Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Carbon Nanoparticles in Mongolian Medicine Alleviate Acute Gastric Ulcer Induced by Ethanol by Regulating Fas/FasL Pathway

Author(s): Du Chao, Wang Chenchen, Zhang Xiyue , Wu Shikui * and Wang Yingze*

Volume 19, Issue 7, 2022

Published on: 15 March, 2022

Page: [763 - 772] Pages: 10

DOI: 10.2174/1567201818666210920101848

Price: $65

Abstract

Introduction: The consumption of large amounts of ethanol can directly lead to acute gastric mucosal bleeding, edema, and erosion, while long-term drinking has been associated with gastric ulcers. Previous research has demonstrated that Har Gabur, a traditional Mongolian medicine, alleviates gastric ulcers through the physical adsorption of its carbon components. It is well known that the immune response has an important role in gastric ulceration.

Methods: In the present study, we used an ethanol-induced injury cell and mice model to investigate whether Har Gabur can inhibit the immune response stimulated by ethanol and identify the active constituents of Har Gabur involved in this process.

Results: We found that Har Gabur significantly repressed the activated Fas/FasL signal pathway and endogenous Bax/Bcl-2 apoptosis pathway. The molecular mechanism of the protective effect most likely involved the transcription or mRNA stability, as Har Gabur remarkably reversed the change in mRNA level of apoptosis-related genes induced by ethanol.

Conclusion: Har Gabur operated in a cell-state-specific manner in vivo without inducing adverse effects in normal mice. Importantly, GO was identified as the main active ingredient of Har Gabur for gastric ulcers.

Keywords: Carbon nanoparticle, gastric ulcer, Fas/FasL, mongolian medicine, graphene, ethanol.

Graphical Abstract
[1]
Lu, S.; Wu, D.; Sun, G.; Geng, F.; Shen, Y.; Tan, J.; Sun, X.; Luo, Y. Gastroprotective effects of Kangfuxin against water-immersion and restraint stress-induced gastric ulcer in rats: roles of antioxidation, anti-inflammation, and pro-survival. Pharm. Biol., 2019, 57(1), 770-777.
[http://dx.doi.org/10.1080/13880209.2019.1682620] [PMID: 31696757]
[2]
Singer, M.V.; Leffmann, C.; Eysselein, V.E.; Calden, H.; Goebell, H. Action of ethanol and some alcoholic beverages on gastric acid secretion and release of gastrin in humans. Gastroenterology, 1987, 93(6), 1247-1254.
[http://dx.doi.org/10.1016/0016-5085(87)90252-6] [PMID: 3678743]
[3]
Franke, A.; Teyssen, S.; Singer, M.V. Alcohol-related diseases of the esophagus and stomach. Dig. Dis., 2005, 23(3-4), 204-213.
[http://dx.doi.org/10.1159/000090167] [PMID: 16508284]
[4]
Bergman, M.P.; D’Elios, M.M. Cytotoxic T cells in H. pylori-related gastric autoimmunity and gastric lymphoma. J. Biomed. Biotechnol., 2010, 2010, 104918.
[http://dx.doi.org/10.1155/2010/104918] [PMID: 20617132]
[5]
Jang, M.H.; Shin, M.C.; Shin, H.S.; Kim, K.H.; Park, H.J.; Kim, E.H.; Kim, C.J. Alcohol induces apoptosis in TM3 mouse Leydig cells via bax-dependent caspase-3 activation. Eur. J. Pharmacol., 2002, 449(1-2), 39-45.
[http://dx.doi.org/10.1016/S0014-2999(02)01973-8] [PMID: 12163104]
[6]
Liu, Y.; Liang, J.; Wu, J.; Chen, H.; Zhang, Z.; Yang, H.; Chen, L.; Chen, H.; Su, Z.; Li, Y. Transformation of patchouli alcohol to β-patchoulene by gastric juice: β-patchoulene is more effective in preventing ethanol-induced gastric injury. Sci. Rep., 2017, 7(1), 5591.
[http://dx.doi.org/10.1038/s41598-017-05996-5] [PMID: 28717228]
[7]
Dai, Z.J.; Gao, J.; Ji, Z.Z.; Wang, X.J.; Ren, H.T.; Liu, X.X.; Wu, W.Y.; Kang, H.F.; Guan, H.T. Matrine induces apoptosis in gastric carcinoma cells via alteration of Fas/FasL and activation of caspase-3. J. Ethnopharmacol., 2009, 123(1), 91-96.
[http://dx.doi.org/10.1016/j.jep.2009.02.022] [PMID: 19429345]
[8]
Karaboğa, I.; Ovalı, M.A.; Yılmaz, A.; Alpaslan, M. Gastroprotective effect of apricot kernel oil in ethanol-induced gastric mucosal injury in rats. Biotech. Histochem., 2018, 93(8), 601-607.
[http://dx.doi.org/10.1080/10520295.2018.1511064] [PMID: 30234391]
[9]
Wu, X.; Huang, Q.; Xu, N.; Cai, J.; Luo, D.; Zhang, Q.; Su, Z.; Gao, J.; Liu, Y. H. Antioxidative and anti-inflammatory effects of water extract of acrostichum aureum Linn. against ethanol-induced gastric ulcer in rats. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-10.
[http://dx.doi.org/10.1155/2018/2958717]
[10]
Sun, M.; Hou, P.; Wang, X.; Zhao, C.; Cheng, B.; Wang, Y.; Hao, H.; Zhang, T.; Ye, H. Pretreatment with Lactobacillus reuteri F-9-35 attenuates ethanol-induced gastric injury in rats. Food Nutr. Res., 2018, 62, 1-8.
[http://dx.doi.org/10.29219/fnr.v62.1469]
[11]
Zhang, X.; Wang, Y.; Li, X.; Dai, Y.; Wang, Q.; Wang, G.; Liu, D.; Gu, X.; Yu, D.; Ma, Y.; Zhang, C. Treatment mechanism of Gardeniae fructus and its carbonized product against ethanol-induced gastric lesions in rats. Front. Pharmacol., 2019, 10, 750.
[http://dx.doi.org/10.3389/fphar.2019.00750] [PMID: 31333466]
[12]
Zhu, Y.; Zhang, Q.; Gao, M.; Wang, H.; He, H.; Wang, J.; Chen, K. Comparisons of chemical profiles and gastroprotective effects of citri sarcodactylis fructus pre- and poststeam processing. Evid. Based Complement. Alternat. Med., 2020, 2020, 8491375.
[http://dx.doi.org/10.1155/2020/8491375] [PMID: 33029176]
[13]
Vial, T.; Goubier, C.; Bergeret, A.; Cabrera, F.; Evreux, J.C.; Descotes, J. Side effects of ranitidine. Drug Saf., 1991, 6(2), 94-117.
[http://dx.doi.org/10.2165/00002018-199106020-00002] [PMID: 2043287]
[14]
Jack, D.; Richards, D.A.; Granata, F. Side-effects of ranitidine. Lancet, 1982, 2(8292), 264-265.
[http://dx.doi.org/10.1016/S0140-6736(82)90339-7] [PMID: 6124684]
[15]
Vanwing, V.; Schevenels, S.; Klockaerts, C.; Danckaerts, M. Psychotic symptoms as a side-effect of omeprazole. Tijdschr. Psychiatr., 2018, 60(12), 834-837.
[PMID: 30536296]
[16]
Attwood, S.E.; Ell, C.; Galmiche, J.P.; Fiocca, R.; Hatlebakk, J.G.; Hasselgren, B.; Långström, G.; Jahreskog, M.; Eklund, S.; Lind, T.; Lundell, L. Long-term safety of proton pump inhibitor therapy assessed under controlled, randomised clinical trial conditions: data from the SOPRAN and LOTUS studies. Aliment. Pharmacol. Ther., 2015, 41(11), 1162-1174.
[http://dx.doi.org/10.1111/apt.13194] [PMID: 25858519]
[17]
Singh, R.; Sripada, L.; Singh, R. Side effects of antibiotics during bacterial infection: mitochondria, the main target in host cell. Mitochondrion, 2014, 16, 50-54.
[http://dx.doi.org/10.1016/j.mito.2013.10.005] [PMID: 24246912]
[18]
Wu, Y.; Wu, S.; Bao, L. Review of Mongolian-specific medicine Hei-Bing-Pian. Zhonghua Zhongyiyao Zazhi, 2016, 31(9), 3672-3675.
[19]
Ma, M.; Zeng, W.; Guan, Z.; Lin, C.; Liu, J.; Huang, X.; Zhu, Ye.; Yan, J. Study on the adsorption performance of mangolian medicine har gabur. Jiangxi Zhongyiyao Daxue Xuebao, 2019, 4, 66-68.
[20]
Zhu, J.; Ji, Z.; Wang, J.; Sun, R.; Zhang, X.; Gao, Y.; Sun, H.; Liu, Y.; Wang, Z.; Li, A.; Ma, J.; Wang, T.; Jia, G.; Gu, Y. Tumor-inhibitory effect and immunomodulatory activity of fullerol C60(OH)x. Small, 2008, 4(8), 1168-1175.
[http://dx.doi.org/10.1002/smll.200701219] [PMID: 18574800]
[21]
Xu, Y.; Zhu, J.; Xiang, K.; Li, Y.; Sun, R.; Ma, J.; Sun, H.; Liu, Y. Synthesis and immunomodulatory activity of [60]fullerene-tuftsin conjugates. Biomaterials, 2011, 32(36), 9940-9949.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.022] [PMID: 21937103]
[22]
Pescatori, M.; Bedognetti, D.; Venturelli, E.; Ménard-Moyon, C.; Bernardini, C.; Muresu, E.; Piana, A.; Maida, G.; Manetti, R.; Sgarrella, F.; Bianco, A.; Delogu, L.G. Functionalized carbon nanotubes as immunomodulator systems. Biomaterials, 2013, 34(18), 4395-4403.
[http://dx.doi.org/10.1016/j.biomaterials.2013.02.052] [PMID: 23507086]
[23]
Crescio, C.; Orecchioni, M.; Ménard-Moyon, C.; Sgarrella, F.; Pippia, P.; Manetti, R.; Bianco, A.; Delogu, L.G. Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions. Nanoscale, 2014, 6(16), 9599-9603.
[http://dx.doi.org/10.1039/C4NR02711F] [PMID: 25029354]
[24]
Tkach, A.V.; Shurin, G.V.; Shurin, M.R.; Kisin, E.R.; Murray, A.R.; Young, S.H.; Star, A.; Fadeel, B.; Kagan, V.E.; Shvedova, A.A. Direct effects of carbon nanotubes on dendritic cells induce immune suppression upon pulmonary exposure. ACS Nano, 2011, 5(7), 5755-5762.
[http://dx.doi.org/10.1021/nn2014479] [PMID: 21657201]
[25]
Mukherjee, S.P.; Bondarenko, O.; Kohonen, P.; Andón, F.T.; Brzicová, T.; Gessner, I.; Mathur, S.; Bottini, M.; Calligari, P.; Stella, L.; Kisin, E.; Shvedova, A.; Autio, R.; Salminen-Mankonen, H.; Lahesmaa, R.; Fadeel, B. Macrophage sensing of single-walled carbon nanotubes via Toll-like receptors. Sci. Rep., 2018, 8(1), 1115.
[http://dx.doi.org/10.1038/s41598-018-19521-9] [PMID: 29348435]
[26]
Minchenko, O.H.; Tsymbal, D.O.; Minchenko, D.O.; Prylutska, S.V.; Hnatiuk, O.S.; Prylutskyy, Y.I.; Tsierkezos, N.G.; Ritter, U. Single-walled carbon nanotubes affect the expression of genes associated with immune response in normal human astrocytes. Toxicol. In Vitro, 2018, 52, 122-130.
[http://dx.doi.org/10.1016/j.tiv.2018.06.011] [PMID: 29906516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy