Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Toxicity and Surface Modification of Dendrimers: A Critical Review

Author(s): Rohini Kharwade*, Payal Badole, Nilesh Mahajan and Sachin More

Volume 19, Issue 4, 2022

Published on: 13 January, 2022

Page: [451 - 465] Pages: 15

DOI: 10.2174/1567201818666211021160441

Price: $65

Abstract

Abstract: Compared to other nano polymers, dendrimers have novel three-dimensional, synthetic hyperbranched, nano-polymeric structures. These supramolecular dendritic structures have a high degree of significant surface and core functionality in the transportation of drugs for targeted therapy, specifically in host-guest response, gene transfer therapy, and imaging of biological systems. However, there are conflicting shreds of evidence regarding biological safety and dendrimers toxicity due to their positive charge at the surface. It includes cytotoxicity, hemolytic toxicity, haematological toxicity, immunogenicity, and in vivo toxicity. Surface modification of the dendrimer group is one of the methods to resolve these issues. This review aimed at investigating different strategies that can reduce toxicity and improve the biocompatibility of different dendrimers. From that viewpoint, we broaden the structural and safe characteristics of the dendrimers in the biomedical and pharmaceutical fields.

Keywords: Dendrimer, cationic charge, cytotoxicity, surface modification, improved biocompatibility, immunogenicity.

Graphical Abstract
[1]
Hsu, H.J.; Bugno, J.; Lee, S.R.; Hong, S. Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(1), 1-21.
[http://dx.doi.org/10.1002/wnan.1409] [PMID: 27126551]
[2]
Lee, C.C.; MacKay, J.A.; Fréchet, J.M.; Szoka, F.C. Designing dendrimers for biological applications. Nat. Biotechnol., 2005, 23(12), 1517-1526.
[http://dx.doi.org/10.1038/nbt1171] [PMID: 16333296]
[3]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2005, 57(15), 2106-2129.
[http://dx.doi.org/10.1016/j.addr.2005.09.018] [PMID: 16305813]
[4]
Janaszewska, A.; Lazniewska, J.; Trzepiński, P.; Marcinkowska, M.; Klajnert-Maculewicz, B. Cytotoxicity of Dendrimers. Biomolecules, 2019, 9(8), 330.
[http://dx.doi.org/10.3390/biom9080330] [PMID: 31374911]
[5]
Huang, X.; Wu, Z.; Gao, W.; Chen, Q.; Yu, B. Polyamidoamine dendrimers as potential drug carriers for enhanced aqueous solubility and oral bioavailability of silybin. Drug Dev. Ind. Pharm., 2011, 37(4), 419-427.
[http://dx.doi.org/10.3109/03639045.2010.518150] [PMID: 20942611]
[6]
Santos, A.; Veiga, F.; Figueiras, A. Dendrimers as pharmaceutical excipients: synthesis, properties, toxicity and biomedical applications. Materials (Basel), 2019, 13(1), 65.
[http://dx.doi.org/10.3390/ma13010065] [PMID: 31877717]
[7]
Kesharwani, P.; Jain, K.; Jain, N.K. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci., 2014, 39, 268-307.
[http://dx.doi.org/10.1016/j.progpolymsci.2013.07.005]
[8]
Jain, K.; Kesharwani, P.; Gupta, U.; Jain, N.K. Dendrimer toxicity: Let’s meet the challenge. Int. J. Pharm., 2010, 394(1-2), 122-142.
[http://dx.doi.org/10.1016/j.ijpharm.2010.04.027] [PMID: 20433913]
[9]
Gunaseelan, S.; Gunaseelan, K.; Deshmukh, M.; Zhang, X.; Sinko, P.J. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 518-531.
[http://dx.doi.org/10.1016/j.addr.2009.11.021] [PMID: 19941919]
[10]
Kharwade, R.; More, S.; Mahajan, N.; Agrawal, P. Functionalised dendrimers: potential tool for antiretroviral therapy. Curr. Nanosci., 2020, 16, 708-722.
[http://dx.doi.org/10.2174/1573413716666200213114836]
[11]
Mengzhu, Z.; Xiaohan, Q.; Wei, X.; Yibing, W.; Yunmei, S.; Sanjay, G.; Yuxia, L. Engineering of a dual-model phototherapeutic nanoplatforms for single NIR laser-triggered tumour therapy. J. Coll. Inter. Sci., 2021, 594, 493-501.
[http://dx.doi.org/10.1016/j.jcis.2021.03.050]
[12]
Wang, L.; Cui, Y.; Chen, S.; Wang, G.; Gao, D.; Liu, Y.; Luo, Q.; Liu, Z.; Zhang, X. Highly water-soluble, pH sensitive and biocompatible PAMAM ‘dendrizyme’ to maintain catalytic activity in complex medium. Mater. Sci. Eng. C, 2017, 78, 315-323.
[http://dx.doi.org/10.1016/j.msec.2017.02.144] [PMID: 28575989]
[13]
Qian, L.; Zhipeng, Z.; Xiaohan, Q.; Mengzhu, Z.; Qian, D.; Zhonghao, L.; Yuxia, L. A checkpoint-Regulatable immune niche created by injectable Hydrogel for tumour Therapy. Adv. Fun. Mater., 2021, 31, 2104630.
[http://dx.doi.org/10.1002/adfm.202104630]
[14]
Ren, X.; Wang, N.; Zhou, Y.; Song, A.; Jin, G.; Li, Z.; Luan, Y. An injectable hydrogel using an immunomodulating gelator for amplified tumor immunotherapy by blocking the arginase pathway. Acta Biomater., 2021, 124, 179-190.
[http://dx.doi.org/10.1016/j.actbio.2021.01.041] [PMID: 33524560]
[15]
Jing, Z.; Ningning, W.; Qian, L.; Yaxin, Z.; Yuxia, L. A two prolonged photodynamic nanodrug to prevent metastasis of basal-like breast cancer. Chem. Commun. (Camb.), 2021, 18, 2305-2308.
[http://dx.doi.org/10.1039/D0CC08162K]
[16]
Hailong, T.; Mengzhu, Z.; Guoxia, J.; Yue, J.; Yuxia, L. Cu-MOF chemodynamic nanoplatform via modulating glutathione and H2O2 in the tumour microenvironment for amplified cancer therapy. J. Coll. Inter. Sci., 2021, 587, 358-366.
[http://dx.doi.org/10.1016/j.jcis.2020.12.028]
[17]
Klajnert, B.; Bryszewska, M. Dendrimers: properties and applications. Acta Biochim. Pol., 2001, 48(1), 199-208.
[http://dx.doi.org/10.18388/abp.2001_5127] [PMID: 11440170]
[18]
Yaxin, Z.; Xiaomeng, R.; Zhaosheng, H.; Ningning, W.; Yue, J.; Yuxia, L. Engineering a photosensitizer nanoplatforms for amplified photodynamic immunotherapy via tumour microenvironment modulation. 2021, 6, 120-131.
[http://dx.doi.org/10.1039/D0NH00480D]
[19]
Kharwade, R.; More, S.; Warokar, A.; Agrawal, P.; Mahajan, N. Starburst PAMAM dendrimers: Synthetic approaches, surface modifications, and biomedical applications. Arab. J. Chem., 2020, 13, 6009-6039.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.002]
[20]
Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int. J. Pharm., 2003, 252(1-2), 263-266.
[http://dx.doi.org/10.1016/S0378-5173(02)00623-3] [PMID: 12550802]
[21]
Luong, D.; Kesharwani, P.; Deshmukh, R.; Mohd Amin, M.C.I.; Gupta, U.; Greish, K.; Iyer, A.K. PEGylated PAMAM dendrimers: Enhancing efficacy and mitigating toxicity for effective anticancer drug and gene delivery. Acta Biomater., 2016, 43, 14-29.
[http://dx.doi.org/10.1016/j.actbio.2016.07.015] [PMID: 27422195]
[22]
Bhadra, D.; Bhadra, S.; Jain, S.; Jain, N.K. A PEGylated dendritic nanoparticulate carrier of fluorouracil. Int. J. Pharm., 2003, 257(1-2), 111-124.
[http://dx.doi.org/10.1016/S0378-5173(03)00132-7] [PMID: 12711167]
[23]
Jain, K.; Mehra, N.K.; Jain, V.K.; Jain, N.K. IPN Dendrimers in Drug Delivery. 2020, 143-181.
[http://dx.doi.org/10.1007/978-981-15-0283-5_6]
[24]
Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J.W.; Meijer, E.W.; Paulus, W.; Duncan, R. Dendrimers: relationship between structure and biocompatibility in vitro, and preliminary studies on the biodistribution of 125I-labelled polyamidoamine dendrimers in vivo. J. Control. Release, 2000, 65(1-2), 133-148.
[http://dx.doi.org/10.1016/S0168-3659(99)00246-1] [PMID: 10699277]
[25]
Ciolkowski, M.; Petersen, J.F.; Ficker, M.; Janaszewska, A.; Christensen, J.B.; Klajnert, B.; Bryszewska, M. Surface modification of PAMAM dendrimer improves its biocompatibility. Nanomedicine, 2012, 8(6), 815-817.
[http://dx.doi.org/10.1016/j.nano.2012.03.009] [PMID: 22542820]
[26]
Kannan, R.M.; Nance, E.; Kannan, S.; Tomalia, D.A. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J. Intern. Med., 2014, 276(6), 579-617.
[http://dx.doi.org/10.1111/joim.12280] [PMID: 24995512]
[27]
Gothwal, A.; Kesharwani, P.; Gupta, U.; Khan, I.; Iqbal Mohd Amin, M.C.; Banerjee, S.; Iyer, A.K. Dendrimers as an effective nanocarrier in cardiovascular disease. Curr. Pharm. Des., 2015, 21(30), 4519-4526.
[http://dx.doi.org/10.2174/1381612820666150827094341] [PMID: 26311317]
[28]
Pryor, J.B.; Harper, B.J.; Harper, S.L. Comparative toxicological assessment of PAMAM and thiophosphoryl dendrimers using embryonic zebrafish. Int. J. Nanomed., 2014, 9, 1947-1956.
[http://dx.doi.org/10.2147/IJN.S60220] [PMID: 24790436]
[29]
Fox, L.J.; Richardson, R.M.; Briscoe, W.H. PAMAM dendrimer - cell membrane interactions. Adv. Colloid Interface Sci., 2018, 257, 1-18.
[http://dx.doi.org/10.1016/j.cis.2018.06.005] [PMID: 30008347]
[30]
Jain, S.; Kaur, A.; Puri, R.; Utreja, P.; Jain, A.; Bhide, M.; Ratnam, R.; Singh, V.; Patil, A.S.; Jayaraman, N.; Kaushik, G. Poly propyl ether imine (PETIM) dendrimer: A novel non-toxic dendrimer for sustained drug delivery. Eur. J. Med. Chem., 2010, 45, 4997-5005.
[31]
Hong, S.; Bielinska, A.U.; Mecke, A.; Keszler, B.; Beals, J.L.; Shi, X.; Balogh, L.; Orr, B.G.; Baker, J.R., Jr; Banaszak Holl, M.M. Interaction of poly(amidoamine) dendrimers with supported lipid bilayers and cells: hole formation and the relation to transport. Bioconjug. Chem., 2004, 15(4), 774-782.
[http://dx.doi.org/10.1021/bc049962b] [PMID: 15264864]
[32]
Thiagarajan, G.; Greish, K.; Ghandehari, H. Charge affects the oral toxicity of poly(amidoamine) dendrimers. Eur. J. Pharm. Biopharm., 2013, 84(2), 330-334.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.019] [PMID: 23419816]
[33]
Janaszewska, A.; Mączynska, K.; Matuszko, G.; Appelhans, D.; Voit, B.; Klajnert, B.; Bryszewska, M. Cytotoxicity of PAMAM, PPI and maltose modified ppidendrimers in Chinese hamster ovary (CHO) and human ovarian carcinoma (SKOV3) cells. New J. Chem., 2012, 36, 428-437.
[http://dx.doi.org/10.1039/C1NJ20489K]
[34]
Mukherjee, S.P.; Lyng, F.M.; Garcia, A.; Davoren, M.; Byrne, H.J. Mechanistic studies of in vitro cytotoxicity of poly(amidoamine) dendrimers in mammalian cells. Toxicol. Appl. Pharmacol., 2010, 248(3), 259-268.
[http://dx.doi.org/10.1016/j.taap.2010.08.016] [PMID: 20736030]
[35]
Stasko, N.A.; Johnson, C.B.; Schoenfisch, M.H.; Johnson, T.A.; Holmuhamedov, E.L. Cytotoxicity of polypropylenimine dendrimer conjugates on cultured endothelial cells. Biomacromolecules, 2007, 8(12), 3853-3859.
[http://dx.doi.org/10.1021/bm7008203] [PMID: 18004811]
[36]
Agashe, H.B.; Dutta, T.; Garg, M.; Jain, N.K. Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J. Pharm. Pharmacol., 2006, 58(11), 1491-1498.
[http://dx.doi.org/10.1211/jpp.58.11.0010] [PMID: 17132212]
[37]
Cancino, J.; Paino, I.M.; Micocci, K.C.; Selistre-de-Araujo, H.S.; Zucolotto, V. In vitro nanotoxicity of single-walled carbon nanotube-dendrimer nanocomplexes against murine myoblast cells. Toxicol. Lett., 2013, 219(1), 18-25.
[http://dx.doi.org/10.1016/j.toxlet.2013.02.009] [PMID: 23454831]
[38]
Mukherjee, S.P.; Byrne, H.J. Polyamidoamine dendrimer nanoparticle cytotoxicity, oxidative stress, caspase activation and inflammatory response: experimental observation and numerical simulation. Nanomedicine, 2013, 9(2), 202-211.
[http://dx.doi.org/10.1016/j.nano.2012.05.002] [PMID: 22633897]
[39]
Woller, E.K.; Cloninger, M.J. Mannose functionalization of a sixth generation dendrimer. Biomacromolecules, 2001, 2(3), 1052-1054.
[http://dx.doi.org/10.1021/bm015560k] [PMID: 11710009]
[40]
Felczak, A.; Wronska, N.; Janaszewska, A.; Klajnert, B.; Bryszewska, M.; Appelhans, D.; Voit, B.; Rozalska, S.; Lisowska, K. Antimicrobial activity of poly(propylene imine) dendrimers. New J. Chem., 2012, 36, 2215-2222.
[http://dx.doi.org/10.1039/c2nj40421d]
[41]
Ahamad, T.; Mapolie, S.F.; Alshehri, S.M. Synthesis and characterization of polyamide metallodendrimers and their anti-bacterial and anti-tumour activities. Med. Chem. Res., 2012, 21, 2023-2031.
[http://dx.doi.org/10.1007/s00044-011-9715-0]
[42]
Mahltig, B.; Cheval, N.; Astachov, V.; Malkoch, M.; Montanez, M.I.; Haase, H.; Fahmi, A. Hydroxyl functional polyester dendrimers as a stabilizing agent for the preparation of colloidal silver particles-a study in respect to antimicrobial properties and toxicity against human cells. Colloid Polym. Sci., 2012, 290, 1413-1421.
[http://dx.doi.org/10.1007/s00396-012-2650-x]
[43]
Bhadra, D.; Yadav, A.K.; Bhadra, S.; Jain, N.K. Glycodendrimeric nanoparticulate carriers of primaquine phosphate for liver targeting. Int. J. Pharm., 2005, 295(1-2), 221-233.
[http://dx.doi.org/10.1016/j.ijpharm.2005.01.026] [PMID: 15848007]
[44]
Agrawal, P.; Gupta, U.; Jain, N.K. Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials, 2007, 28(22), 3349-3359.
[http://dx.doi.org/10.1016/j.biomaterials.2007.04.004] [PMID: 17459469]
[45]
Feliu, N.; Walter, M.V.; Montañez, M.I.; Kunzmann, A.; Hult, A.; Nyström, A.; Malkoch, M.; Fadeel, B. Stability and biocompatibility of a library of polyester dendrimers in comparison to polyamidoamine dendrimers. Biomaterials, 2012, 33(7), 1970-1981.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.054] [PMID: 22177621]
[46]
Schilrreff, P.; Mundiña-Weilenmann, C.; Romero, E.L.; Morilla, M.J. Selective cytotoxicity of PAMAM G5 core-PAMAM G2.5 shell tecto-dendrimers on melanoma cells. Int. J. Nanomed., 2012, 7, 4121-4133.
[http://dx.doi.org/10.2147/IJN.S32785] [PMID: 22904625]
[47]
Kesharwani, P.; Gajbhiye, V.; Tekade, R.K.; Jain, N.K. Evaluation of dendrimer safety and efficacy through cell line studies. Curr. Drug Targets, 2011, 12(10), 1478-1497.
[http://dx.doi.org/10.2174/138945011796818135] [PMID: 21443471]
[48]
Lin, S.T.; Maiti, P.K.; Goddard, W.A., III Dynamics and thermodynamics of water in PAMAM dendrimers at subnanosecond time scales. J. Phys. Chem. B, 2005, 109(18), 8663-8672.
[http://dx.doi.org/10.1021/jp0471958] [PMID: 16852026]
[49]
Kolhatkar, R.B.; Kitchens, K.M.; Swaan, P.W.; Ghandehari, H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug. Chem., 2007, 18(6), 2054-2060.
[http://dx.doi.org/10.1021/bc0603889] [PMID: 17960872]
[50]
Sweet, D.M.; Kolhatkar, R.B.; Ray, A.; Swaan, P.; Ghandehari, H. Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: Implications for oral drug delivery. J. Control Release, 2009, 138, 78-85.
[51]
Jevprasesphant, R.; Penny, J.; Attwood, D.; McKeown, N.B.; D’Emanuele, A. Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res., 2003, 20(10), 1543-1550.
[http://dx.doi.org/10.1023/A:1026166729873] [PMID: 14620505]
[52]
Heiden, T.C.; Dengler, E.; Kao, W.J.; Heideman, W.; Peterson, R.E. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharmacol., 2007, 225(1), 70-79.
[http://dx.doi.org/10.1016/j.taap.2007.07.009] [PMID: 17764713]
[53]
Klajnert, B.; Janiszewska, J.; Urbanczyk-Lipkowska, Z.; Bryszewska, M.; Shcharbin, D.; Labieniec, M. Biological properties of low molecular mass peptide dendrimers. Int. J. Pharm., 2006, 309(1-2), 208-217.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.039] [PMID: 16386860]
[54]
Albertazzi, L.; Serresi, M.; Albanese, A.; Beltram, F. Dendrimer internalization and intracellular trafficking in living cells. Mol. Pharm., 2010, 7(3), 680-688.
[http://dx.doi.org/10.1021/mp9002464] [PMID: 20394437]
[55]
Roberts, J.C.; Bhalgat, M.K.; Zera, R.T. Preliminary biological evaluation of polyamidoamine (PAMAM) Starburst dendrimers. J. Biomed. Mater. Res., 1996, 30(1), 53-65.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199601)30:1<53::AID-JBM8>3.0.CO;2-Q] [PMID: 8788106]
[56]
Gomulak, P.; Klajnert, B.; Bryszewska, M.; Majoral, J.P.; Caminade, A.M.; Blasiak, J. Cytotoxicity and genotoxicity of cationic phosphorus-containing dendrimers. Curr. Med. Chem., 2012, 19(36), 6233-6240.
[http://dx.doi.org/10.2174/0929867311209066233] [PMID: 23092129]
[57]
Kesharwani, P.; Iyer, A.K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today, 2015, 20(5), 536-547.
[http://dx.doi.org/10.1016/j.drudis.2014.12.012] [PMID: 25555748]
[58]
Kesharwani, P.; Xie, L.; Banerjee, S.; Mao, G.; Padhye, S.; Sarkar, F.H.; Iyer, A.K. Hyaluronic acid-conjugated polyamidoamine dendrimers for targeted delivery of 3,4-difluorobenzylidene curcumin to CD44 overexpressing pancreatic cancer cells. Colloids Surf. B Biointerfaces, 2015, 136, 413-423.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.043] [PMID: 26440757]
[59]
Ziemba, B.; Janaszewska, A.; Ciepluch, K.; Krotewicz, M.; Fogel, W.A.; Appelhans, D.; Voit, B.; Bryszewska, M.; Klajnert, B. In vivo toxicity of poly(propyleneimine) dendrimers. J. Biomed. Mater. Res. A, 2011, 99(2), 261-268.
[http://dx.doi.org/10.1002/jbm.a.33196] [PMID: 21976451]
[60]
Neerman, M.F.; Zhang, W.; Parrish, A.R.; Simanek, E.E. In vitro and in vivo evaluation of a melamine dendrimer as a vehicle for drug delivery. Int. J. Pharm., 2004, 281(1-2), 129-132.
[http://dx.doi.org/10.1016/j.ijpharm.2004.04.023] [PMID: 15288350]
[61]
Bhadra, D.; Bhadra, S.; Jain, N.K. PEGylated peptide-based dendritic nanoparticulate systems for delivery of artemether. J. Drug Deliv. Sci. Technol., 2005, 15, 65-73.
[http://dx.doi.org/10.1016/S1773-2247(05)50008-X]
[62]
Asthana, A.; Chauhan, A.S.; Diwan, P.V.; Jain, N.K. Poly(amidoamine) (PAMAM) dendritic nanostructures for controlled site-specific delivery of acidic anti-inflammatory active ingredient. AAPS PharmSciTech, 2005, 6(3), E536-E542.
[http://dx.doi.org/10.1208/pt060367] [PMID: 16354015]
[63]
Rajananthanan, P.; Attard, G.S.; Sheikh, N.A.; Morrow, W.J. Novel aggregate structure adjuvants modulate lymphocyte proliferation and Th1 and Th2 cytokine profiles in ovalbumin immunized mice. Vaccine, 1999, 18(1-2), 140-152.
[http://dx.doi.org/10.1016/S0264-410X(99)00213-3] [PMID: 10501244]
[64]
Huang, M.; Yang, C.S.; Xin, Y.; Jiang, G. Epidermal growth factor receptor-targeted poly(amidoamine)-based dendrimer complexed oncolytic adenovirus: is it safe totally? J. Thorac. Dis., 2017, 9(1), E89-E90.
[http://dx.doi.org/10.21037/jtd.2017.01.41] [PMID: 28203445]
[65]
Dobrovolskaia, M.A. Dendrimers effects on the immune system: insights into toxicity and therapeutic utility. Curr. Pharm. Des., 2017, 23(21), 3134-3141.
[http://dx.doi.org/10.2174/1381612823666170309151958] [PMID: 28294045]
[66]
Li, L.; Wang, C.; Huang, Q.; Xiao, J.; Zhang, Q.; Cheng, Y. A degradable hydrogel formed by dendrimer-encapsulated platinum nanoparticles and oxidized dextran for repeated photothermal cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6(16), 2474-2480.
[http://dx.doi.org/10.1039/C8TB00091C] [PMID: 32254464]
[67]
Luo, D.; Haverstick, K.; Belcheva, N.; Han, E.; Saltzman, W. Poly (ethylene glycol)-conjugated PAMAM dendrimer for biocompatible, high-efficiency DNA delivery. Macromolecules, 2002, 35, 3456-3462.
[http://dx.doi.org/10.1021/ma0106346]
[68]
Gajbhiye, V.; Vijayaraj, K.P.; Tekade, R.K.; Jain, N.K. PEGylated PPI dendritic architectures for sustained delivery of H2 receptor antagonist. Eur. J. Med. Chem., 2009, 44(3), 1155-1166.
[http://dx.doi.org/10.1016/j.ejmech.2008.06.012] [PMID: 18760863]
[69]
Padilla De Jesús, O.L.; Ihre, H.R.; Gagne, L.; Fréchet, J.M.; Szoka, F.C., Jr Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjug. Chem., 2002, 13(3), 453-461.
[http://dx.doi.org/10.1021/bc010103m] [PMID: 12009933]
[70]
Konda, S.D.; Aref, M.; Wang, S.; Brechbiel, M.; Wiener, E.C. Specific targeting of folate-dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. MAGMA, 2001, 12(2-3), 104-113.
[http://dx.doi.org/10.1007/BF02668091] [PMID: 11390265]
[71]
Guillaudeu, S.J.; Fox, M.E.; Haidar, Y.M.; Dy, E.E.; Szoka, F.C.; Fréchet, J.M.J. PEGylated dendrimers with core functionality for biological applications. Bioconjug. Chem., 2008, 19(2), 461-469.
[http://dx.doi.org/10.1021/bc700264g] [PMID: 18173227]
[72]
Wang, W.; Xiong, W.; Wan, J.; Sun, X.; Xu, H.; Yang, X. The decrease of PAMAM dendrimer-induced cytotoxicity by PEGylation via attenuation of oxidative stress. Nanotechnology, 2009, 20(10), 105103.
[http://dx.doi.org/10.1088/0957-4484/20/10/105103] [PMID: 19417510]
[73]
Fant, K.; Esbjörner, E.K.; Jenkins, A.; Grossel, M.C.; Lincoln, P.; Nordén, B. Effects of PEGylation and acetylation of PAMAM dendrimers on DNA binding, cytotoxicity and in vitro transfection efficiency. Mol. Pharm., 2010, 7(5), 1734-1746.
[http://dx.doi.org/10.1021/mp1001312] [PMID: 20695423]
[74]
Chen, H.T.; Neerman, M.F.; Parrish, A.R.; Simanek, E.E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. J. Am. Chem. Soc., 2004, 126(32), 10044-10048.
[http://dx.doi.org/10.1021/ja048548j] [PMID: 15303879]
[75]
Lopez, A.I.; Reins, R.Y.; McDermott, A.M.; Trautner, B.W.; Cai, C. Antibacterial activity and cytotoxicity of PEGylated poly(amidoamine) dendrimers. Mol. Biosyst., 2009, 5(10), 1148-1156.
[http://dx.doi.org/10.1039/b904746h] [PMID: 19756304]
[76]
Barraza, L.F.; Jiménez, V.A.; Alderete, J.B. Association of Methotrexate with Native and PEGylated PAMAM-G4 Dendrimers: Effect of the PEGylation Degree on the Drug-Loading Capacity and Preferential Binding Sites. J. Phys. Chem. B, 2017, 121(1), 4-12.
[http://dx.doi.org/10.1021/acs.jpcb.6b08882] [PMID: 27982591]
[77]
Ghaffari, M.; Dehghan, G.; Abedi-Gaballu, F.; Kashanian, S.; Baradaran, B.; Ezzati Nazhad Dolatabadi, J.; Losic, D. Surface functionalized dendrimers as controlled-release delivery nanosystems for tumor targeting. Eur. J. Pharm. Sci., 2018, 122, 311-330.
[http://dx.doi.org/10.1016/j.ejps.2018.07.020] [PMID: 30003954]
[78]
Namazi, H.; Adeli, M. Dendrimers of citric acid and poly (ethylene glycol) as the new drug-delivery agents. Biomaterials, 2005, 26(10), 1175-1183.
[http://dx.doi.org/10.1016/j.biomaterials.2004.04.014] [PMID: 15451637]
[79]
Liu, M.; Kono, K.; Frechet, J.M. Water-soluble dendrimer poly (ethylene glycol) starlike conjugates as potential drug carrier. J. Polym. Sci., Part A., 1999, 37, 3492-3503.
[http://dx.doi.org/10.1002/(SICI)1099-0518(19990901)37:17<3492::AID-POLA7>3.0.CO;2-0]
[80]
Teow, H.M.; Zhou, Z.; Najlah, M.; Yusof, S.R.; Abbott, N.J.; D’Emanuele, A. Delivery of paclitaxel across cellular barriers using a dendrimer-based nanocarrier. Int. J. Pharm., 2013, 441(1-2), 701-711.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.024] [PMID: 23089576]
[81]
Thakur, S.; Kesharwani, P.; Tekade, R.K.; Jain, N.K. Impact of pegylation on biopharmaceutical properties of dendrimers. Polymer (Guildf.), 2015, 59, 67-92.
[http://dx.doi.org/10.1016/j.polymer.2014.12.051]
[82]
Khambete, H.; Gautam, S.P.; Karthikeyan, C.; Ramteke, S.; Hari Narayana Moorthy, N.S.; Trivedi, P. A new approach for PEGylation of dendrimers. Bioorg. Med. Chem. Lett., 2010, 20(14), 4279-4281.
[http://dx.doi.org/10.1016/j.bmcl.2010.03.100] [PMID: 20558063]
[83]
Kaminskas, L.M.; Kota, J.; McLeod, V.M.; Kelly, B.D.; Karellas, P.; Porter, C.J. PEGylation of polylysine dendrimers improves absorption and lymphatic targeting following SC administration in rats. J. Control. Release, 2009, 140(2), 108-116.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.005] [PMID: 19686787]
[84]
Gajbhiye, V.; Kumar, P.; Tekade, R.; Jain, N.K. Pharmaceutical and biomedical potential of PEGylated dendrimers. Curr. Pharm. Des., 2007, 13, 415-429.
[http://dx.doi.org/10.2174/138161207780162999]
[85]
Jiang, Y.Y.; Tang, G.T.; Zhang, L.H.; Kong, S.Y.; Zhu, S.J.; Pei, Y.Y. PEGylated PAMAM dendrimers as a potential drug delivery carrier: in vitro and in vivo comparative evaluation of covalently conjugated drug and noncovalent drug inclusion complex. J. Drug Target., 2010, 18(5), 389-403.
[http://dx.doi.org/10.3109/10611860903494203] [PMID: 20055559]
[86]
Ryan, S.M.; Mantovani, G.; Wang, X.; Haddleton, D.M.; Brayden, D.J. Advances in PEGylation of important biotech molecules: delivery aspects. Expert Opin. Drug Deliv., 2008, 5(4), 371-383.
[http://dx.doi.org/10.1517/17425247.5.4.371] [PMID: 18426380]
[87]
Diaz, C.; Guzmán, J.; Jiménez, V.A.; Alderete, J.B. Partially PEGylated PAMAM dendrimers as solubility enhancers of Silybin. Pharm. Dev. Technol., 2018, 23(7), 689-696.
[http://dx.doi.org/10.1080/10837450.2017.1315134] [PMID: 28368674]
[88]
Zhuo, R.X.; Du, B.; Lu, Z.R. In vitro release of 5-fluorouracil with cyclic core dendritic polymer. J. Control. Release, 1999, 57(3), 249-257.
[http://dx.doi.org/10.1016/S0168-3659(98)00120-5] [PMID: 9895412]
[89]
Waite, C.L.; Sparks, S.M.; Uhrich, K.E.; Roth, C.M. Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnol., 2009, 9, 38.
[http://dx.doi.org/10.1186/1472-6750-9-38] [PMID: 19389227]
[90]
Majoros, I.J.; Keszler, B.; Woehler, S.; Bull, T.; Baker, J.R. Acetylation of Poly(amidoamine) Dendrimers. Macromolecules, 2003, 36, 5526-5529.
[http://dx.doi.org/10.1021/ma021540e]
[91]
Kukowska-Latallo, J.F.; Candido, K.A.; Cao, Z.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R.Jr. Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res., 2005, 65(12), 5317-5324.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3921] [PMID: 15958579]
[92]
Kono, K.; Akiyama, H.; Takahashi, T.; Takagishi, T.; Harada, A. Transfection activity of polyamidoamine dendrimers having hydrophobic amino acid residues in the periphery. Bioconjug. Chem., 2005, 16(1), 208-214.
[http://dx.doi.org/10.1021/bc049785e] [PMID: 15656593]
[93]
Choi, J.S.; Nam, K.; Park, J.Y.; Kim, J.B.; Lee, J.K.; Park, J.S. Enhanced transfection efficiency of PAMAM dendrimer by surface modification with L-arginine. J. Control. Release, 2004, 99(3), 445-456.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.027] [PMID: 15451602]
[94]
Okuda, T.; Sugiyama, A.; Niidome, T.; Aoyagi, H. Characters of dendritic poly(L-lysine) analogues with the terminal lysines replaced with arginines and histidines as gene carriers in vitro. Biomaterials, 2004, 25(3), 537-544.
[http://dx.doi.org/10.1016/S0142-9612(03)00542-8] [PMID: 14585703]
[95]
Daftarian, P.; Kaifer, A.E.; Li, W.; Blomberg, B.B.; Frasca, D.; Roth, F.; Chowdhury, R.; Berg, E.A.; Fishman, J.B.; Al Sayegh, H.A.; Blackwelder, P.; Inverardi, L.; Perez, V.L.; Lemmon, V.; Serafini, P. Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res., 2011, 71(24), 7452-7462.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-1766] [PMID: 21987727]
[96]
Yang, H.; Kao, W.J. Synthesis and characterization of nanoscale dendritic RGD clusters for potential applications in tissue engineering and drug delivery. Int. J. Nanomed., 2007, 2(1), 89-99.
[http://dx.doi.org/10.2147/nano.2007.2.1.89] [PMID: 17722516]
[97]
Modi, D.A.; Sunoqrot, S.; Bugno, J.; Lantvit, D.D.; Hong, S.; Burdette, J.E. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells. Nanoscale, 2014, 6(5), 2812-2820.
[http://dx.doi.org/10.1039/C3NR05042D] [PMID: 24468839]
[98]
Bezouska, K. Design, functional evaluation and biomedical applications of carbohydrate dendrimers (glycodendrimers). J. Biotechnol., 2002, 90(3-4), 269-290.
[http://dx.doi.org/10.1016/S1389-0352(01)00064-2] [PMID: 12071229]
[99]
Najjar, V.A. Biological effects of tuftsin and its analogues. Drugs Future, 1987, 12, 147-160.
[100]
Fridkin, M.; Najjar, V.A. Tuftsin: its chemistry, biology, and clinical potential. Crit. Rev. Biochem. Mol. Biol., 1989, 24(1), 1-40.
[http://dx.doi.org/10.3109/10409238909082550] [PMID: 2667894]
[101]
Agrawal, A.K.; Gupta, C.M. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv. Drug Deliv. Rev., 2000, 41(2), 135-146.
[http://dx.doi.org/10.1016/S0169-409X(99)00061-7] [PMID: 10699310]
[102]
Gupta, C.M.; Haq, W. Tuftsin-bearing liposomes as antibiotic carriers in treatment of macrophage infections. Methods Enzymol., 2005, 391, 291-304.
[http://dx.doi.org/10.1016/S0076-6879(05)91016-1] [PMID: 15721387]
[103]
Bai, K.B.; Láng, O.; Orbán, E.; Szabó, R.; Köhidai, L.; Hudecz, F.; Mezö, G. Design, synthesis, and in vitro activity of novel drug delivery systems containing tuftsin derivatives and methotrexate. Bioconjug. Chem., 2008, 19(11), 2260-2269.
[http://dx.doi.org/10.1021/bc800115w] [PMID: 18959436]
[104]
Dutta, T.; Garg, M.; Jain, N.K. Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur. J. Pharm. Sci., 2008, 34(2-3), 181-189.
[http://dx.doi.org/10.1016/j.ejps.2008.04.002] [PMID: 18501568]
[105]
Mezö, G.; Láng, O.; Jakab, A.; Bai, K.B.; Szabó, I.; Schlosser, G.; Láng, J.; Köhidai, L.; Hudecz, F. Synthesis of oligotuftsin-based branched oligopeptide conjugates for chemotactic drug targeting. J. Pept. Sci., 2006, 12(5), 328-336.
[http://dx.doi.org/10.1002/psc.729] [PMID: 16245264]
[106]
Garin-Chesa, P.; Campbell, I.; Saigo, P.E.; Lewis, J.L., Jr; Old, L.J.; Rettig, W.J. Trophoblast and ovarian cancer antigen LK26. Sensitivity and specificity in immunopathology and molecular identification as a folate-binding protein. Am. J. Pathol., 1993, 142(2), 557-567.
[PMID: 8434649]
[107]
Caliceti, P.; Salmaso, S.; Semenzato, A.; Carofiglio, T.; Fornasier, R.; Fermeglia, M.; Ferrone, M.; Pricl, S. Synthesis and physicochemical characterization of folate-cyclodextrin bioconjugate for active drug delivery. Bioconjug. Chem., 2003, 14(5), 899-908.
[http://dx.doi.org/10.1021/bc034080i] [PMID: 13129392]
[108]
Kono, K.; Liu, M.; Fréchet, J.M. Design of dendritic macromolecules containing folate or methotrexate residues. Bioconjug. Chem., 1999, 10(6), 1115-1121.
[http://dx.doi.org/10.1021/bc990082k] [PMID: 10563782]
[109]
Quintana, A.; Raczka, E.; Piehler, L.; Lee, I.; Myc, A.; Majoros, I.; Patri, A.K.; Thomas, T.; Mulé, J.; Baker, J.R.Jr. Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm. Res., 2002, 19(9), 1310-1316.
[http://dx.doi.org/10.1023/A:1020398624602] [PMID: 12403067]
[110]
Choi, Y.; Thomas, T.; Kotlyar, A.; Islam, M.T.; Baker, J.R., Jr Synthesis and functional evaluation of DNA-assembled polyamidoamine dendrimer clusters for cancer cell-specific targeting. Chem. Biol., 2005, 12(1), 35-43.
[http://dx.doi.org/10.1016/j.chembiol.2004.10.016] [PMID: 15664513]
[111]
Narmani, A.; Mohammadnejad, J.; Yavari, K. Synthesis and evaluation of polyethene glycol- and folic acid-conjugated polyamidoamine G4 dendrimer as nanocarrier. J. Drug Deliv. Sci. Technol., 2019, 50, 278-286.
[http://dx.doi.org/10.1016/j.jddst.2019.01.037]
[112]
Wang, S.; Low, P.S. Folate-mediated targeting of antineoplastic drugs, imaging agents, and nucleic acids to cancer cells. J. Control. Release, 1998, 53(1-3), 39-48.
[http://dx.doi.org/10.1016/S0168-3659(97)00236-8] [PMID: 9741912]
[113]
Singh, P.; Gupta, U.; Asthana, A.; Jain, N.K. Folate and folate-PEG-PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem., 2008, 19(11), 2239-2252.
[http://dx.doi.org/10.1021/bc800125u] [PMID: 18950215]
[114]
Thomas, T.P.; Patri, A.K.; Myc, A.; Myaing, M.T.; Ye, J.Y.; Norris, T.B.; Baker, J.R.Jr. In vitro targeting of synthesized antibody- conjugated dendrimer nanoparticles. Biomacromolecules, 2004, 5(6), 2269-2274.
[http://dx.doi.org/10.1021/bm049704h] [PMID: 15530041]
[115]
Shukla, R.; Thomas, T.P.; Peters, J.L.; Desai, A.M.; Kukowska-Latallo, J.; Patri, A.K.; Kotlyar, A.; Baker, J.R., Jr HER2 specific tumor targeting with dendrimer conjugated anti-HER2 mAb. Bioconjug. Chem., 2006, 17(5), 1109-1115.
[http://dx.doi.org/10.1021/bc050348p] [PMID: 16984117]
[116]
Wängler, C.; Moldenhauer, G.; Eisenhut, M.; Haberkorn, U.; Mier, W. Antibody-dendrimer conjugates: the number, not the size of the dendrimers, determines the immunoreactivity. Bioconjug. Chem., 2008, 19(4), 813-820.
[http://dx.doi.org/10.1021/bc700308q] [PMID: 18361514]
[117]
Chang, S.S.; O’Keefe, D.S.; Bacich, D.J.; Reuter, V.E.; Heston, W.D.; Gaudin, P.B. Prostate-specific membrane antigen is produced in tumor-associated neovasculature. Clin. Cancer Res., 1999, 5(10), 2674-2681.
[PMID: 10537328]
[118]
Wu, G.; Barth, R.F.; Yang, W.; Kawabata, S.; Zhang, L.; Green-Church, K. Targeted delivery of methotrexate to epidermal growth factor receptor-positive brain tumors by means of cetuximab (IMC-C225) dendrimer bioconjugates. Mol. Cancer Ther., 2006, 5(1), 52-59.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0325] [PMID: 16432162]
[119]
Araújo, R.V.; Santos, S.D.S.; Igne, F.E.; Giarolla, J. New advances in general biomedical applications of PAMAM dendrimers. Molecules, 2018, 23(11), 2849-2910.
[http://dx.doi.org/10.3390/molecules23112849] [PMID: 30400134]
[120]
Chandrasekar, D.; Sistla, R.; Ahmad, F.J.; Khar, R.K.; Diwan, P.V. Folate coupled poly(ethyleneglycol) conjugates of anionic poly(amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A, 2007, 82(1), 92-103.
[http://dx.doi.org/10.1002/jbm.a.31122] [PMID: 17269145]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy