and CIP and INK4 inhibitors. J. Mol. Biol., 1999, 287(5), 821-828.
[http://dx.doi.org/10.1006/jmbi.1999.2640] [PMID: 10222191]
[65]
Besson, A.; Dowdy, S.F.; Roberts, J.M. CDK inhibitors. Dev. Cell, 2008, 14(2), 159-169.
[66]
Davies, T.G.; Pratt, D.J.; Endicott, J.A.; Johnson, L.N.; Noble, M.E.M. Structure-based design of cyclin-dependent kinase inhibitors. Pharmacol. Ther., 2002, 93(2-3), 125-133.
[http://dx.doi.org/10.1016/S0163-7258(02)00182-1] [PMID: 12191605]
[67]
Honda, R.; Lowe, E.D.; Dubinina, E.; Skamnaki, V.; Cook, A.; Brown, N.R.; Johnson, L.N. The structure of cyclin E1/CDK2: Implications for CDK2 activation and CDK2-independent roles. EMBO J., 2005, 24(3), 452-463.
[http://dx.doi.org/10.1038/sj.emboj.7600554] [PMID: 15660127]
[68]
Ali, G.M.E.; Ibrahim, D.A.; Elmetwali, A.M.; Ismail, N.S.M. Design, synthesis and biological evaluation of certain CDK2 inhibitors based on pyrazole and pyrazolo[1,5-a] pyrimidine scaffold with apoptotic activity. Bioorg. Chem., 2019, 86, 1-14.
[http://dx.doi.org/10.1016/j.bioorg.2019.01.008] [PMID: 30682722]
[69]
Wyatt, P.G.; Woodhead, A.J.; Berdini, V.; Boulstridge, J.A.; Carr, M.G.; Cross, D.M.; Davis, D.J.; Devine, L.A.; Early, T.R.; Feltell, R.E.; Lewis, E.J.; McMenamin, R.L.; Navarro, E.F.; O’Brien, M.A.; O’Reilly, M.; Reule, M.; Saxty, G.; Seavers, L.C.A.; Smith, D.; Squires, M.S.; Trewartha, G.; Walker, M.T.; Woolford, A-J.A. Identification of N-(4-piperidinyl)-4-(2,6-dichlorobenzoylamino)-1H-pyrazole-3-carboxamide (AT7519), a novel cyclin dependent kinase inhibitor using fragment-based X-ray crystallography and structure based drug design. J. Med. Chem., 2008, 51(16), 4986-4999.
[http://dx.doi.org/10.1021/jm800382h] [PMID: 18656911]
[70]
Santo, L.; Vallet, S.; Hideshima, T.; Cirstea, D.; Ikeda, H.; Pozzi, S.; Patel, K.; Okawa, Y.; Gorgun, G.; Perrone, G.; Calabrese, E.; Yule, M.; Squires, M.; Ladetto, M.; Boccadoro, M.; Richardson, P.G.; Munshi, N.C.; Anderson, K.C.; Raje, N. AT7519, A novel small molecule multi-cyclin-dependent kinase inhibitor, induces apoptosis in multiple myeloma via GSK-3β activation and RNA polymerase II inhibition. Oncogene, 2010, 29(16), 2325-2336.
[http://dx.doi.org/10.1038/onc.2009.510] [PMID: 20101221]
[71]
Squires, M.S.; Feltell, R.E.; Wallis, N.G.; Lewis, E.J.; Smith, D-M.; Cross, D.M.; Lyons, J.F.; Thompson, N.T. Biological characterization of AT7519, a small-molecule inhibitor of cyclin-dependent kinases, in human tumor cell lines. Mol. Cancer Ther., 2009, 8(2), 324-332.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0890] [PMID: 19174555]
[72]
Seftel, M.D.; Kuruvilla, J.; Kouroukis, T.; Banerji, V.; Fraser, G.; Crump, M.; Kumar, R.; Chalchal, H.I.; Salim, M.; Laister, R.C.; Crocker, S.; Gibson, S.B.; Toguchi, M.; Lyons, J.F.; Xu, H.; Powers, J.; Sederias, J.; Seymour, L.; Hay, A.E. The CDK inhibitor AT7519M in patients with relapsed or refractory Chronic Lymphocytic Leukemia (CLL) and mantle cell lymphoma. A Phase II study of the Canadian Cancer Trials Group. Leuk. Lymphoma, 2017, 58(6), 1358-1365.
[http://dx.doi.org/10.1080/10428194.2016.1239259] [PMID: 27750483]
[73]
Mahadevan, D.; Plummer, R.; Squires, M.S.; Rensvold, D.; Kurtin, S.; Pretzinger, C.; Dragovich, T.; Adams, J.; Lock, V.; Smith, D.M.; Von Hoff, D.; Calvert, H. A phase I pharmacokinetic and pharmacodynamic study of AT7519, a cyclin-dependent kinase inhibitor in patients with refractory solid tumors. Ann. Oncol., 2011, 22(9), 2137-2143.
[http://dx.doi.org/10.1093/annonc/mdq734] [PMID: 21325451]
[74]
Dolman, M.E.M.; Poon, E.; Ebus, M.E.; den Hartog, I.J.M.; van Noesel, C.J.M.; Jamin, Y.; Hallsworth, A.; Robinson, S.P.; Petrie, K.; Sparidans, R.W.; Kok, R.J.; Versteeg, R.; Caron, H.N.; Chesler, L.; Molenaar, J.J. Cyclin-dependent kinase inhibitor AT7519 as a potential drug for MYCN-dependent neuroblastoma. Clin. Cancer Res., 2015, 21(22), 5100-5109.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0313] [PMID: 26202950]
[75]
Jessen, B.A.; Lee, L.; Koudriakova, T.; Haines, M.; Lundgren, K.; Price, S.; Nonomiya, J.; Lewis, C.; Stevens, G.J. Peripheral white blood cell toxicity induced by broad spectrum cyclin-dependent kinase inhibitors. J. Appl. Toxicol., 2007, 27(2), 133-142.
[http://dx.doi.org/10.1002/jat.1177] [PMID: 17211896]
[76]
Feldmann, G.; Mishra, A.; Bisht, S.; Karikari, C.; Garrido-Laguna, I.; Rasheed, Z.; Ottenhof, N.A.; Dadon, T.; Alvarez, H.; Fendrich, V.; Rajeshkumar, N.V.; Matsui, W.; Brossart, P.; Hidalgo, M.; Bannerji, R.; Maitra, A.; Nelkin, B.D. Cyclin-dependent kinase inhibitor Dinaciclib (SCH727965) inhibits pancreatic cancer growth and progression in murine xenograft models. Cancer Biol. Ther., 2011, 12(7), 598-609.
[http://dx.doi.org/10.4161/cbt.12.7.16475] [PMID: 21768779]
[77]
Paruch, K.; Dwyer, M.P.; Alvarez, C.; Brown, C.; Chan, T-Y.; Doll, R.J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.; Hruza, A.; Madison, V.; Nomeir, A.A.; Wang, Y.; Kirschmeier, P.; Lees, E.; Parry, D.; Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.; Zhou, Q.; James, R.A.; Paradkar, V.M.; Park, H.; Rokosz, L.R.; Stauffer, T.M.; Guzi, T.J. Discovery of Dinaciclib (SCH 727965): A potent and selective inhibitor of cyclin-dependent kinases. ACS Med. Chem. Lett., 2010, 1(5), 204-208.
[http://dx.doi.org/10.1021/ml100051d] [PMID: 24900195]
[78]
Parry, D.; Guzi, T.; Shanahan, F.; Davis, N.; Prabhavalkar, D.; Wiswell, D.; Seghezzi, W.; Paruch, K.; Dwyer, M.P.; Doll, R.; Nomeir, A.; Windsor, W.; Fischmann, T.; Wang, Y.; Oft, M.; Chen, T.; Kirschmeier, P.; Lees, E.M. Dinaciclib (SCH 727965), a novel and potent cyclin-dependent kinase inhibitor. Mol. Cancer Ther., 2010, 9(8), 2344-2353.
[http://dx.doi.org/10.1158/1535-7163.MCT-10-0324] [PMID: 20663931]
[79]
Lin, S-F.; Lin, J-D.; Hsueh, C.; Chou, T-C.; Wong, R.J. A cyclindependent kinase inhibitor, dinaciclib in preclinical treatment models of thyroid cancer. PLoS One, 2017, 12(2), , e0172315..
[80]
Chen, Z.; Wang, Z.; Pang, J.C.; Yu, Y.; Bieerkehazhi, S.; Lu, J.; Hu, T.; Zhao, Y.; Xu, X.; Zhang, H.; Yi, J.S.; Liu, S.; Yang, J. Multiple CDK inhibitor dinaciclib suppresses neuroblastoma growth via inhibiting CDK2 and CDK9 activity. Sci. Rep., 2016, 6(June), 29090.
[http://dx.doi.org/10.1038/srep29090] [PMID: 27378523]
[81]
Moharram, S.A.; Shah, K.; Khanum, F.; Marhäll, A.; Gazi, M.; Kazi, J.U. Efficacy of the CDK inhibitor dinaciclib in vitro and in vivo in T-cell acute lymphoblastic leukemia. Cancer Lett., 2017, 405, 73-78.
[http://dx.doi.org/10.1016/j.canlet.2017.07.019] [PMID: 28756008]
[82]
Fabre, C.; Gobbi, M.; Ezzili, C.; Zoubir, M.; Sablin, M-P.; Small, K. Im, E.; Shinwari, N.; Zhang, D.; Zhou, H.; Le Tourneau, C. Clinical study of the novel cyclin-dependent kinase inhibitor dinaciclib in combination with rituximab in relapsed/refractory chronic lymphocytic leukemia patients. Cancer Chemother. Pharmacol., 2014, 74(5), 1057-1064.
[http://dx.doi.org/10.1007/s00280-014-2583-9] [PMID: 25217392]
[83]
MacCallum, D.E.; Melville, J.; Frame, S.; Watt, K.; Anderson, S.; Gianella-Borradori, A.; Lane, D.P.; Green, S.R. Seliciclib (CYC202, R-Roscovitine) induces cell death in multiple myeloma cells by inhibition of RNA polymerase II-dependent transcription and down-regulation of Mcl-1. Cancer Res., 2005, 65(12), 5399-5407.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0233] [PMID: 15958589]
[84]
Kawakami, M.; Mustachio, L.M.; Rodriguez-Canales, J.; Mino, B.; Roszik, J.; Tong, P.; Wang, J.; Lee, J.J.; Myung, J.H.; Heymach, J.V.; Johnson, F.M.; Hong, S.; Zheng, L.; Hu, S.; Villalobos, P.A.; Behrens, C.; Wistuba, I.; Freemantle, S.; Liu, X.; Dmitrovsky, E. Next-generation CDK2/9 inhibitors and anaphase catastrophe in lung cancer. J. Natl. Cancer Inst., 2017, 109(6), 1-11.
[http://dx.doi.org/10.1093/jnci/djw297] [PMID: 28376145]
[85]
Siemeister, G.; Lücking, U.; Wengner, A.M.; Lienau, P.; Steinke, W.; Schatz, C.; Mumberg, D.; Ziegelbauer, K. BAY 1000394, a novel cyclin-dependent kinase inhibitor, with potent antitumor activity in mono- and in combination treatment upon oral application. Mol. Cancer Ther., 2012, 11(10), 2265-2273.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0286] [PMID: 22821149]
[86]
Goh, K.C.; Novotny-Diermayr, V.; Hart, S.; Ong, L.C.; Loh, Y.K.; Cheong, A.; Tan, Y.C.; Hu, C.; Jayaraman, R.; William, A.D.; Sun, E.T.; Dymock, B.W.; Ong, K.H.; Ethirajulu, K.; Burrows, F.; Wood, J.M. TG02, a novel oral multi-kinase inhibitor of CDKs, JAK2 and FLT3 with potent anti-leukemic properties. Leukemia, 2012, 26(2), 236-243.
[http://dx.doi.org/10.1038/leu.2011.218] [PMID: 21860433]
[87]
Caporali, S.; Alvino, E.; Starace, G.; Ciomei, M.; Brasca, M.G.; Levati, L.; Garbin, A.; Castiglia, D.; Covaciu, C.; Bonmassar, E.; D’Atri, S. The cyclin-dependent kinase inhibitor PHA-848125 suppresses the in vitro growth of human melanomas sensitive or resistant to temozolomide, and shows synergistic effects in combination with this triazene compound. Pharmacol. Res., 2010, 61(5), 437-448.
[http://dx.doi.org/10.1016/j.phrs.2009.12.009] [PMID: 20026273]
[88]
Brasca, M.G.; Amboldi, N.; Ballinari, D.; Cameron, A.; Casale, E.; Cervi, G. Identification of N, 1,4,4-tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1 H -pyrazolo[4,3- h ]quinazoline-3-carboxamide (PHA-848125), a potent, orally available cyclin dependent kinase inhibitor. J. Med. Chem., 2009, 52(16), 5152-5163.
[http://dx.doi.org/10.1021/jm9006559] [PMID: 19603809]
[89]
Degrassi, A.; Russo, M.; Nanni, C.; Patton, V.; Alzani, R.; Giusti, A.M.; Fanti, S.; Ciomei, M.; Pesenti, E.; Texido, G. Efficacy of PHA-848125, a cyclin-dependent kinase inhibitor, on the K-Ras(G12D)LA2 lung adenocarcinoma transgenic mouse model: Evaluation by multimodality imaging. Mol. Cancer Ther., 2010, 9(3), 673-681.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0726] [PMID: 20197397]
[90]
Rizzolio, F.; Tuccinardi, T.; Caligiuri, I.; Lucchetti, C.; Giordano, A. CDK inhibitors: From the bench to clinical trials. Curr. Drug Targets, 2010, 11(3), 279-290.
[http://dx.doi.org/10.2174/138945010790711978] [PMID: 20210753]
[91]
Kumar, V.; Kaur, K.; Gupta, G.K.; Sharma, A.K. Pyrazole containing natural products: Synthetic preview and biological significance. Eur. J. Med. Chem., 2013, 69, 735-753.
[http://dx.doi.org/10.1016/j.ejmech.2013.08.053] [PMID: 24099993]
[92]
Sun, J.; Lv, X.H.; Qiu, H.Y.; Wang, Y.T.; Du, Q.R.; Li, D.D.; Yang, Y.H.; Zhu, H.L. Synthesis, biological evaluation and molecular docking studies of pyrazole derivatives coupling with a thiourea moiety as novel CDKs inhibitors. Eur. J. Med. Chem., 2013, 68, 1-9.
[http://dx.doi.org/10.1016/j.ejmech.2013.07.003] [PMID: 23933045]
[93]
Malladi, S.; Isloor, A.M.; Peethambar, S.K.; Ganesh, B.M.; Goud, P.S.K. Synthesis and antimicrobial activity of some new pyrazole containing cyanopyridone derivatives. Der. Pharma Chem., 2012, 4(1), 43-52.
[94]
Synthesis and antimicrobial activity of pyrazole nucleus containing 2-thioxothiazolidin-4-one derivatives. Arab. J. Chem., 2017, 10, S1590-S1596.
[http://dx.doi.org/10.1016/j.arabjc.2013.05.029]
[95]
Abdel-Aziz, M. Abuo-Rahma, Gel-D.; Hassan, A.A. Synthesis of novel pyrazole derivatives and evaluation of their antidepressant and anticonvulsant activities. Eur. J. Med. Chem., 2009, 44(9), 3480-3487.
[http://dx.doi.org/10.1016/j.ejmech.2009.01.032] [PMID: 19268406]
[96]
Kaushik, D.; Khan, S.A.; Chawla, G.; Kumar, S. N′-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)methylene] 2/4-substituted hydrazides: Synthesis and anticonvulsant activity. Eur. J. Med. Chem., 2010, 45(9), 3943-3949.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.049] [PMID: 20573423]
[97]
Dawood, K.M.; Eldebss, T.M.A.; El-Zahabi, H.S.A.; Yousef, M.H.; Metz, P. Synthesis of some new pyrazole-based 1,3-thiazoles and 1,3,4-thiadiazoles as anticancer agents. Eur. J. Med. Chem., 2013, 70, 740-749.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.042] [PMID: 24231309]
[98]
Vijesh, A.M.; Isloor, A.M.; Shetty, P.; Sundershan, S.; Fun, H.K. New pyrazole derivatives containing 1,2,4-triazoles and benzoxazoles as potent antimicrobial and analgesic agents. Eur. J. Med. Chem., 2013, 62, 410-415.
[http://dx.doi.org/10.1016/j.ejmech.2012.12.057] [PMID: 23385092]
[99]
Daidone, G.; Maggio, B.; Raffa, D.; Plescia, S.; Bajardi, M.; Caruso, A. Synthesis and pharmacological study of ethyl 1-methyl-5-[2-substituted-4-oxo-3(4H)-quinazolinyl]-1H-pyrazole-4-acetates. Eur. J. Med. Chem., 1994, 29(9), 707-711.
[http://dx.doi.org/10.1016/0223-5234(94)90033-7]
[100]
Gökhan-Kelekçi, N.; Yabanoğlu, S.; Küpeli, E.; Salgin, U.; Özgen, O.; Uçar, G.; Yeşilada, E.; Kendi, E.; Yeşilada, A.; Bilgin, A.A. A new therapeutic approach in Alzheimer disease: Some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg. Med. Chem., 2007, 15(17), 5775-5786.
[http://dx.doi.org/10.1016/j.bmc.2007.06.004] [PMID: 17611112]
[101]
Khunt, R.C.; Khedkar, V.M.; Chawda, R.S.; Chauhan, N.A.; Parikh, A.R.; Coutinho, E.C. Synthesis, antitubercular evaluation and 3D-QSAR study of N-phenyl-3-(4-fluorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(1), 666-678.
[http://dx.doi.org/10.1016/j.bmcl.2011.10.059] [PMID: 22104148]
[102]
Pathak, R.B.; Chovatia, P.T.; Parekh, H.H. Synthesis, antitubercular and antimicrobial evaluation of 3-(4-chlorophenyl)-4-substituted pyrazole derivatives. Bioorg. Med. Chem. Lett., 2012, 22(15), 5129-5133.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.063] [PMID: 22695129]
[103]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Cascioferro, S.; Plescia, F.; Cancemi, G.; Daidone, G. Recent advanced in bioactive systems containing pyrazole fused with a five membered heterocycle. Eur. J. Med. Chem., 2015, 97(1), 732-746.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.023] [PMID: 25549911]
[104]
Küçükgüzel, Ş.G.; Şenkardeş, S. Recent advances in bioactive pyrazoles. Eur. J. Med. Chem., 2015, 97(1), 786-815.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.059] [PMID: 25555743]
[105]
Kumar, H.; Saini, D.; Jain, S.; Jain, N. Pyrazole scaffold: A remarkable tool in the development of anticancer agents. Eur. J. Med. Chem., 2013, 70, 248-258.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.004] [PMID: 24161702]
[106]
Khan, M.F.; Alam, M.M.; Verma, G.; Akhtar, W.; Akhter, M.; Shaquiquzzaman, M. The therapeutic voyage of pyrazole and its analogs: A review. Eur. J. Med. Chem., 2016, 120, 170-201.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.077] [PMID: 27191614]
[107]
Bennani, F.E.; Doudach, L.; Karrouchi, K.; Ansar, M.; El, M.; Faouzi, A. Overview of recent developments of pyrazole derivatives as an anticancer agent in different cell line. Bioorg. Chem., 2019, 97, , 103470..
[http://dx.doi.org/10.1016/j.bioorg.2019.103470] [PMID: 32120072]
[108]
Brasca, M.G.; Albanese, C.; Alzani, R.; Amici, R.; Avanzi, N.; Ballinari, D.; Bischoff, J.; Borghi, D.; Casale, E.; Croci, V.; Fiorentini, F.; Isacchi, A.; Mercurio, C.; Nesi, M.; Orsini, P.; Pastori, W.; Pesenti, E.; Pevarello, P.; Roussel, P.; Varasi, M.; Volpi, D.; Vulpetti, A.; Ciomei, M. Optimization of 6,6-dimethyl pyrrolo[3,4-c]pyrazoles: Identification of PHA-793887, a potent CDK inhibitor suitable for intravenous dosing. Bioorg. Med. Chem., 2010, 18(5), 1844-1853.
[http://dx.doi.org/10.1016/j.bmc.2010.01.042] [PMID: 20153204]
[109]
Alzani, R.; Pedrini, O.; Albanese, C.; Ceruti, R.; Casolaro, A.; Patton, V.; Colotta, F.; Rambaldi, A.; Introna, M.; Pesenti, E.; Ciomei, M.; Golay, J. Therapeutic efficacy of the pan-cdk inhibitor PHA-793887 in vitro and in vivo in engraftment and high-burden leukemia models. Exp. Hematol., 2010, 38(4), 259-269.e2.
[http://dx.doi.org/10.1016/j.exphem.2010.02.004] [PMID: 20167248]
[110]
Pevarello, P.; Brasca, M.G.; Amici, R.; Orsini, P.; Traquandi, G.; Corti, L.; Piutti, C.; Sansonna, P.; Villa, M.; Pierce, B.S.; Pulici, M.; Giordano, P.; Martina, K.; Fritzen, E.L.; Nugent, R.A.; Casale, E.; Cameron, A.; Ciomei, M.; Roletto, F.; Isacchi, A.; Fogliatto, G.; Pesenti, E.; Pastori, W.; Marsiglio, A.; Leach, K.L.; Clare, P.M.; Fiorentini, F.; Varasi, M.; Vulpetti, A.; Warpehoski, M.A. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 1. Lead finding. J. Med. Chem., 2004, 47(13), 3367-3380.
[http://dx.doi.org/10.1021/jm031145u] [PMID: 15189033]
[111]
Pevarello, P.; Brasca, M.G.; Orsini, P.; Traquandi, G.; Longo, A.; Nesi, M.; Orzi, F.; Piutti, C.; Sansonna, P.; Varasi, M.; Cameron, A.; Vulpetti, A.; Roletto, F.; Alzani, R.; Ciomei, M.; Albanese, C.; Pastori, W.; Marsiglio, A.; Pesenti, E.; Fiorentini, F.; Bischoff, J.R.; Mercurio, C. 3-Aminopyrazole inhibitors of CDK2/cyclin A as antitumor agents. 2. Lead optimization. J. Med. Chem., 2005, 48(8), 2944-2956.
[http://dx.doi.org/10.1021/jm0408870] [PMID: 15828833]
[112]
Dwyer, M.P.; Paruch, K.; Alvarez, C.; Doll, R.J.; Keertikar, K.; Duca, J.; Fischmann, T.O.; Hruza, A.; Madison, V.; Lees, E.; Parry, D.; Seghezzi, W.; Sgambellone, N.; Shanahan, F.; Wiswell, D.; Guzi, T.J. Versatile templates for the development of novel kinase inhibitors: discovery of novel CDK inhibitors. Bioorg. Med. Chem. Lett., 2007, 17(22), 6216-6219.
[http://dx.doi.org/10.1016/j.bmcl.2007.09.018] [PMID: 17904366]
[113]
Oudah, K.H.; Najm, M.A.A.; Samir, N.; Serya, R.A.T.; Abouzid, K.A.M. Design, synthesis and molecular docking of novel pyrazolo[1,5-a][1,3,5]triazine derivatives as CDK2 inhibitors. Bioorg. Chem., 2019, 92(June), , 103239..
[http://dx.doi.org/10.1016/j.bioorg.2019.103239] [PMID: 31513938]
[114]
Pevarello, P.; Fancelli, D.; Vulpetti, A.; Amici, R.; Villa, M.; Pittalà, V.; Vianello, P.; Cameron, A.; Ciomei, M.; Mercurio, C.; Bischoff, J.R.; Roletto, F.; Varasi, M.; Brasca, M.G. 3-Amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: A new class of CDK2 inhibitors. Bioorg. Med. Chem. Lett., 2006, 16(4), 1084-1090.
[http://dx.doi.org/10.1016/j.bmcl.2005.10.071] [PMID: 16290148]
[115]
Cherukupalli, S.; Chandrasekaran, B.; Aleti, R.R.; Sayyad, N.; Hampannavar, G.A.; Merugu, S.R. Synthesis of 4,6-disubstituted pyrazolo[3,4-d]pyrimidine analogues: Cyclin-Dependent Kinase 2 (CDK2) inhibition, molecular docking and anticancer evaluation. J. Mol. Struct., 2019, 1176, 538-551.
[http://dx.doi.org/10.1016/j.molstruc.2018.08.104]
[116]
Cherukupalli, S.; Chandrasekaran, B.; Kryštof, V.; Aleti, R.R.; Sayyad, N.; Merugu, S.R.; Kushwaha, N.D.; Karpoormath, R. Synthesis, anticancer evaluation, and molecular docking studies of some novel 4,6-disubstituted pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg. Chem., 2018, 79, 46-59.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.030] [PMID: 29753773]
[117]
Kim, D.C.; Lee, Y.R.; Yang, B-S.; Shin, K.J.; Kim, D.J.; Chung, B.Y.; Yoo, K.H. Synthesis and biological evaluations of pyrazolo[3,4-d]pyrimidines as cyclin-dependent kinase 2 inhibitors. Eur. J. Med. Chem., 2003, 38(5), 525-532.
[http://dx.doi.org/10.1016/S0223-5234(03)00065-5] [PMID: 12767603]
[118]
Hassan, G.S.; Abdel Rahman, D.E.; Nissan, Y.M.; Abdelmajeed, E.A.; Abdelghany, T.M. Novel pyrazolopyrimidines: synthesis, in vitro cytotoxic activity and mechanistic investigation. Eur. J. Med. Chem., 2017, 138, 565-576.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.003] [PMID: 28704759]
[119]
Řezníčková, E.; Weitensteiner, S.; Havlíček, L.; Jorda, R.; Gucký, T.; Berka, K.; Bazgier, V.; Zahler, S.; Kryštof, V.; Strnad, M. Characterization of a pyrazolo[4,3-d]pyrimidine inhibitor of cyclin-dependent kinases 2 and 5 and aurora a with pro-apoptotic and anti-angiogenic activity in vitro. Chem. Biol. Drug Des., 2015, 86(6), 1528-1540.
[http://dx.doi.org/10.1111/cbdd.12618] [PMID: 26198005]
[120]
Cherukupalli, S.; Hampannavar, G.A.; Chinnam, S.; Chandrasekaran, B.; Sayyad, N.; Kayamba, F.; Reddy Aleti, R.; Karpoormath, R. An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. Bioorg. Med. Chem., 2018, 26(2), 309-339.
[http://dx.doi.org/10.1016/j.bmc.2017.10.012] [PMID: 29273417]
[121]
Vymětalová, L.; Havlíček, L.; Šturc, A.; Skrášková, Z.; Jorda, R.; Pospíšil, T.; Strnad, M.; Kryštof, V. 5-Substituted 3-isopropyl-7-[4-(2-pyridyl)benzyl]amino-1(2)H-pyrazolo[4,3-d]pyrimidines with anti-proliferative activity as potent and selective inhibitors of cyclin-dependent kinases. Eur. J. Med. Chem., 2016, 110(2), 291-301.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.011] [PMID: 26851505]
[122]
Liu, J.J.; Daniewski, I.; Ding, Q.; Higgins, B.; Ju, G.; Kolinsky, K.; Konzelmann, F.; Lukacs, C.; Pizzolato, G.; Rossman, P.; Swain, A.; Thakkar, K.; Wei, C.C.; Miklowski, D.; Yang, H.; Yin, X.; Wovkulich, P.M. Pyrazolobenzodiazepines: Part I. Synthesis and SAR of a potent class of kinase inhibitors. Bioorg. Med. Chem. Lett., 2010, 20(20), 5984-5987.
[http://dx.doi.org/10.1016/j.bmcl.2010.08.079] [PMID: 20832307]
[123]
Tang, J.; Shewchuk, L.M.; Sato, H.; Hasegawa, M.; Washio, Y.; Nishigaki, N. Anilinopyrazole as selective CDK2 inhibitors: Design, synthesis, biological evaluation, and X-ray crystallographic analysis. Bioorg. Med. Chem. Lett., 2003, 13(18), 2985-2988.
[http://dx.doi.org/10.1016/S0960-894X(03)00630-9] [PMID: 12941317]
[124]
Rana, S.; Sonawane, Y.A.; Taylor, M.A.; Kizhake, S.; Zahid, M.; Natarajan, A. Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Bioorg. Med. Chem. Lett., 2018, 28(23-24), 3736-3740.
[http://dx.doi.org/10.1016/j.bmcl.2018.10.020] [PMID: 30343954]
[125]
Huang, X.F.; Lu, X.; Zhang, Y.; Song, G.Q.; He, Q.L.; Li, Q.S.; Yang, X.H.; Wei, Y.; Zhu, H.L. Synthesis, biological evaluation, and molecular docking studies of N-((1,3-diphenyl-1H-pyrazol-4-yl)methyl)aniline derivatives as novel anticancer agents. Bioorg. Med. Chem., 2012, 20(16), 4895-4900.
[http://dx.doi.org/10.1016/j.bmc.2012.06.056] [PMID: 22819191]
[126]
Misra, R.N.; Rawlins, D.B.; Xiao, H.Y.; Shan, W.; Bursuker, I.; Kellar, K.A.; Mulheron, J.G.; Sack, J.S.; Tokarski, J.S.; Kimball, S.D.; Webster, K.R. 1H-Pyrazolo[3,4-b]pyridine inhibitors of cyclin-dependent kinases. Bioorg. Med. Chem. Lett., 2003, 13(6), 1133-1136.
[http://dx.doi.org/10.1016/S0960-894X(03)00034-9] [PMID: 12643928]
[127]
Jing, L.; Tang, Y.; Xiao, Z. Discovery of novel CDK inhibitors via scaffold hopping from CAN508. Bioorg. Med. Chem. Lett., 2018, 28(8), 1386-1391.
[http://dx.doi.org/10.1016/j.bmcl.2018.02.054] [PMID: 29550093]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy