Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Glimpse into the Cellular Internalization and Intracellular Trafficking of Lipid- Based Nanoparticles in Cancer Cells

Author(s): Elham Kamal Kazemi, Fereydoon Abedi-Gaballu, Tala Farid Mohammad Hosseini, Ali Mohammadi, Behzad Mansoori, Gholamreza Dehghan*, Behzad Baradaran* and Nader Sheibani

Volume 22, Issue 10, 2022

Published on: 11 January, 2022

Page: [1897 - 1912] Pages: 16

DOI: 10.2174/1871520621666210906101421

Price: $65

Abstract

Lipid-based nanoparticles, as drug delivery carriers, are commonly used for the delivery of anti-cancer therapeutic agents. Due to their smaller particle size and similarity to cell membranes, Lipid-based nanoparticles are readily internalized into cancer cells. Cancer cells also overexpress receptors for specific ligands, including folic acid, hyaluronic acid, and transferrin, on their surface, thus, allowing the use of their ligands for surface modification of the lipid-based nanoparticles for their specific recognition by receptors on cancer cells. This would also allow the gradual intracellular accumulation of the targeted functionalized nanoplatforms. These ligand-receptor interactions eventually enhance the internalization of desired drugs by increasing the nanoplatforms cellular uptake. The cellular internalization of the nanoplatforms varies and depends on their physicochemical properties, including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathways utilized by cells, such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. This review classifies and discusses lipidbased nanoparticles engineered to carry specific ligands, their recognition by receptors on cancer cells, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and their best internalization pathway (caveolae-mediated endocytosis) for safe cargo delivery are also discussed.

Keywords: Cancer, cellular uptake, drug delivery, endocytosis, intracellular trafficking, lipid-based nanoparticles.

Graphical Abstract
[1]
Obeid, M.A. Lipid-based nanoparticles for cancer treatment.In: Lipid Nanocarriers for Drug Targeting; Elsevier, 2018, pp. 313-359.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00008-6]
[2]
Ni, J.; Zhang, L. Cancer cachexia: Definition, staging, and emerging treatments. Cancer Manag. Res., 2020, 12, 5597-5605.
[http://dx.doi.org/10.2147/CMAR.S261585] [PMID: 32753972]
[3]
Liu, J. Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chem. Eng. J., 2020, 381 ,122541
[http://dx.doi.org/10.1016/j.cej.2019.122541]
[4]
Agarwal, S. Formulation, characterization and evaluation of morusin loaded niosomes for potentiation of anticancer therapy. RSC Advances, 2018, 8(57), 32621-32636.
[http://dx.doi.org/10.1039/C8RA06362A]
[5]
Zakeri-Milani, P.; Mussa Farkhani, S.; Shirani, A.; Mohammadi, S.; Shahbazi Mojarrad, J.; Akbari, J.; Valizadeh, H. Cellular uptake and anti-tumor activity of gemcitabine conjugated with new amphiphilic cell penetrating peptides. EXCLI J., 2017, 16, 650-662.
[PMID: 28694765]
[6]
Wu, C. Self‐powered iontophoretic transdermal drug delivery system driven and regulated by biomechanical motions. Adv. Funct. Mater., 2020, 30(3) ,1907378
[http://dx.doi.org/10.1002/adfm.201907378]
[7]
Abedi-Gaballu, F. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today, 2018, 12, 177-190.
[http://dx.doi.org/10.1016/j.apmt.2018.05.002]
[8]
Zeinali, M.; Abbaspour-Ravasjani, S.; Ghorbani, M.; Babazadeh, A.; Soltanfam, T.; Santos, A.C.; Hamishehkar, H.; Hamblin, M.R. Nanovehicles for co-delivery of anticancer agents. Drug Discov. Today, 2020, 25(8), 1416-1430.
[http://dx.doi.org/10.1016/j.drudis.2020.06.027] [PMID: 32622880]
[9]
Buse, J.; El-Aneed, A. Properties, engineering and applications of lipid-based nanoparticle drug-delivery systems: current research and advances. Nanomedicine (Lond.), 2010, 5(8), 1237-1260.
[http://dx.doi.org/10.2217/nnm.10.107] [PMID: 21039200]
[10]
Yingchoncharoen, P.; Kalinowski, D.S.; Richardson, D.R. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol. Rev., 2016, 68(3), 701-787.
[http://dx.doi.org/10.1124/pr.115.012070] [PMID: 27363439]
[11]
Siafaka, P.I.; Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: current status and uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[12]
Niora, M.; Pedersbæk, D.; Münter, R.; Weywadt, M.F.V.; Farhangibarooji, Y.; Andresen, T.L.; Simonsen, J.B.; Jauffred, L. Head-to-head comparison of the penetration efficiency of lipid-based nanoparticles into tumor spheroids. ACS Omega, 2020, 5(33), 21162-21171.
[http://dx.doi.org/10.1021/acsomega.0c02879] [PMID: 32875252]
[13]
Turánek, J. Lipid-based nanoparticles and microbubbles–multifunctional lipid-based biocompatible particles for in vivo imaging and theranostics.Adv. Bioeng; , 2015, pp. 79-116.
[http://dx.doi.org/10.5772/59870]
[14]
Kafshgari, M.H.; Harding, F.J.; Voelcker, N.H. Insights into cellular uptake of nanoparticles. Curr. Drug Deliv., 2015, 12(1), 63-77.
[http://dx.doi.org/10.2174/1567201811666140821110631] [PMID: 25146441]
[15]
Bareford, L.M.; Swaan, P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev., 2007, 59(8), 748-758.
[http://dx.doi.org/10.1016/j.addr.2007.06.008] [PMID: 17659804]
[16]
Gao, H.; Yang, Z.; Zhang, S.; Cao, S.; Shen, S.; Pang, Z.; Jiang, X. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci. Rep., 2013, 3, 2534.
[http://dx.doi.org/10.1038/srep02534] [PMID: 23982586]
[17]
Foroozandeh, P.; Aziz, A.A. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res. Lett., 2018, 13(1), 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[18]
Alshehri, A.; Grabowska, A.; Stolnik, S. Pathways of cellular internalisation of liposomes delivered siRNA and effects on siRNA engagement with target mRNA and silencing in cancer cells. Sci. Rep., 2018, 8(1), 3748.
[http://dx.doi.org/10.1038/s41598-018-22166-3] [PMID: 29491352]
[19]
Amit, C.; Padmanabhan, P.; Elchuri, S.V.; Narayanan, J. Probing the effect of matrix stiffness in endocytic signalling pathway of corneal epithelium. Biochem. Biophys. Res. Commun., 2020, 525(2), 280-285.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.067] [PMID: 32087964]
[20]
Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: current progress and advances. J. Control. Release, 2014, 194, 238-256.
[http://dx.doi.org/10.1016/j.jconrel.2014.09.001] [PMID: 25204288]
[21]
Singh, A.; Trivedi, P.; Jain, N.K. Advances in siRNA delivery in cancer therapy. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 274-283.
[http://dx.doi.org/10.1080/21691401.2017.1307210] [PMID: 28423924]
[22]
Sahay, G.; Alakhova, D.Y.; Kabanov, A.V. Endocytosis of nanomedicines. J. Control. Release, 2010, 145(3), 182-195.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[23]
Klemm, A.R.; Young, D.; Lloyd, J.B. Effects of polyethyleneimine on endocytosis and lysosome stability. Biochem. Pharmacol., 1998, 56(1), 41-46.
[http://dx.doi.org/10.1016/S0006-2952(98)00098-7] [PMID: 9698087]
[24]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[25]
Luzio, J.P.; Rous, B.A.; Bright, N.A.; Pryor, P.R.; Mullock, B.M.; Piper, R.C. Lysosome-endosome fusion and lysosome biogenesis. J. Cell Sci., 2000, 113(Pt 9), 1515-1524.
[http://dx.doi.org/10.1242/jcs.113.9.1515] [PMID: 10751143]
[26]
Kou, L. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian J. Pharma. Sci., 2013, 8(1), 1-10.
[http://dx.doi.org/10.1016/j.ajps.2013.07.001]
[27]
Langston Suen, W.L.; Chau, Y. Size-dependent internalisation of folate-decorated nanoparticles via the pathways of clathrin and caveolae-mediated endocytosis in ARPE-19 cells. J. Pharm. Pharmacol., 2014, 66(4), 564-573.
[http://dx.doi.org/10.1111/jphp.12134] [PMID: 24635558]
[28]
Yamano, S.; Dai, J.; Yuvienco, C.; Khapli, S.; Moursi, A.M.; Montclare, J.K. Modified Tat peptide with cationic lipids enhances gene transfection efficiency via temperature-dependent and caveolae-mediated endocytosis. J. Control. Release, 2011, 152(2), 278-285.
[http://dx.doi.org/10.1016/j.jconrel.2011.02.004] [PMID: 21315780]
[29]
Xu, S.; Olenyuk, B.Z.; Okamoto, C.T.; Hamm-Alvarez, S.F. Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv. Drug Deliv. Rev., 2013, 65(1), 121-138.
[http://dx.doi.org/10.1016/j.addr.2012.09.041] [PMID: 23026636]
[30]
Donahue, N.D.; Acar, H.; Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev., 2019, 143, 68-96.
[http://dx.doi.org/10.1016/j.addr.2019.04.008] [PMID: 31022434]
[31]
Sakpakdeejaroen, I.; Somani, S.; Mullin, M.; Dufès, C. Development of transferrin-bearing vesicles encapsulating aspirin for cancer therapy. J. Liposome Res., 2020, 30(2), 174-181.
[http://dx.doi.org/10.1080/08982104.2019.1614054] [PMID: 31060409]
[32]
Chuang, S-Y.; Lin, C.H.; Huang, T.H.; Fang, J.Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials (Basel), 2018, 8(1), 42.
[http://dx.doi.org/10.3390/nano8010042] [PMID: 29342965]
[33]
Miller, A.D. Lipid-based nanoparticles in cancer diagnosis and therapy. J. Drug Del., 2013, 2013 ,165981
[http://dx.doi.org/10.1155/2013/165981]
[34]
Naderinezhad, S.; Amoabediny, G.; Haghiralsadat, F. Co-delivery of hydrophilic and hydrophobic anticancer drugs using biocompatible pH-sensitive lipid-based nano-carriers for multidrug-resistant cancers. RSC Advances, 2017, 7(48), 30008-30019.
[http://dx.doi.org/10.1039/C7RA01736G]
[35]
Rajabi, M.; Mousa, S.A. Lipid nanoparticles and their application in nanomedicine. Curr. Pharm. Biotechnol., 2016, 17(8), 662-672.
[http://dx.doi.org/10.2174/1389201017666160415155457] [PMID: 27087491]
[36]
García-Pinel, B.; Porras-Alcalá, C.; Ortega-Rodríguez, A.; Sarabia, F.; Prados, J.; Melguizo, C.; López-Romero, J.M. Lipid-based nanoparticles: application and recent advances in cancer treatment. Nanomaterials (Basel), 2019, 9(4), 638.
[http://dx.doi.org/10.3390/nano9040638] [PMID: 31010180]
[37]
Cheng, R.; Liu, L.; Xiang, Y.; Lu, Y.; Deng, L.; Zhang, H.; Santos, H.A.; Cui, W. Advanced liposome-loaded scaffolds for therapeutic and tissue engineering applications. Biomaterials, 2020, 232 ,119706
[http://dx.doi.org/10.1016/j.biomaterials.2019.119706] [PMID: 31918220]
[38]
Filipczak, N.; Pan, J.; Yalamarty, S.S.K.; Torchilin, V.P. Recent advancements in liposome technology. Adv. Drug Deliv. Rev., 2020, 156, 4-22.
[http://dx.doi.org/10.1016/j.addr.2020.06.022] [PMID: 32593642]
[39]
Maritim, S.; Boulas, P.; Lin, Y. Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int. J. Pharm., 2021, 592 ,120051
[http://dx.doi.org/10.1016/j.ijpharm.2020.120051] [PMID: 33161039]
[40]
Ji, P.; Yu, T.; Liu, Y.; Jiang, J.; Xu, J.; Zhao, Y.; Hao, Y.; Qiu, Y.; Zhao, W.; Wu, C. Naringenin-loaded solid lipid nanoparticles: preparation, controlled delivery, cellular uptake, and pulmonary pharmacokinetics. Drug Des. Devel. Ther., 2016, 10, 911-925.
[PMID: 27041995]
[41]
Serpe, L.; Catalano, M.G.; Cavalli, R.; Ugazio, E.; Bosco, O.; Canaparo, R.; Muntoni, E.; Frairia, R.; Gasco, M.R.; Eandi, M.; Zara, G.P. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur. J. Pharm. Biopharm., 2004, 58(3), 673-680.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.026] [PMID: 15451544]
[42]
Müller, R.H.; Maassen, S.; Weyhers, H.; Mehnert, W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J. Drug Target., 1996, 4(3), 161-170.
[http://dx.doi.org/10.3109/10611869609015973] [PMID: 8959488]
[43]
Yuan, H.; Miao, J.; Du, Y.Z.; You, J.; Hu, F.Q.; Zeng, S. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm., 2008, 348(1-2), 137-145.
[http://dx.doi.org/10.1016/j.ijpharm.2007.07.012] [PMID: 17714896]
[44]
Rivolta, I.; Panariti, A.; Lettiero, B.; Sesana, S.; Gasco, P.; Gasco, M.R.; Masserini, M.; Miserocchi, G. Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles. J. Physiol. Pharmacol., 2011, 62(1), 45-53.
[PMID: 21451209]
[45]
Martins, S.; Costa-Lima, S.; Carneiro, T.; Cordeiro-da-Silva, A.; Souto, E.B.; Ferreira, D.C. Solid lipid nanoparticles as intracellular drug transporters: an investigation of the uptake mechanism and pathway. Int. J. Pharm., 2012, 430(1-2), 216-227.
[http://dx.doi.org/10.1016/j.ijpharm.2012.03.032] [PMID: 22465548]
[46]
Teskač, K.; Kristl, J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int. J. Pharm., 2010, 390(1), 61-69.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.011] [PMID: 19833178]
[47]
Hatefi, L.; Farhadian, N. A safe and efficient method for encapsulation of ferrous sulfate in solid lipid nanoparticle for non-oxidation and sustained iron delivery. Colloid. Interf. Sci. Communi., 2020, 34 ,100227
[http://dx.doi.org/10.1016/j.colcom.2019.100227]
[48]
Garanti, T.; Alhnan, M.A.; Wan, K-W. RGD-decorated solid lipid nanoparticles enhance tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine (Lond.), 2020, 15(16), 1567-1583.
[http://dx.doi.org/10.2217/nnm-2020-0035] [PMID: 32618517]
[49]
Jain, S.A.; Basu, H.; Prabhu, P.S.; Soni, U.; Joshi, M.D.; Mathur, D.; Patravale, V.B.; Pathak, S.; Sharma, S. Parasite impairment by targeting Plasmodium-infected RBCs using glyceryl-dilaurate nanostructured lipid carriers. Biomaterials, 2014, 35(24), 6636-6645.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.058] [PMID: 24818881]
[50]
Khan, A.A.; Abdulbaqi, I.M.; Abou Assi, R.; Murugaiyah, V.; Darwis, Y. Lyophilized hybrid nanostructured lipid carriers to enhance the cellular uptake of verapamil: Statistical optimization and in vitro evaluation. Nanoscale Res. Lett., 2018, 13(1), 323.
[http://dx.doi.org/10.1186/s11671-018-2744-6] [PMID: 30324291]
[51]
Safwat, S.; Ishak, R.A.H.; Hathout, R.M.; Mortada, N.D. Nanostructured lipid carriers loaded with simvastatin: effect of PEG/glycerides on characterization, stability, cellular uptake efficiency and in vitro cytotoxicity. Drug Dev. Ind. Pharm., 2017, 43(7), 1112-1125.
[http://dx.doi.org/10.1080/03639045.2017.1293681] [PMID: 28276784]
[52]
Arshad, S. Masood-Ur-Rehman; Hussain Asim, M.; Nazir, I.; Shahzadi, I.; Mousli, M.; Bernkop-Schnürch, A. S-Protected thiolated nanostructured lipid carriers exhibiting improved mucoadhesive properties. Int. J. Pharm., 2020, 587 ,119690
[http://dx.doi.org/10.1016/j.ijpharm.2020.119690] [PMID: 32738459]
[53]
Soni, N.K.; Sonali, L.J.; Singh, A.; Mangla, B.; Neupane, Y.R.; Kohli, K. Nanostructured lipid carrier potentiated oral delivery of raloxifene for breast cancer treatment. Nanotechnology, 2020, 31(47) ,475101
[http://dx.doi.org/10.1088/1361-6528/abaf81] [PMID: 32886644]
[54]
Kardara, M.; Hatziantoniou, S.; Sfika, A.; Vassiliou, A.G.; Mourelatou, E.; Muagkou, C.; Armaganidis, A.; Roussos, C.; Orfanos, S.E.; Kotanidou, A.; Maniatis, N.A. Caveolar uptake and endothelial-protective effects of nanostructured lipid carriers in acid aspiration murine acute lung injury. Pharm. Res., 2013, 30(7), 1836-1847.
[http://dx.doi.org/10.1007/s11095-013-1027-2] [PMID: 23549752]
[55]
Su, Z.; Niu, J.; Xiao, Y.; Ping, Q.; Sun, M.; Huang, A.; You, W.; Sang, X.; Yuan, D. Effect of octreotide-polyethylene glycol(100) monostearate modification on the pharmacokinetics and cellular uptake of nanostructured lipid carrier loaded with hydroxycamptothecine. Mol. Pharm., 2011, 8(5), 1641-1651.
[http://dx.doi.org/10.1021/mp100463n] [PMID: 21770405]
[56]
Houacine, C.; Adams, D.; Singh, K.K. Impact of liquid lipid on development and stability of trimyristin nanostructured lipid carriers for oral delivery of resveratrol. J. Mol. Liq., 2020, 316 ,113734
[http://dx.doi.org/10.1016/j.molliq.2020.113734]
[57]
Pyo, Y-C.; Tran, P.; Kim, D.H.; Park, J.S. Chitosan-coated nanostructured lipid carriers of fenofibrate with enhanced oral bioavailability and efficacy. Colloids Surf. B Biointerfaces, 2020, 196 ,111331
[http://dx.doi.org/10.1016/j.colsurfb.2020.111331] [PMID: 32906001]
[58]
Dong, Z.; Iqbal, S.; Zhao, Z. Preparation of ergosterol-loaded nanostructured lipid carriers for enhancing oral bioavailability and antidiabetic nephropathy effects. AAPS PharmSciTech, 2020, 21(2), 64.
[http://dx.doi.org/10.1208/s12249-019-1597-3] [PMID: 31932990]
[59]
Borges, A.; Freitas, V.; Mateus, N.; Fernandes, I.; Oliveira, J. Solid lipid nanoparticles as carriers of natural phenolic compounds. Antioxidants, 2020, 9(10), 998.
[http://dx.doi.org/10.3390/antiox9100998] [PMID: 33076501]
[60]
Ammar, H.O.; Tadros, M.I.; Salama, N.M.; Ghoneim, A.M. Ethosome-derived invasomes as a potential transdermal delivery system for vardenafil hydrochloride: Development, optimization and application of physiologically based pharmacokinetic modeling in adults and geriatrics. Int. J. Nanomedicine, 2020, 15, 5671-5685.
[http://dx.doi.org/10.2147/IJN.S261764] [PMID: 32821096]
[61]
Dhurve, R.; Kashyap, N.; Mishra, A.; Pathak, A.K. A holistic review on ethosome: A promising drug delivery system for topical fungal disease. Int. J. Pharm. Biol. Arch., 2015, 5(5)
[62]
Jain, S.; Tiwary, A.K.; Sapra, B.; Jain, N.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech, 2007, 8(4) ,E111
[http://dx.doi.org/10.1208/pt0804111] [PMID: 18181532]
[63]
Touitou, E.; Godin, B.; Dayan, N.; Weiss, C.; Piliponsky, A.; Levi-Schaffer, F. Intracellular delivery mediated by an ethosomal carrier. Biomaterials, 2001, 22(22), 3053-3059.
[http://dx.doi.org/10.1016/S0142-9612(01)00052-7] [PMID: 11575480]
[64]
Zhang, Y-T.; Shen, L.N.; Wu, Z.H.; Zhao, J.H.; Feng, N.P. Evaluation of skin viability effect on ethosome and liposome-mediated psoralen delivery via cell uptake. J. Pharm. Sci., 2014, 103(10), 3120-3126.
[http://dx.doi.org/10.1002/jps.24096] [PMID: 25070929]
[65]
Akbari, V. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation. J. Nanopart. Res., 2013, 15(4), 1556.
[http://dx.doi.org/10.1007/s11051-013-1556-y]
[66]
Machado, N.D. Cholesterol free niosome production by microfluidics: comparative with other conventional methods. Chem. Eng. Res. Des., 2020, 162, 162-171.
[http://dx.doi.org/10.1016/j.cherd.2020.08.002]
[67]
Paecharoenchai, O.; Niyomtham, N.; Leksantikul, L.; Ngawhirunpat, T.; Rojanarata, T.; Yingyongnarongkul, B.E.; Opanasopit, P. Nonionic surfactant vesicles composed of novel spermine-derivative cationic lipids as an effective gene carrier in vitro. AAPS PharmSciTech, 2014, 15(3), 722-730.
[http://dx.doi.org/10.1208/s12249-014-0095-x] [PMID: 24623349]
[68]
Singh, P.; Ansari, H.; Dabre, S. Niosomes-a novel tool for anti-ageing cosmeceuticals. J. Pharm. Res., 2016, 6(10)
[69]
Shaker, D.S.; Shaker, M.A.; Hanafy, M.S. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. Int. J. Pharm., 2015, 493(1-2), 285-294.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.041] [PMID: 26200748]
[70]
Pardakhty, A.; Moazeni, E. Nano-niosomes in drug, vaccine and gene delivery: a rapid overview. Nanome. J., 2013, 1(1), 1-12.
[71]
Benson, H.A. Transfersomes for transdermal drug delivery. Expert Opin. Drug Deliv., 2006, 3(6), 727-737.
[http://dx.doi.org/10.1517/17425247.3.6.727] [PMID: 17076595]
[72]
Sarmah, P.J.; Kalita, B.; Sharma, A.K. Transfersomes based transdermal drug delivery: an overview. IJAPR, 2013, 4(12), 2555-2563.
[73]
Reddy, Y.D. Transferosomes a novel vesicular carrier for transdermal drug delivery system. J. Innov. Pharm. Biol. Sci, 2015, 2, 193-208.
[74]
Rajan, R.; Jose, S.; Mukund, V.P.; Vasudevan, D.T. Transferosomes - A vesicular transdermal delivery system for enhanced drug permeation. J. Adv. Pharm. Technol. Res., 2011, 2(3), 138-143.
[http://dx.doi.org/10.4103/2231-4040.85524] [PMID: 22171309]
[75]
Luo, Q.; Lin, T.; Zhang, C.Y.; Zhu, T.; Wang, L.; Ji, Z.; Jia, B.; Ge, T.; Peng, D.; Chen, W. A novel glyceryl monoolein-bearing cubosomes for gambogenic acid: Preparation, cytotoxicity and intracellular uptake. Int. J. Pharm., 2015, 493(1-2), 30-39.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.036] [PMID: 26209071]
[76]
Abdel-Bar, H.M.; El Basset Sanad, R.A. Endocytic pathways of optimized resveratrol cubosomes capturing into human hepatoma cells. Biomed. Pharmacother., 2017, 93, 561-569.
[http://dx.doi.org/10.1016/j.biopha.2017.06.093] [PMID: 28686970]
[77]
Meikle, T.G.; Dyett, B.P.; Strachan, J.B.; White, J.; Drummond, C.J.; Conn, C.E. Preparation, characterization, and antimicrobial activity of cubosome encapsulated metal nanocrystals. ACS Appl. Mater. Interfaces, 2020, 12(6), 6944-6954.
[http://dx.doi.org/10.1021/acsami.9b21783] [PMID: 31917545]
[78]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: an overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[79]
Liu, Z.; Luo, L.; Zheng, S.; Niu, Y.; Bo, R.; Huang, Y.; Xing, J.; Li, Z.; Wang, D. Cubosome nanoparticles potentiate immune properties of immunostimulants. Int. J. Nanomedicine, 2016, 11, 3571-3583.
[http://dx.doi.org/10.2147/IJN.S110406] [PMID: 27536099]
[80]
Muchow, M.; Maincent, P.; Müller, R.H. Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev. Ind. Pharm., 2008, 34(12), 1394-1405.
[http://dx.doi.org/10.1080/03639040802130061] [PMID: 18665980]
[81]
Ravalika, V.; Sailaja, A. Formulation and evaluation of etoricoxib niosomes by thin film hydration technique and ether injection method. Nano Biomed. Eng., 2017, 9(3), 242-248.
[http://dx.doi.org/10.5101/nbe.v9i3.p242-248]
[82]
Rizwan, S.B.; Assmus, D.; Boehnke, A.; Hanley, T.; Boyd, B.J.; Rades, T.; Hook, S. Preparation of phytantriol cubosomes by solvent precursor dilution for the delivery of protein vaccines. Eur. J. Pharm. Biopharm., 2011, 79(1), 15-22.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.034] [PMID: 21237267]
[83]
De Marco Almeida, F.; Silva, C.N.; de Araujo Lopes, S.C.; Santos, D.M.; Torres, F.S.; Cardoso, F.L.; Martinelli, P.M.; da Silva, E.R.; de Lima, M.E.; Miranda, L.A.F.; Oliveira, M.C. Physicochemical characterization and skin permeation of cationic transfersomes containing the synthetic peptide PnPP-19. Curr. Drug Deliv., 2018, 15(7), 1064-1071.
[http://dx.doi.org/10.2174/1567201815666180108170206] [PMID: 29318970]
[84]
Liu, Y.; Workalemahu, B.; Jiang, X. The effects of physicochemical properties of nanomaterials on their cellular uptake in vitro and in vivo. Small, 2017, 13(43) ,1701815
[http://dx.doi.org/10.1002/smll.201701815] [PMID: 28941063]
[85]
Andar, A.U.; Hood, R.R.; Vreeland, W.N.; Devoe, D.L.; Swaan, P.W. Microfluidic preparation of liposomes to determine particle size influence on cellular uptake mechanisms. Pharm. Res., 2014, 31(2), 401-413.
[http://dx.doi.org/10.1007/s11095-013-1171-8] [PMID: 24092051]
[86]
Zhang, W.; Liu, J.; Zhang, Q.; Li, X.; Yu, S.; Yang, X.; Kong, J.; Pan, W. Enhanced cellular uptake and anti-proliferating effect of chitosan hydrochlorides modified genistein loaded NLC on human lens epithelial cells. Int. J. Pharm., 2014, 471(1-2), 118-126.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.030] [PMID: 24858387]
[87]
Zhu, M.; Nie, G.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc. Chem. Res., 2013, 46(3), 622-631.
[http://dx.doi.org/10.1021/ar300031y] [PMID: 22891796]
[88]
Li, J.; Guo, X.; Liu, Z.; Okeke, C.I.; Li, N.; Zhao, H.; Aggrey, M.O.; Pan, W.; Wu, T. Preparation and evaluation of charged solid lipid nanoparticles of tetrandrine for ocular drug delivery system: pharmacokinetics, cytotoxicity and cellular uptake studies. Drug Dev. Ind. Pharm., 2014, 40(7), 980-987.
[http://dx.doi.org/10.3109/03639045.2013.795582] [PMID: 23662696]
[89]
Beloqui, A.; Solinís, M.Á.; Gascón, A.R.; del Pozo-Rodríguez, A.; des Rieux, A.; Préat, V. Mechanism of transport of saquinavir-loaded nanostructured lipid carriers across the intestinal barrier. J. Control. Release, 2013, 166(2), 115-123.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.021] [PMID: 23266764]
[90]
Patel, S. Naturally-occurring cholesterol analogues in lipid nanoparticles induce polymorphic shape and enhance intracellular delivery of mRNA. Nat. Commun., 2020, 11(1), 1-13.
[http://dx.doi.org/10.1038/s41467-020-14527-2] [PMID: 31911652]
[91]
Chithrani, B.D.; Chan, W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[92]
Ding, L.; Yao, C.; Yin, X.; Li, C.; Huang, Y.; Wu, M.; Wang, B.; Guo, X.; Wang, Y.; Wu, M. Size, shape, and protein corona determine cellular uptake and removal mechanisms of gold nanoparticles. Small, 2018, 14(42) ,e1801451
[http://dx.doi.org/10.1002/smll.201801451] [PMID: 30239120]
[93]
Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Kim, D.D. Enhanced in vitro cellular uptake of P-gp substrate by poloxamer-modified liposomes (PMLs) in MDR cancer cells. J. Microencapsul., 2011, 28(6), 575-581.
[http://dx.doi.org/10.3109/02652048.2011.599436] [PMID: 21770706]
[94]
Golchoobi, A. Effect of charge, size and temperature on stability of charged colloidal nano particles. Chin. J. Chem. Phys., 2012, 25(5), 617.
[http://dx.doi.org/10.1088/1674-0068/25/05/617-624]
[95]
Narenji, M.; Talaee, M.R.; Moghimi, H.R. Effect of charge on separation of liposomes upon stagnation. Iran. J. Pharm. Res., 2017, 16(2), 423-431.
[PMID: 28979297]
[96]
Park, B.G. Assessment of cellular uptake efficiency according to multiple inhibitors of Fe3O4-au core-shell nanoparticles: Possibility to control specific endocytosis in colorectal cancer cells. Nanoscale Res. Lett., 2020, 15(1), 1-10.
[http://dx.doi.org/10.1186/s11671-020-03395-w] [PMID: 31897852]
[97]
Manzanares, D.; Ceña, V. Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 2020, 12(4), 371.
[http://dx.doi.org/10.3390/pharmaceutics12040371] [PMID: 32316537]
[98]
Hillaireau, H.; Couvreur, P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci., 2009, 66(17), 2873-2896.
[http://dx.doi.org/10.1007/s00018-009-0053-z] [PMID: 19499185]
[99]
Yameen, B.; Choi, W.I.; Vilos, C.; Swami, A.; Shi, J.; Farokhzad, O.C. Insight into nanoparticle cellular uptake and intracellular targeting. J. Control. Release, 2014, 190, 485-499.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.038] [PMID: 24984011]
[100]
Rajaganapathy, B.R.; Chancellor, M.B.; Nirmal, J.; Dang, L.; Tyagi, P. Bladder uptake of liposomes after intravesical administration occurs by endocytosis. PLoS One, 2015, 10(3) ,e0122766
[http://dx.doi.org/10.1371/journal.pone.0122766] [PMID: 25811468]
[101]
Khan, N.R.; Wong, T.W. 5-Fluorouracil ethosomes–skin deposition and melanoma permeation synergism with microwave. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 1), 1-10.
[http://dx.doi.org/10.1080/21691401.2018.1431650]
[102]
Cui, S.; Wang, B.; Zhao, Y.; Chen, H.; Ding, H.; Zhi, D.; Zhang, S. Transmembrane routes of cationic liposome-mediated gene delivery using human throat epidermis cancer cells. Biotechnol. Lett., 2014, 36(1), 1-7.
[http://dx.doi.org/10.1007/s10529-013-1325-0] [PMID: 24068499]
[103]
Radaic, A.; de Jesus, M.B. Solid lipid nanoparticles release DNA upon endosomal acidification in human embryonic kidney cells. Nanotechnology, 2018, 29(31) ,315102
[http://dx.doi.org/10.1088/1361-6528/aac447] [PMID: 29756603]
[104]
Jose, A.; Labala, S.; Ninave, K.M.; Gade, S.K.; Venuganti, V.V.K. Effective skin cancer treatment by topical co-delivery of curcumin and STAT3 siRNA using cationic liposomes. AAPS PharmSciTech, 2018, 19(1), 166-175.
[http://dx.doi.org/10.1208/s12249-017-0833-y] [PMID: 28639178]
[105]
Shah, R.M.; Rajasekaran, D.; Ludford-Menting, M.; Eldridge, D.S.; Palombo, E.A.; Harding, I.H. Transport of stearic acid-based solid lipid nanoparticles (SLNs) into human epithelial cells. Colloids Surf. B Biointerfaces, 2016, 140, 204-212.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.029] [PMID: 26764103]
[106]
Xu, W.; Bae, E.J.; Lee, M-K. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells. Int. J. Nanomedicine, 2018, 13, 7549-7563.
[http://dx.doi.org/10.2147/IJN.S182621] [PMID: 30532538]
[107]
Mehanna, M.M.; Sarieddine, R.; Alwattar, J.K.; Chouaib, R.; Gali-Muhtasib, H. Anticancer activity of thymoquinone cubic phase nanoparticles against human breast cancer: Formulation, cytotoxicity and subcellular localization. Int. J. Nanomedicine, 2020, 15, 9557-9570.
[http://dx.doi.org/10.2147/IJN.S263797] [PMID: 33293807]
[108]
Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), 195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[109]
Li, H.; Tsui, T.Y.; Ma, W. Intracellular delivery of molecular cargo using cell-penetrating peptides and the combination strategies. Int. J. Mol. Sci., 2015, 16(8), 19518-19536.
[http://dx.doi.org/10.3390/ijms160819518] [PMID: 26295227]
[110]
Khalil, I.A.; Kogure, K.; Futaki, S.; Harashima, H. Octaarginine-modified liposomes: enhanced cellular uptake and controlled intracellular trafficking. Int. J. Pharm., 2008, 354(1-2), 39-48.
[http://dx.doi.org/10.1016/j.ijpharm.2007.12.003] [PMID: 18242018]
[111]
Iwasa, A.; Akita, H.; Khalil, I.; Kogure, K.; Futaki, S.; Harashima, H. Cellular uptake and subsequent intracellular trafficking of R8-liposomes introduced at low temperature. Biochim. Biophys. Acta, 2006, 1758(6), 713-720.
[http://dx.doi.org/10.1016/j.bbamem.2006.04.015] [PMID: 16780792]
[112]
Ruseska, I.; Zimmer, A. Internalization mechanisms of cell-penetrating peptides. Beilstein J. Nanotechnol., 2020, 11(1), 101-123.
[http://dx.doi.org/10.3762/bjnano.11.10] [PMID: 31976201]
[113]
Chen, Y.; Yuan, L.; Zhou, L.; Zhang, Z.H.; Cao, W.; Wu, Q. Effect of cell-penetrating peptide-coated nanostructured lipid carriers on the oral absorption of tripterine. Int. J. Nanomedicine, 2012, 7, 4581-4591.
[PMID: 22942642]
[114]
Kemker, I.; Feiner, R.C.; Müller, K.M.; Sewald, N. Size-dependent cellular uptake of RGD peptides. ChemBioChem, 2020, 21(4), 496-499.
[http://dx.doi.org/10.1002/cbic.201900512] [PMID: 31478590]
[115]
Beaulieu, J-F. Integrin α6β4 in colorectal cancer: Expression, regulation, functional alterations and use as a biomarker. Cancers (Basel), 2020, 12(1), 41.
[http://dx.doi.org/10.3390/cancers12010041]
[116]
Reardon, D.A.; Neyns, B.; Weller, M.; Tonn, J.C.; Nabors, L.B.; Stupp, R. Cilengitide: an RGD pentapeptide ανβ3 and ανβ5 integrin inhibitor in development for glioblastoma and other malignancies. Future Oncol., 2011, 7(3), 339-354.
[http://dx.doi.org/10.2217/fon.11.8] [PMID: 21417900]
[117]
Adil, M.M.; Erdman, Z.S.; Kokkoli, E. Transfection mechanisms of polyplexes, lipoplexes, and stealth liposomes in α5β1 integrin bearing DLD-1 colorectal cancer cells. Langmuir, 2014, 30(13), 3802-3810.
[http://dx.doi.org/10.1021/la5001396] [PMID: 24635537]
[118]
Chen, L.; Liu, Y.; Wang, W.; Liu, K. Effect of integrin receptor-targeted liposomal paclitaxel for hepatocellular carcinoma targeting and therapy. Oncol. Lett., 2015, 10(1), 77-84.
[http://dx.doi.org/10.3892/ol.2015.3242] [PMID: 26170980]
[119]
Chen, C-W.; Lu, D.W.; Yeh, M.K.; Shiau, C.Y.; Chiang, C.H. Novel RGD-lipid conjugate-modified liposomes for enhancing siRNA delivery in human retinal pigment epithelial cells. Int. J. Nanomedicine, 2011, 6, 2567-2580.
[http://dx.doi.org/10.2147/IJN.S24447] [PMID: 22128247]
[120]
Ara, M.N.; Matsuda, T.; Hyodo, M.; Sakurai, Y.; Ohga, N.; Hida, K.; Harashima, H. Construction of an aptamer modified liposomal system targeted to tumor endothelial cells. Biol. Pharm. Bull., 2014, 37(11), 1742-1749.
[http://dx.doi.org/10.1248/bpb.b14-00338] [PMID: 25366480]
[121]
Catuogno, S.; Esposito, C.L.; de Franciscis, V. Aptamer-mediated targeted delivery of therapeutics: An update. Pharmaceuticals (Basel), 2016, 9(4), 69.
[http://dx.doi.org/10.3390/ph9040069] [PMID: 27827876]
[122]
Moosavian, S.A.; Abnous, K.; Akhtari, J.; Arabi, L.; Gholamzade Dewin, A.; Jafari, M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2054-2065.
[PMID: 29205059]
[123]
Ara, M.N.; Matsuda, T.; Hyodo, M.; Sakurai, Y.; Hatakeyama, H.; Ohga, N.; Hida, K.; Harashima, H. An aptamer ligand based liposomal nanocarrier system that targets tumor endothelial cells. Biomaterials, 2014, 35(25), 7110-7120.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.087] [PMID: 24875764]
[124]
Qhattal, H.S.S.; Liu, X. Characterization of CD44-mediated cancer cell uptake and intracellular distribution of hyaluronan-grafted liposomes. Mol. Pharm., 2011, 8(4), 1233-1246.
[http://dx.doi.org/10.1021/mp2000428] [PMID: 21696190]
[125]
Hedén, P. Body shaping and volume restoration: the role of hyaluronic acid. Aesthetic Plast. Surg., 2020, 44(4), 1286-1294.
[126]
Zheng, S.; Nguyen, V.D.; Song, S.Y.; Han, J.; Park, J.O. Combined photothermal-chemotherapy of breast cancer by near infrared light responsive hyaluronic acid-decorated nanostructured lipid carriers. Nanotechnology, 2017, 28(43) ,435102
[http://dx.doi.org/10.1088/1361-6528/aa847f] [PMID: 28783035]
[127]
Teng, C.; Chai, Z.; Yuan, Z.; Ren, L.; Lin, C.; Yan, Z.; He, W.; Qin, C.; Yang, L.; Han, X.; Yin, L. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. Nanomedicine (Lond.), 2020, 24 ,102105
[http://dx.doi.org/10.1016/j.nano.2019.102105] [PMID: 31740406]
[128]
Mansoori, B.; Mohammadi, A.; Abedi-Gaballu, F.; Abbaspour, S.; Ghasabi, M.; Yekta, R.; Shirjang, S.; Dehghan, G.; Hamblin, M.R.; Baradaran, B. Hyaluronic acid-decorated liposomal nanoparticles for targeted delivery of 5-fluorouracil into HT-29 colorectal cancer cells. J. Cell. Physiol., 2020, 235(10), 6817-6830.
[http://dx.doi.org/10.1002/jcp.29576] [PMID: 31989649]
[129]
Kong, M.; Hou, L.; Wang, J.; Feng, C.; Liu, Y.; Cheng, X.; Chen, X. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. (Camb.), 2015, 51(8), 1453-1456.
[http://dx.doi.org/10.1039/C4CC08746A] [PMID: 25493296]
[130]
Kong, M.; Park, H.; Feng, C.; Hou, L.; Cheng, X.; Chen, X. Construction of hyaluronic acid noisome as functional transdermal nanocarrier for tumor therapy. Carbohydr. Polym., 2013, 94(1), 634-641.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.091] [PMID: 23544584]
[131]
Zwicke, G.L.; Mansoori, G.A.; Jeffery, C.J. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev., 2012, 3(1), 18496.
[http://dx.doi.org/10.3402/nano.v3i0.18496] [PMID: 23240070]
[132]
Shmeeda, H.; Mak, L.; Tzemach, D.; Astrahan, P.; Tarshish, M.; Gabizon, A. Intracellular uptake and intracavitary targeting of folate-conjugated liposomes in a mouse lymphoma model with up-regulated folate receptors. Mol. Cancer Ther., 2006, 5(4), 818-824.
[http://dx.doi.org/10.1158/1535-7163.MCT-05-0543] [PMID: 16648551]
[133]
Ye, P.; Zhang, W.; Yang, T.; Lu, Y.; Lu, M.; Gai, Y.; Ma, X.; Xiang, G. Folate receptor-targeted liposomes enhanced the antitumor potency of imatinib through the combination of active targeting and molecular targeting. Int. J. Nanomedicine, 2014, 9, 2167-2178.
[http://dx.doi.org/10.2147/IJN.S60178] [PMID: 24855354]
[134]
Musalli, A.H.; Talukdar, P.D.; Roy, P.; Kumar, P.; Wong, T.W. Folate-induced nanostructural changes of oligochitosan nanoparticles and their fate of cellular internalization by melanoma. Carbohydr. Polym., 2020, 244 ,116488
[http://dx.doi.org/10.1016/j.carbpol.2020.116488] [PMID: 32536388]
[135]
Mishra, V.; Yadav, N.; Saraogi, G.K. Targeting aspects for bioactive drugs.In: Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents; Elsevier, 2020, pp. 423-449.
[http://dx.doi.org/10.1016/B978-0-12-819666-3.00014-6]
[136]
Tian, Y.; Li, J.C.; Zhu, J.X.; Zhu, N.; Zhang, H.M.; Liang, L.; Sun, L. Folic acid-targeted etoposide cubosomes for theranostic application of cancer cell imaging and therapy. Med. Sci. Monit., 2017, 23, 2426-2435.
[http://dx.doi.org/10.12659/MSM.904683] [PMID: 28529305]
[137]
Nho, T.D.T. Enhanced anticancer efficacy and tumor targeting through folate-PEG modified nanoliposome loaded with 5-fluorouracil. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8(1) ,015008
[138]
Tavano, L.; Muzzalupo, R.; Mauro, L.; Pellegrino, M.; Andò, S.; Picci, N. Transferrin-conjugated pluronic niosomes as a new drug delivery system for anticancer therapy. Langmuir, 2013, 29(41), 12638-12646.
[http://dx.doi.org/10.1021/la4021383] [PMID: 24040748]
[139]
Han, Y.; Zhang, Y.; Li, D.; Chen, Y.; Sun, J.; Kong, F. Transferrin-modified nanostructured lipid carriers as multifunctional nanomedicine for codelivery of DNA and doxorubicin. Int. J. Nanomedicine, 2014, 9, 4107-4116.
[PMID: 25187713]
[140]
Deng, H.; Dutta, P.; Liu, J. Stochastic simulations of nanoparticle internalization through transferrin receptor dependent clathrin-mediated endocytosis. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(9), 2104-2111.
[http://dx.doi.org/10.1016/j.bbagen.2018.06.018] [PMID: 29959983]
[141]
Tsuji, T.; Yoshitomi, H.; Usukura, J. Endocytic mechanism of transferrin-conjugated nanoparticles and the effects of their size and ligand number on the efficiency of drug delivery. Microscopy (Oxf.), 2013, 62(3), 341-352.
[http://dx.doi.org/10.1093/jmicro/dfs080] [PMID: 23204307]
[142]
Mulik, R.S.; Mönkkönen, J.; Juvonen, R.O.; Mahadik, K.R.; Paradkar, A.R. Transferrin mediated solid lipid nanoparticles containing curcumin: enhanced in vitro anticancer activity by induction of apoptosis. Int. J. Pharm., 2010, 398(1-2), 190-203.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.021] [PMID: 20655375]
[143]
Han, Y.; Zhang, P.; Chen, Y.; Sun, J.; Kong, F. Co-delivery of plasmid DNA and doxorubicin by solid lipid nanoparticles for lung cancer therapy. Int. J. Mol. Med., 2014, 34(1), 191-196.
[http://dx.doi.org/10.3892/ijmm.2014.1770] [PMID: 24804644]
[144]
Zhu, D.; Wang, Z.; Zong, S.; Zhang, Y.; Chen, C.; Zhang, R.; Yun, B.; Cui, Y. Investigating the intracellular behaviors of liposomal nanohybrids via SERS: Insights into the influence of metal nanoparticles. Theranostics, 2018, 8(4), 941-954.
[http://dx.doi.org/10.7150/thno.21173] [PMID: 29463992]
[145]
Hossen, M.N.; Wang, L.; Chinthalapally, H.R.; Robertson, J.D.; Fung, K.M.; Wilhelm, S.; Bieniasz, M.; Bhattacharya, R.; Mukherjee, P. Switching the intracellular pathway and enhancing the therapeutic efficacy of small interfering RNA by auroliposome. Sci. Adv., 2020, 6(30) ,eaba5379
[http://dx.doi.org/10.1126/sciadv.aba5379] [PMID: 32743073]
[146]
Zeng, W. Dual-response oxygen-generating MnO2 nanoparticles with polydopamine modification for combined photothermal-photodynamic therapy. Chem. Eng. J., 2020, 389 ,124494
[http://dx.doi.org/10.1016/j.cej.2020.124494]
[147]
Zhang, S.; Asghar, S.; Yang, L.; Hu, Z.; Chen, Z.; Shao, F.; Xiao, Y. Borneol and poly (ethylene glycol) dual modified BSA nanoparticles as an itraconazole vehicle for brain targeting. Int. J. Pharm., 2020, 575 ,119002
[http://dx.doi.org/10.1016/j.ijpharm.2019.119002] [PMID: 31893546]
[148]
Yuan, M.; Qiu, Y.; Zhang, L.; Gao, H.; He, Q. Targeted delivery of transferrin and TAT co-modified liposomes encapsulating both paclitaxel and doxorubicin for melanoma. Drug Deliv., 2016, 23(4), 1171-1183.
[http://dx.doi.org/10.3109/10717544.2015.1040527] [PMID: 26036724]
[149]
Kibria, G.; Hatakeyama, H.; Ohga, N.; Hida, K.; Harashima, H. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J. Control. Release, 2011, 153(2), 141-148.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.012] [PMID: 21447361]
[150]
Yassemi, A.; Kashanian, S.; Zhaleh, H. Folic acid receptor-targeted solid lipid nanoparticles to enhance cytotoxicity of letrozole through induction of caspase-3 dependent-apoptosis for breast cancer treatment. Pharm. Dev. Technol., 2020, 25(4), 397-407.
[http://dx.doi.org/10.1080/10837450.2019.1703739] [PMID: 31893979]
[151]
Akanda, M.; Getti, G.; Nandi, U.; Mithu, M.S.; Douroumis, D. Bioconjugated solid lipid nanoparticles (SLNs) for targeted prostate cancer therapy. Int. J. Pharm., 2021, 599 ,120416
[http://dx.doi.org/10.1016/j.ijpharm.2021.120416] [PMID: 33647403]
[152]
Sun, M. A systematic in vitro investigation on poly-arginine modified nanostructured lipid carrier: Pharmaceutical characteristics, cellular uptake, mechanisms and cytotoxicity. Asian J. Pharma. Sci., 2017, 12(1), 51-58.
[153]
Fujiwara, T.; Akita, H.; Harashima, H. Intracellular fate of octaarginine-modified liposomes in polarized MDCK cells. Int. J. Pharm., 2010, 386(1-2), 122-130.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.005] [PMID: 19922779]
[154]
Biswas, S.; Dodwadkar, N.S.; Deshpande, P.P.; Parab, S.; Torchilin, V.P. Surface functionalization of doxorubicin-loaded liposomes with octa-arginine for enhanced anticancer activity. Eur. J. Pharm. Biopharm., 2013, 84(3), 517-525.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.021] [PMID: 23333899]
[155]
Tong, Y. Dual-targeted cationic liposomes modified with hyaluronic acid and folic acid deliver siRNA Bcl-2 in the treatment of cervical cancer., 2020.
[156]
Liu, Y. Enhanced therapeutic efficacy of iRGD-conjugated crosslinked multilayer liposomes for drug delivery. BioMed Res. Int., 2013, 2013 ,378380
[http://dx.doi.org/10.1155/2013/378380]
[157]
Dalla Pozza, E.; Lerda, C.; Costanzo, C.; Donadelli, M.; Dando, I.; Zoratti, E.; Scupoli, M.T.; Beghelli, S.; Scarpa, A.; Fattal, E.; Arpicco, S.; Palmieri, M. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochim. Biophys. Acta, 2013, 1828(5), 1396-1404.
[http://dx.doi.org/10.1016/j.bbamem.2013.01.020] [PMID: 23384419]
[158]
Hayward, S.L.; Francis, D.M.; Kholmatov, P.; Kidambi, S. Targeted delivery of MicroRNA125a-5p by engineered lipid nanoparticles for the treatment of HER2 positive metastatic breast cancer. J. Biomed. Nanotechnol., 2016, 12(3), 554-568.
[http://dx.doi.org/10.1166/jbn.2016.2194] [PMID: 27280253]
[159]
Yang, L.; Song, X.; Gong, T.; Jiang, K.; Hou, Y.; Chen, T.; Sun, X.; Zhang, Z.; Gong, T. Development a hyaluronic acid ion-pairing liposomal nanoparticle for enhancing anti-glioma efficacy by modulating glioma microenvironment. Drug Deliv., 2018, 25(1), 388-397.
[http://dx.doi.org/10.1080/10717544.2018.1431979] [PMID: 29378465]
[160]
Wu, M.; Huang, T.; Wang, J.; Chen, P.; Mi, W.; Ying, Y.; Wang, H.; Zhao, D.; Huang, S. Antilung cancer effect of ergosterol and cisplatin-loaded liposomes modified with cyclic arginine-glycine-aspartic acid and octa-arginine peptides. Medicine (Baltimore), 2018, 97(33) ,e11916
[http://dx.doi.org/10.1097/MD.0000000000011916] [PMID: 30113492]
[161]
Sakpakdeejaroen, I.; Somani, S.; Laskar, P.; Mullin, M.; Dufès, C. Transferrin-bearing liposomes entrapping plumbagin for targeted cancer therapy. J. Interdiscip. Nanomed.,. 2019, 4(2), 54-71.
[http://dx.doi.org/10.1002/jin2.56] [PMID: 31341642]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy