Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Pharmacological Evaluation of Novel 1,2,4-triazine Derivatives Containing Thiazole Ring against Hepatocellular Carcinoma

Author(s): Heba Mohamed*, Mohamed AL-Ghareeb and Raghda Abd-Allah

Volume 18, Issue 2, 2022

Published on: 10 September, 2021

Article ID: e251121196339 Pages: 14

DOI: 10.2174/1573407217666210910093142

Price: $65

Abstract

Background: New 6-hydroxy-5-(p-hydroxybenzylidene)-3-phenyl-2- [(5-pchlorophenyl)- 1,3-thiazol-2-yl]-1, 2, 4-triazine derivatives containing a thiazole ring were synthesised as potential antitumor agents.

Methods: Cytotoxicity of compounds (3) and (4) was evaluated in human hepatocellular carcinoma (HCC) cell lines (HepG2); compound (3) showed more cytotoxicity (IC50=9.0μg/ml) than compound (4) (IC50=18.40μg/ml) using doxorubicin as standard. The degree of toxicity of compound (3) was assessed by the LD50 with its anticancer performance by suppressing tumor angiogenesis against diethylnitrosamine (DENA) induced hepatocellular carcinoma (HCC) in male rat model.

Results: Carcinogenic rats showed a significant increase in markers of angiogenesis, tumour growth, and liver function tests and malondialdehyde level coupled with reduced hepatic glutathione level and caspase-3 activity. The distribution of compound (3) to animals after the development of HCC improved biochemical alterations from a DENA chemical carcinogen that is confirmed by hepatic histopathology.

Conclusion: Compound 3 perhaps utilized as a strong applicant for newly therapeutic protocols against hepatocarcinogenesis by controlling tumor angiogenesis and renovating the activity of hepatic marker enzymes in addition to reversing the oxidant-antioxidant imbalance in corporation with amelioration of histopathology. While the trial supports the use of compound 3 for improved HCC outcome and the toxicity and side effects should be considered.

Keywords: HCC, apoptosis, alfa fetoprotein, 1, 2, 4-triazine, vascular endothelial growth factor receptor-2 tyrosine kinase (VEGFR-2), pharmacology.

Graphical Abstract
[1]
Tag, HM; Bargougui, A; Alshayyal, SG; Kamal, A; Tantawy, HM; El-Naggar, MS Chemopreventive efficacy of punica granatum and silybum marianum extracts on chemically-induced hepatocellular carcinoma in rats. Asian J Appl Sci., 2019, 7(2)
[http://dx.doi.org/10.24203/ajas.v7i2.5745]
[2]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[http://dx.doi.org/10.1053/j.gastro.2007.04.061] [PMID: 17570226]
[3]
Yang, J; Wang, Q; Qiao, C; Lin, Z; Li, X; Huang, Y Potent anti-angiogenesis and anti-tumor activity of a novel human anti-VEGF antibody, MIL60. Cell Mol Immunol, 2014, 11(3), 285-293. Available from: /pmc/articles/PMC4085495/?report=abstract [cited 2020 Oct 1].
[4]
Muto, J.; Shirabe, K.; Sugimachi, K.; Maehara, Y. Review of angiogenesis in hepatocellular carcinoma. Hepatol. Res., 2015, 45(1), 1-9.
[http://dx.doi.org/10.1111/hepr.12310] [PMID: 24533487]
[5]
El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology, 2012, 142(6), 1264-1273.
[http://dx.doi.org/10.1053/j.gastro.2011.12.061] [PMID: 22537432]
[6]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: From genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[7]
Davila, J.A.; Morgan, R.O.; Shaib, Y.; McGlynn, K.A.; El-Serag, H.B. Diabetes increases the risk of hepatocellular carcinoma in the United States: A population based case control study. Gut, 2005, 54(4), 533-539.
[http://dx.doi.org/10.1136/gut.2004.052167] [PMID: 15753540]
[8]
Wu, HC; Santella, R The role of aflatoxins in hepatocellular carcinoma; Hepatitis Monthly. Kowsar Medical Institute 2012, 12, 7238. Available from: /pmc/articles/PMC3496858/?report=abstract [cited 2020 Oct 1].
[9]
Mohamed, A.M.; Abdel-Hafez, N.A.; Kassem, A.F.; Abbas, E.M.H.; Mounier, M.M. Synthesis of some new thiazole derivatives and their cytotoxicity on different human tumor cell lines. Russ. J. Gen. Chem., 2017, 87(10), 2391-2400. https://link.springer.com/article/10.1134/S1070363217100218
[http://dx.doi.org/10.1134/S1070363217100218]
[10]
Milne, G.W.A. Ashgate Handbook of Autineoplastic Agents [Internet]. Ashgate Handbook of Autineoplastic Agents. Routledge; 2017 [cited 2020 Oct 3]. Available from: https://www.taylorfrancis.com/books/9781315192376.
[11]
Shih, M.H.; Ke, F.Y. Syntheses and evaluation of antioxidant activity of sydnonyl substituted thiazolidinone and thiazoline derivatives. Bioorganic Med Chem, 2004, 12(17), 4633-4643.
[http://dx.doi.org/10.1016/j.bmc.2004.06.033]
[12]
Sharma, R.N.; Xavier, F.P.; Vasu, K.K.; Chaturvedi, S.C.; Pancholi, S.S. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: An analogue-based drug design approach. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 890-897.
[http://dx.doi.org/10.1080/14756360802519558] [PMID: 19469712]
[13]
Gomha, S.M.; Riyadh, S.M.; Abbas, I.M.; Bauomi, M.A. Synthetic utility of ethylidenethiosemicarbazide: Synthesis and anticancer activity of 1,3-thiazines and thiazoles with imidazole moiety. Heterocycles, 2013, 87(2), 341-356.
[http://dx.doi.org/10.3987/COM-12-12625]
[14]
Gomha, S.M.; Salah, T.A.; Abdelhamid, A.O. Synthesis, characterization, and pharmacological evaluation of some novel thiadiazoles and thiazoles incorporating pyrazole moiety as anticancer agents. Monatsh. Chem., 2015, 146(1), 149-158.
[http://dx.doi.org/10.1007/s00706-014-1303-9]
[15]
Liessi, N.; Pesce, E.; Salis, A.; Damonte, G.; Tasso, B.; Cichero, E. Synthesis and structure-activity relationship of aminoarylthiazole derivatives as potential potentiators of the chloride transport defect in cystic fibrosis. Med. Chem. (Los Angeles), 2020, 17(6), 646-657.
[PMID: 32141420]
[16]
Lesyk, R.; Vladzimirska, O.; Holota, S.; Zaprutko, L.; Gzella, A. New 5-substituted thiazolo[3,2-b][1,2,4]triazol-6-ones: Synthesis and anticancer evaluation. Eur. J. Med. Chem., 2007, 42(5), 641-648.
[http://dx.doi.org/10.1016/j.ejmech.2006.12.006] [PMID: 17303290]
[17]
Havrylyuk, D.; Zimenkovsky, B.; Vasylenko, O.; Zaprutko, L.; Gzella, A.; Lesyk, R. Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. Eur. J. Med. Chem., 2009, 44(4), 1396-1404.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.032] [PMID: 19000643]
[18]
Kaminskyy, D.; Zimenkovsky, B.; Lesyk, R. Synthesis and in vitro anticancer activity of 2,4-azolidinedione-acetic acids derivatives. Eur. J. Med. Chem., 2009, 44(9), 3627-3636.
[http://dx.doi.org/10.1016/j.ejmech.2009.02.023] [PMID: 19299038]
[19]
Merino, P.; Tejero, T.; Unzurrunzaga, F.J.; Franco, S.; Chiacchio, U.; Saita, M.G. An efficient approach to enantiomeric isoxazolidinyl analogues of tiazofurin based on nitrone cycloadditions. Tetrahedron Asymmetry, 2005, 16(23), 3865-3876.
[http://dx.doi.org/10.1016/j.tetasy.2005.11.004]
[20]
Subramaniam, N.; Kannan, P.; K, A.; Thiruvengadam, D. Hepatoprotective effect of boldine against diethylnitrosamine-induced hepatocarcinogenesis in wistar rats. J. Biochem. Mol. Toxicol., 2019, 33(12), e22404.
[http://dx.doi.org/10.1002/jbt.22404] [PMID: 31593341]
[21]
Poli, G.; Leonarduzzi, G.; Biasi, F.; Chiarpotto, E. Oxidative stress and cell signalling. Curr. Med. Chem., 2004, 11(9), 1163-1182.
[http://dx.doi.org/10.2174/0929867043365323] [PMID: 15134513]
[22]
Heindryckx, F.; Colle, I.; Van Vlierberghe, H. Experimental mouse models for hepatocellular carcinoma research. Int. J. Exp. Pathol., 2009, 90(4), 367-386.
[http://dx.doi.org/10.1111/j.1365-2613.2009.00656.x] [PMID: 19659896]
[23]
Yadav, A.S.; Bhatnagar, D. Chemo-preventive effect of Star anise in N-nitrosodiethylamine initiated and phenobarbital promoted hepato-carcinogenesis. Chem. Biol. Interact., 2007, 169(3), 207-214.
[http://dx.doi.org/10.1016/j.cbi.2007.06.032] [PMID: 17658503]
[24]
Sheweita, S.A.; El-Gabar, M.A.; Bastawy, M. Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: Role of antioxidants. Toxicology, 2001, 169(2), 83-92.
[http://dx.doi.org/10.1016/S0300-483X(01)00473-5] [PMID: 11718950]
[25]
Sun, Z.; Zhu, Y.; Xia, J.; Sawakami, T.; Kokudo, N.; Zhang, N. Status of and prospects for cancer vaccines against hepatocellular carcinoma in clinical trials. Bio Sci. Trends. Int.l Adv. Center for Medicine and Health Research Co., 2016, 85-91. Available from: https://pubmed.ncbi.nlm.nih.gov/26522694/.
[26]
Wang, C.; Su, L.; Wu, C.; Wu, J.; Zhu, C.; Yuan, G. RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev. Ind. Pharm., 2016, 42(12), 1938-1944.
[http://dx.doi.org/10.1080/03639045.2016.1185435] [PMID: 27142812]
[27]
Ribeiro de Souza, A.; Reig, M.; Bruix, J. Systemic treatment for advanced hepatocellular carcinoma: the search of new agents to join sorafenib in the effective therapeutic armamentarium. Expert Opinion on Pharmacotherapy. Taylor and Francis Ltd, 2016, 17, 1923-1936. Available from: https://pubmed.ncbi.nlm.nih.gov/27598745/.
[28]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[29]
Radwan, R.R.; Zaher, N.H.; El-Gazzar, M.G. Novel 1,2,4-triazole derivatives as antitumor agents against hepatocellular carcinoma. Chem. Biol. Interact., 2017, 274, 68-79.
[http://dx.doi.org/10.1016/j.cbi.2017.07.008] [PMID: 28693887]
[30]
Rubinstein, L.V.; Shoemaker, R.H.; Paull, K.D.; Simon, R.M.; Tosini, S.; Skehan, P.; Scudiero, D.A.; Monks, A.; Boyd, M.R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J. Natl. Cancer Inst., 1990, 82(13), 1113-1118.
[http://dx.doi.org/10.1093/jnci/82.13.1113] [PMID: 2359137]
[31]
Carvalho, C.; Santos, R.X.; Cardoso, S.; Correia, S.; Oliveira, P.J.; Santos, M.S.; Moreira, P.I. Doxorubicin: the good, the bad and the ugly effect. Curr. Med. Chem., 2009, 16(25), 3267-3285.
[http://dx.doi.org/10.2174/092986709788803312] [PMID: 19548866]
[32]
Ma, P.; Mumper, R.J. Anthracycline nano-delivery systems to overcome multiple drug resistance: A comprehensive review; Nano Today.Elsevier B.V., 2013, Vol. 8, pp. 313-331. Internet Available from: https://pubmed.ncbi.nlm.nih.gov/23888183/
[33]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: Molecular advances and pharmacologie developments in antitumor activity and cardiotoxicity. Vol. 56, Pharmacological Reviews. Pharmacol. Rev., 2004, 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[34]
Turner, A.; Li, L.C.; Pilli, T.; Qian, L.; Wiley, E.L.; Setty, S.; Christov, K.; Ganesh, L.; Maker, A.V.; Li, P.; Kanteti, P.; Das Gupta, T.K.; Prabhakar, B.S. MADD knock-down enhances doxorubicin and TRAIL induced apoptosis in breast cancer cells. PLoS One, 2013, 8(2), e56817.
[http://dx.doi.org/10.1371/journal.pone.0056817] [PMID: 23457619]
[35]
Fornari, F.A.; Randolph, J.K.; Yalowich, J.C.; Ritke, M.K.; Gewirtz, D.A. Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol. Pharmacol., 1994, 45(4), 649-656.
[PMID: 8183243]
[36]
Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed spearman-karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol., 1977, 11(7), 714-719.
[http://dx.doi.org/10.1021/es60130a004]
[37]
Moreira, A.J.; Ordoñez, R.; Cerski, C.T.; Picada, J.N.; García- Palomo, A.; Marroni, N.P. Melatonin activates endoplasmic reticulum stress and apoptosis in rats with diethylnitrosamine-induced hepatocarcinogenesis. PLoS One, 2015, 10(12), e0144517.
[http://dx.doi.org/10.1371/journal.pone.0144517]
[38]
Chacko, S.; Samanta, S. A novel approach towards design, synthesis and evaluation of some Schiff base analogues of 2-aminopyridine and 2-aminobezothiazole against hepatocellular carcinoma. Biomed. Pharmacother., 2017, 89, 162-176.
[http://dx.doi.org/10.1016/j.biopha.2017.01.108] [PMID: 28222397]
[39]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[40]
Szasz, G. A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clin. Chem., 1969, 15(2), 124-136.
[http://dx.doi.org/10.1093/clinchem/15.2.124] [PMID: 5773262]
[41]
Hozayen, W.G.; Abou Seif, H.S.; Amin, S. Protective effects of ruitn and / or hesperidin against Doxorubicin-Induced Hepatotoxicity. Int J Clin Nutr, 2014, 2(1), 11-17.
[42]
Walters, M.I.; Gerarde, H.W. An ultramicromethod for the determination of conjugated and total bilirubin in serum or plasma. Microchem. J., 1970, 15(2), 231-243.
[http://dx.doi.org/10.1016/0026-265X(70)90045-7]
[43]
Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol., 1957, 28(1), 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
[44]
Yoshioka, T.; Kawada, K.; Shimada, T.; Mori, M. Lipid peroxidation in maternal and cord blood and protective mechanism against activated-oxygen toxicity in the blood. Am. J. Obstet. Gynecol., 1979, 135(3), 372-376.
[http://dx.doi.org/10.1016/0002-9378(79)90708-7] [PMID: 484629]
[45]
Beutler, E. This Week’s Citation Classic®. Vol. 61. J. Lab. Clin. Med., 1963.
[46]
Norman, M.H.; Liu, L.; Lee, M.; Xi, N.; Fellows, I.; D’Angelo, N.D.; Dominguez, C.; Rex, K.; Bellon, S.F.; Kim, T.S.; Dussault, I. Structure-based design of novel class II c-Met inhibitors: 1. Identification of pyrazolone-based derivatives. J. Med. Chem., 2012, 55(5), 1858-1867.
[http://dx.doi.org/10.1021/jm201330u] [PMID: 22320343]
[47]
Mohey, E-D.I. Chemical behaviours of 3-[1′-chloro-3′-(2″-phenyl-1″,3″-oxazol-5″-one=4″-ylidene)propen-1′-yl]coumarin towards some nucleophilic reagents. Chin. J. Chem., 2010, 16(6), 533-537.
[http://dx.doi.org/10.1002/cjoc.19980160608]
[48]
Abd El-Moneim, M.; Hasanen, J.A.; El-Deen, I.M.; Abd El-Fattah, W. Synthesis of fused 1,2,4-triazines as potential antimicrobial and antitumor agents. Res. Chem. Intermed., 2015, 41(6), 3543-3561. Available from: https://link.springer.com/article/10.1007/s11164-013-1470-z
[49]
Vachkova-Petrova, R.; Donchev, N.; Borov, B.; Dinoeva, S.; Vassileva, L. Study of the anticarcinogenic activity of lactobacillus bulgaricus in diethylnitrosamine induced cancerogenesis in white rats. Biotechnology and Biotechnological Equipment, 1997, 66-70. Available from: https://www.tandfonline.com/doi/abs/10.1080/13102818.1997.10818932
[50]
Folkman, J. Angiogenesis: An organizing principle for drug discovery? Nat. Rev. Drug Discov., 2007, 6(4), 273-286.
[http://dx.doi.org/10.1038/nrd2115] [PMID: 17396134]
[51]
Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; Ferrara, N.; Fyfe, G.; Rogers, B.; Ross, R.; Kabbinavar, F. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med., 2004, 350(23), 2335-2342.
[http://dx.doi.org/10.1056/NEJMoa032691] [PMID: 15175435]
[52]
Yang, J.; Yan, J.; Liu, B. Targeting VEGF/VEGFR to modulate antitumor immunity. Frontiers in Immunology. Frontiers Media, 2018, 9, 978. Available from: https://pubmed.ncbi.nlm.nih.gov/29774034/
[53]
Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2013, 13(12), 871-882.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[54]
Parast, C.V.; Mroczkowski, B.; Pinko, C.; Misialek, S.; Khambatta, G.; Appelt, K. Characterization and kinetic mechanism of catalytic domain of human Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinase (VEGFR2 TK), a key enzyme in angiogenesis. Biochemistry, 1998, 37(47), 16788-16801.
[http://dx.doi.org/10.1021/bi981291f] [PMID: 9843450]
[55]
Gao, L.; Wang, L.; Sun, Z.; Li, H.; Wang, Q.; Yi, C.; Wang, X. Morusin shows potent antitumor activity for human hepatocellular carcinoma in vitro and in vivo through apoptosis induction and angiogenesis inhibition. Drug Des. Devel. Ther., 2017, 11, 1789-1802.
[http://dx.doi.org/10.2147/DDDT.S138320] [PMID: 28670112]
[56]
Xue, W.J.; Du, J.Y.; Deng, Y.H.; Yan, Z.H.; Liu, J.P.; Liu, Y.; Sun, L.P. Design and synthesis of novel Thiazolo[5,4-d]pyrimidine derivatives as potential angiogenesis inhibitors. Chem. Biodivers., 2019, 16(8), e1900232.
[http://dx.doi.org/10.1002/cbdv.201900232] [PMID: 31287621]
[57]
Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. N. Engl. J. Med., 2005, 353(2), 172-187.
[http://dx.doi.org/10.1056/NEJMra044389] [PMID: 16014887]
[58]
Jahan, M.S.; Vani, G.; Shyamaladevi, C.S. Anti-carcinogenic effect of solarium trilobatum in diethylnitrosamine induced and phenobarbital promoted heaptocarcinogenesis in rats. Asian J. Biochem., 2011, 6(1), 74-81.
[http://dx.doi.org/10.3923/ajb.2011.74.81]
[59]
Cheng, J.; Wang, W.; Zhang, Y.; Liu, X.; Li, M.; Wu, Z.; Liu, Z.; Lv, Y.; Wang, B. Prognostic role of pre-treatment serum AFP-L3% in hepatocellular carcinoma: Systematic review and meta- analysis. PLoS One, 2014, 9(1), e87011.
[http://dx.doi.org/10.1371/journal.pone.0087011] [PMID: 24498011]
[60]
Kim, Y.H.; Kwak, K.A.; Kang, J.S. Expression of neighbor of Punc E11 in hepatocarcinogenesis induced by diethylnitrosamine. Oncol. Rep., 2014, 32(3), 1043-1049.
[http://dx.doi.org/10.3892/or.2014.3285] [PMID: 24969048]
[61]
Helal, G.A.; Ahmed, F.A.; Askora, A.; Saber, T.M.; Rady, S.M. Pseurotin a from aspergillus fumigatus fr. AUMC 8002 exhibits anticancer activity against hepatocellular carcinoma in vitro and in vivo. Slov. Vet. Res., 2019, 56(2), 59-74. Available from: https://www.slovetres.si/index.php/SVR/article/view/610
[http://dx.doi.org/10.26873/SVR-610-2019]
[62]
Lin, X.; Wei, J.; Chen, Y.; He, P.; Lin, J.; Tan, S.; Nie, J.; Lu, S.; He, M.; Lu, Z.; Huang, Q. Isoorientin from Gypsophila elegans induces apoptosis in liver cancer cells via mitochondrial-mediated pathway. J. Ethnopharmacol., 2016, 187, 187-194.
[http://dx.doi.org/10.1016/j.jep.2016.04.050] [PMID: 27130644]
[63]
Becker, J.W.; Rotonda, J.; Soisson, S.M.; Aspiotis, R.; Bayly, C.; Francoeur, S.; Gallant, M.; Garcia-Calvo, M.; Giroux, A.; Grimm, E.; Han, Y.; McKay, D.; Nicholson, D.W.; Peterson, E.; Renaud, J.; Roy, S.; Thornberry, N.; Zamboni, R. Reducing the peptidyl features of caspase-3 inhibitors: A structural analysis. J. Med. Chem., 2004, 47(10), 2466-2474.
[http://dx.doi.org/10.1021/jm0305523] [PMID: 15115390]
[64]
Shi, Y. Mechanisms of caspase activation and inhibition during apoptosis; , 2002.
[http://dx.doi.org/10.1016/S1097-2765(02)00482-3]
[65]
Elaidy, S.M.; Moghazy, A.; El-Kherbetawy, M.K. Evaluation of the therapeutic effects of polyvinylpyrrolidone-capped silver nanoparticles on the diethylnitrosamine/carbon tetrachloride-induced hepatocellular carcinoma in rats. Egyptian J. Basic and Clinical Pharmacol., 2017, 7 Available from: http://www.ejbcp.eg.net/9
[66]
Zaki, I.; Abdelhameid, M.K.; El-Deen, I.M.; Abdel Wahab, A.H.A.; Ashmawy, A.M.; Mohamed, K.O. Design, synthesis and screening of 1, 2, 4-triazinone derivatives as potential antitumor agents with apoptosis inducing activity on MCF-7 breast cancer cell line. Eur. J. Med. Chem., 2018, 156, 563-579.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.003] [PMID: 30025350]
[67]
Z., Mohammed F; A. A., Barakat L; M., Gad E; M., Shetya N In vivo biochemical evaluation of some synthesize thiazole derivatives containing coumarin moiety as antioxidant and antitumor agents. Asian J Res Biochem, 2019, 5(4), 1-15. Available from: https://journalajrb.com/index.php/AJRB/article/view/30104
[68]
Abdo, W.; Hirata, A.; Shukry, M.; Kamal, T.; Abdel-Sattar, E.; Mahrous, E.; Yanai, T. Calligonum comosum extract inhibits diethylnitrosamine-induced hepatocarcinogenesis in rats. Oncol. Lett., 2015, 10(2), 716-722.
[http://dx.doi.org/10.3892/ol.2015.3313] [PMID: 26622559]
[69]
Mohamed, N.Z.; Aly, H.F.; El-Mezayen, H.A.M.; El-Salamony, H.E. Bee honey modulates the oxidant-antioxidant imbalance in diethyl nitrosamine-initiated rat hepatocellular carcinoma. J. Appl. Pharm. Sci., 2016, 6(7), 156-163.
[http://dx.doi.org/10.7324/JAPS.2016.60723]
[70]
Bulle, F.; Mavier, P.; Zafrani, E.S.; Preaux, A-M.; Lescs, M-C.; Siegrist, S.; Dhumeaux, D.; Guellaën, G. Mechanism of γ-glutamyl transpeptidase release in serum during intrahepatic and extrahepatic cholestasis in the rat: a histochemical, biochemical and molecular approach. Hepatol., 1990, 11(4), 545-550.
[http://dx.doi.org/10.1002/hep.1840110404] [PMID: 1970323]
[71]
Patel, N.H.; Condron, B.G.; Zinn, K. Pair-rule expression patterns of even-skipped are found in both short- and long-germ beetles. Nature, 1994, 367(6462), 429-434.
[http://dx.doi.org/10.1038/367429a0] [PMID: 8107801]
[72]
Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic activity of artemisia brevifolia in sheep. J. Ethnopharmacol., 2004, 93(2-3), 265-268.
[http://dx.doi.org/10.1016/j.jep.2004.03.046] [PMID: 15234763]
[73]
Gupta, N; Singh, T; Chaudhary, R; Garg, SK; Sandhu, GS; Mittal, V Bilirubin in coronary artery disease: Cytotoxic or protective? World J Gastrointest Pharmacol Ther, 2016, 7(4), 469.
[74]
Atefipour, N; Dianat, M; Badavi, M; Sarkaki, A. Ameliorative effect of vanillic acid on serum bilirubin, chronotropic and dromotropic properties in the cholestasis-induced model rats. Electron physician, 2016, 8(5), 2410-2415.
[75]
Kawasaki, N.; Hamamoto, Y.; Nakajima, T.; Irie, K.; Ozawa, H. Periodontal regeneration of transplanted rat molars after cryopreservation. Arch. Oral Biol., 2004, 49(1), 59-69.
[http://dx.doi.org/10.1016/j.archoralbio.2003.07.002] [PMID: 14693198]
[76]
Ali, R.; Siddiqui, N. Preliminary anticonvulsant and toxicity screening of substituted benzylidenehydrazinyl-N-(6-substituted benzo[d]thiazol-2-yl)propanamides. Scientific World J., 2014, 2014, 194652.
[http://dx.doi.org/10.1155/2014/194652] [PMID: 25580452]
[77]
Parola, M.; Robino, G. Oxidative stress-related molecules and liver fibrosis. J. Hepatol., 2001, 35(2), 297-306.
[http://dx.doi.org/10.1016/S0168-8278(01)00142-8] [PMID: 11580156]
[78]
Kamel, I.S. Biochemical studies on hepatocellular carcinoma in male rats: The protective role of purslane seeds extract. World J. Pharm. Pharm. Sci., 2017, 41-56.
[http://dx.doi.org/10.20959/wjpps20179-9926]
[79]
Ge, L.; Hu, Q.; Shi, M.; Yang, H.; Zhu, G. Design and discovery of novel thiazole derivatives as potential MMP inhibitors to protect against acute lung injury in sepsis rats: via attenuation of inflammation and apoptotic oxidative stress. RSC Adv., 2017, 7(52), 32909-32922. Available from: https://pubs.rsc.org/en/content/articlehtml/2017/ra/c7ra03511j

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy