Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Research Article

Antiviral Properties of Food Plants could help to Reduce Contagion and Severity in SARS-CoV-2 Infection

Author(s): Betina Cardoso*

Volume 8, Issue 1, 2022

Published on: 12 January, 2022

Article ID: e170921196612 Pages: 4

DOI: 10.2174/2215083807666210917144039

Price: $65

Abstract

Introduction: It is important to find tools to help patients and prevent viral diffusion of pneumonia caused by the 2019 novel coronavirus (2019-nCoV or SARS-CoV-2). Recent articles have reported site-specific SARS-CoV-2 infection on a patient's body, specifically a very active replication in the throat and upper respiratory tract, even at the mild stage of the disease, which shows its efficient viral transmission in sputum.

Materials and Methods: An alternative that may be feasible is to resort to scientific studies that demonstrate the antiviral potential of medicinal plants species through in-vitro and in-vivo experiments to alleviate symptoms and prevent the spread of contagion. A literature search on Scopus and PubMed on herbs and foods with antiviral properties was performed.

Results: This resulted in hundreds of publications showing a diversity of plants with antiviral effects against different virus infections. This article focuses on plants that are of common use, which could act against COVID-19.

Conclusion: Herbs and foods with demonstrated antiviral potential have been identified, limiting SARS-CoV-2 spread by interfering with ACE2 protein on infection sites. The analysis of transdisciplinary knowledge allows us to connect previous research on the action of common plants and foods on viruses to limit the replication of SARS-CoV-2 in the throat and upper respiratory tract.

Keywords: SARS-CoV-2, COVID-19, throat, infection, medicinal, edible plants.

Graphical Abstract
[1]
Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature 2020; 581(7809): 465-9.
[http://dx.doi.org/10.1038/s41586-020-2196-x] [PMID: 32235945]
[2]
World Health Organization.. Healthy diet 2018 Available at: https://www.who.int/health-topics/healthy-diet#tab=tab_2 [Cited: 10 December 2020]
[3]
Thuy BTP, My TTA, Hai NTT, et al. Investigation into SARS- CoV-2 resistance of compounds in garlic essential oil. ACS Omega 2020; 5(14): 8312-20.
[http://dx.doi.org/10.1021/acsomega.0c00772] [PMID: 32363255]
[4]
Liu X, Baecker A, Wu M, et al. Raw garlic consumption and risk of liver cancer: a population-based case-control study in eastern China. Nutrients 2019; 11(9): 2038.
[http://dx.doi.org/10.3390/nu11092038] [PMID: 31480423]
[5]
Girija PLT, Sivan N. Ayurvedic treatment of COVID-19/SARS- CoV-2: A case report. J Ayurveda Integr Med In Press 2022; 13(1): 100329.
[http://dx.doi.org/10.1016/j.jaim.2020.06.001] [PMID: 32680602]
[6]
Rajapaksha H, Perera BT, Meepage J, Perera RT, Dissanayake Ch. Mitigate the cytokine storm due to the severe COVID-19: A computational investigation of possible allosteric inhibitory actions on IL-6R and IL-1R using selected phytochemicals. Eur J Chem 2020; 11(4): 351-63.
[http://dx.doi.org/10.5155/eurjchem.11.4.351-363.2043]
[7]
Dissanayake KCG, Fernando WSK, Perera PRT. Investigation of the phytochemistry of Coriandrum sativum to combat against viral infections. Int J Innov Pharm Sci Res 2020; 8(06): 1-10.
[http://dx.doi.org/10.21276/IJIPSR.2020.08.06.756]
[8]
Chen C, Zuckerman DM, Brantley S, Sharpe M, Childress K, Hoiczyk E, et al. Sambucus nigra extracts inhibit infectious bronchitis virus at an early point during replication. BMC Vet Res 2014; 10(24): 1-12.
[9]
Du T, Shi Y, Xiao S, Li N, Zhao Q, Zhang A, et al. Curcumin is a promising inhibitor of genotype 2 porcine reproductive and respiratory syndrome virus infection. BMC Vet Res 2017; 13(298) [about 9 p.] Available at: https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-017-1218-x [Cited: 16th Nov 2020]
[http://dx.doi.org/10.1186/s12917-017-1218-x]
[10]
Porter RS, Bode RF. A review of the antiviral properties of black elder (Sambucus nigra L.) products. Phytother Res 2017; 31(4): 533-54.
[http://dx.doi.org/10.1002/ptr.5782] [PMID: 28198157]
[11]
Richart SM, Li Y-L, Mizushina Y, et al. Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. J Food Drug Anal 2018; 26(3): 1015-23.
[http://dx.doi.org/10.1016/j.jfda.2017.12.006] [PMID: 29976394]
[12]
Lelešius R, Karpovaitė A, Mickienė R, Drevinskas T, Tiso N, Ragažinskienė O, et al. In vitro antiviral activity of fifteen plant extracts against avian infectious bronchitis virus. BMC Vet Res 2019; 15(178) [about 10 p.] Available at: https://bmcvetres.biomedcentral.com/articles/10.1186/s12917-019-1925-6 [Cited: 14th Oct 2020]
[http://dx.doi.org/10.1186/s12917-019-1925-6]
[13]
Langeder J, Grienke U, Chen Y, Kirchmair J, Schmidtke M, Rollinger JM. Natural products against acute respiratory infections: Strategies and lessons learned. J Ethnopharmacol 2020; 248: 112298.
[http://dx.doi.org/10.1016/j.jep.2019.112298] [PMID: 31610260]
[14]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[15]
Rajapaksa RMH, Perera BT, Nisansala MJ, Perera WPRT, Dissanayake KGC. Potential of inhibiting the receptor binding mechanism of sarscov-2 using phytochemical extracts of medicinal herb; moleculer docking study. GJESRM 2020; 7(4): 51-61.
[16]
Zhang DH, Wu KL, Zhang X, Deng SQ, Peng B. In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med 2020; 18(2): 152-8.
[http://dx.doi.org/10.1016/j.joim.2020.02.005] [PMID: 32113846]
[17]
Clain E, Sinigaglia L, Koishi AC, Gorgette O, Gadea G, Viranaicken W, et al. Extract from Aphloia theiformis, an edible indigenous plant from Reunion Island, impairs Zika virus attachment to the host cell surface. Sci Rep 2018; 8: 10856.
[18]
Singh AA, Pooe O, Kwezi L, Lotter-Stark T, Stoychev SH, Alexandra K, et al. Plant-based production of highly potent anti-HIV antibodies with engineered posttranslational modifications. Sci Rep 2020; 10: 6201.
[19]
Troost B, Mulder LM, Diosa-Toro M, van de Pol D, Rodenhuis-Zybert IA, Smit JM. Tomatidine, a natural steroidal alkaloid shows antiviral activity towards chikungunya virus in vitro. Sci Rep 2020; 10: 6364.
[20]
Jang E, Kim S, Lee N-R, Kim H, Chae S, Han C-W, et al. Sanguisorba officinalis extract, ziyuglycoside I, and II exhibit antiviral effects against hepatitis B virus. Eur J Integr Med 2018; 20: 165-72.
[http://dx.doi.org/10.1016/j.eujim.2018.05.009]
[21]
Glatthaar B, Saalmüller A, Haunschild J, Amon A. Antiviral activity of a composition of Gentiana lutea L., Primula veris L., Sambucus nigra L., Rumex spec. and Verbena officinalis L. (Sinuprets) against viruses causing respiratory infections. Abstracts. Eur J Integr Med 2009; 1: 223-60.
[http://dx.doi.org/10.1016/j.eujim.2009.08.070]
[22]
Knipping K, Garssen J, van’t Land B. An evaluation of the inhibitory effects against rotavirus infection of edible plant extracts. Virol J 2012; 9(137): 137.
[http://dx.doi.org/10.1186/1743-422X-9-137] [PMID: 22834653]
[23]
Tahir Ul Qamar M, Alqahtani SM, Alamri MA, Chen LL. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J Pharm Anal 2020; 10(4): 313-9.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[24]
Chen L, Li J, Luo C, et al. Binding interaction of quercetin-3-β- galactoside and its synthetic derivatives with SARS-CoV 3CL(pro): structure-activity relationship studies reveal salient pharmacophore features. Bioorg Med Chem 2006; 14(24): 8295-306.
[http://dx.doi.org/10.1016/j.bmc.2006.09.014] [PMID: 17046271]
[25]
Castrillo JL, Carrasco L. Action of 3-methylquercetin on poliovirus RNA replication. J Virol 1987; 61(10): 3319-21.
[26]
Wu W, Li R, Li X, et al. Quercetin as an antiviral agent inhibits Influenza A virus (IAV) entry. Viruses 2015; 8(1): 1-18.
[http://dx.doi.org/10.3390/v8010006] [PMID: 26712783]
[27]
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet 2003; 361(9374): 2045-6.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[28]
Chen F, Chan KH, Jiang Y, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol 2004; 31(1): 69-75.
[http://dx.doi.org/10.1016/j.jcv.2004.03.003] [PMID: 15288617]
[29]
Wang SX, Wang Y, Lu YB, et al. Diagnosis and treatment of novel coronavirus pneumonia based on the theory of traditional Chinese medicine. J Integr Med 2020; 18(4): 275-83.
[http://dx.doi.org/10.1016/j.joim.2020.04.001] [PMID: 32446813]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy