Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Research Article

Rolipram Rescues Memory Consolidation Deficits Caused by Sleep Deprivation: Implication of the cAMP/PKA and cAMP/Epac Pathways

Author(s): Ahmed Maher, Nesrine El Sayed *, Heba Nafea and Mohamed Gad

Volume 21, Issue 7, 2022

Published on: 16 August, 2021

Page: [631 - 639] Pages: 9

DOI: 10.2174/1871527320666210816105144

Price: $65

Abstract

Background: Over the last few years, the number of people suffering from sleeping disorders has increased significantly despite negative effects on cognition and an association with brain inflammation.

Objectives: We assessed memory deficits caused by Sleep Deprivation (SD) to determine the therapeutic effect of phosphodiesterase 4 (PDE4) inhibitors on SD-induced memory deficits and to investigate whether the modulation of memory deficits by PDE4 inhibitors is mediated by a protein kinase A (PKA)-independent pathway in conjunction with a PKA-dependent pathway.

Methods: Adult male mice were divided into four groups. Three SD groups were deprived of Rapid Eye Movement (REM) sleep for 12 h a day for six consecutive days. They were tested daily in the Morris water maze to evaluate learning and memory. One of the SD groups was injected with a PDE4 inhibitor, rolipram (1 mg/kg ip), whereas another had rolipram co-administered with chlorogenic acid (CHA, 20 mg/kg ip), an inhibitor of PKA. After 6 days, the mice were sacrificed, and the hippocampi were evaluated for cyclic AMP (cAMP) and nuclear factor Nrf-2 levels. The hippocampal expression of PKA, phosphorylated cAMP Response Element-Binding Protein (CREB), and phosphorylated glycogen synthase 3β (Ser389) were also evaluated.

Results: SD caused a significant decrease in cAMP levels in the brain and had a detrimental effect on learning and memory. The administration of rolipram or rolipram+CHA resulted in an improvement in cognitive function.

Conclusion: The present study provides evidence that restoration of memory with PDE4 inhibitors occurs through a dual mechanism involving the PKA and Epac pathways.

Keywords: Sleep deprivation, cAMP, Nrf-2, rolipram, chlorogenic acid, Epac.

« Previous
Graphical Abstract
[1]
Mo M, De Mello MT, Quaglia S, Giampa DC, Tufik S, Lee KS. Paradoxical sleep deprivation causes cardiac dysfunction and the impairment is attenuated by resistance training. PLoS One 2016; 1: 1-22.
[2]
Ackermann S, Rasch B. Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep 2014; 14: 430.
[3]
Gosselin D, De Koninck J, Campbell K. Novel measures to assess the effects of partial sleep deprivation on sensory, working, and permanent memory. Front Psychol 2017; 8: 1607.
[http://dx.doi.org/10.3389/fpsyg.2017.01607] [PMID: 29033864]
[4]
Ahn J, Lee JG, Chin C, et al. MSK1 functions as a transcriptional coactivator of p53 in the regulation of p21 gene expression. Exp Mol Med 2018; 50(10): 1-12.
[http://dx.doi.org/10.1038/s12276-018-0160-8] [PMID: 30305627]
[5]
Cui L, Xue R, Zhang X, Chen S, Wan Y, Wu W. Sleep deprivation inhibits proliferation of adult hippocampal neural progenitor cells by a mechanism involving IL-17 and p38 MAPK. Brain Res 2019; 1714: 81-7.
[http://dx.doi.org/10.1016/j.brainres.2019.01.024] [PMID: 30677408]
[6]
Batty NJ, Fenrich KK, Fouad K. The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 2017; 652: 56-63.
[http://dx.doi.org/10.1016/j.neulet.2016.12.033] [PMID: 27989572]
[7]
Xia Z, Storm D. Role of circadian rhythm and REM sleep for memory consolidation. Neuroscience Research. Elsevier Ireland Ltd. 2017; Vol. 118: pp. 13-20.
[8]
Sakamoto K, Karelina K, Obrietan K. CREB: A multifaceted regulator of neuronal plasticity and protection. J Neurochemistry 2011; 116: 1-9.
[http://dx.doi.org/10.1111/j.1471-4159.2010.07080.x]
[9]
Johnson JA, Johnson DA, Kraft AD, et al. The Nrf2-ARE pathway: An indicator and modulator of oxidative stress in neurodegeneration. Ann N Y Acad Sci 2008; 1147: 61-9.
[http://dx.doi.org/10.1196/annals.1427.036] [PMID: 19076431]
[10]
Abdalkader M, Lampinen R, Kanninen KM, Malm TM, Liddell JR. Targeting Nrf2 to suppress ferroptosis and mitochondrial dysfunction in neurodegeneration. Front Neurosci 2018; 12: 466.
[http://dx.doi.org/10.3389/fnins.2018.00466] [PMID: 30042655]
[11]
Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C. NRF2-regulation in brain health and disease: Implication of cerebral inflammation. Neuropharmacology 2014; 79: 298-306.
[http://dx.doi.org/10.1016/j.neuropharm.2013.11.004] [PMID: 24262633]
[12]
Akar F, Mutlu O, Celikyurt IK, et al. Effects of rolipram and zaprinast on learning and memory in the Morris water maze and radial arm maze tests in naive mice. Drug Res (Stuttg) 2015; 65(2): 86-90.
[PMID: 24764251]
[13]
Jabaris SG, Sumathy H, Kumar RS, Narayanan S, Thanikachalam S, Babu CS. Effects of rolipram and roflumilast, phosphodiesterase-4 inhibitors, on hypertension-induced defects in memory function in rats. Eur J Pharmacol 2015; 746: 138-47.
[http://dx.doi.org/10.1016/j.ejphar.2014.10.039] [PMID: 25446433]
[14]
Macks C, Gwak SJ, Lynn M, Lee JS. Rolipram-loaded polymeric micelle nanoparticle reduces secondary injury after rat compression spinal cord injury. J Neurotrauma 2018; 35(3): 582-92.
[http://dx.doi.org/10.1089/neu.2017.5092] [PMID: 29065765]
[15]
Gong MF, Wen RT, Xu Y, et al. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents. Psychopharmacology (Berl) 2017; 234(20): 3143-51.
[http://dx.doi.org/10.1007/s00213-017-4697-3] [PMID: 28748375]
[16]
Costa LM, Pereira JE, Filipe VM, et al. Rolipram promotes functional recovery after contusive thoracic spinal cord injury in rats. Behav Brain Res 2013; 243(1): 66-73.
[http://dx.doi.org/10.1016/j.bbr.2012.12.056] [PMID: 23295392]
[17]
Naveed M, Hejazi V, Abbas M, Kamboh AA, Khan GJ, Shumzaid M. Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine and Pharmacotherapy. Elsevier Masson SAS 2018; Vol. 97: pp. 67-74.
[18]
Yin Y, Xie M, Wu H, Jiang M, Zheng J, Wei Q. Interaction of calcineurin with its activator, chlorogenic acid revealed by spectroscopic methods. Biochimie 2009; 91(7): 820-5.
[http://dx.doi.org/10.1016/j.biochi.2009.03.012] [PMID: 19328834]
[19]
Choi MH, Jo HG, Yang JH, Ki SH, Shin HJ. Antioxidative and anti-melanogenic activities of bamboo stems (Phyllostachys nigra variety henosis)viaPKA/CREB-mediated MITF downregulation in B16F10 melanoma cells. Int J Mol Sci 2018; 19(2): E409.
[http://dx.doi.org/10.3390/ijms19020409] [PMID: 29385729]
[20]
Colavito V, Fabene PF, Grassi-Zucconi G, et al. Experimental sleep deprivation as a tool to test memory deficits in rodents. Front Syst Neurosci 2013; 7: 106.
[http://dx.doi.org/10.3389/fnsys.2013.00106] [PMID: 24379759]
[21]
Xu Y, Zhu N, Xu W, et al. Inhibition of Phosphodiesterase-4 Reverses Aβ-Induced memory impairment by regulation of hpa axis related cAMP signaling. Front Aging Neurosci 2018; 10: 204.
[http://dx.doi.org/10.3389/fnagi.2018.00204] [PMID: 30087608]
[22]
Xue N, Zhou Q, Ji M, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype. Sci Rep 2017; 7: 39011.
[http://dx.doi.org/10.1038/srep39011] [PMID: 28045028]
[23]
Ye HY, Jin J, Jin LW, Chen Y, Zhou ZH, Li ZY. Chlorogenic acid attenuates lipopolysaccharide-induced acute kidney injury by inhibiting TLR4/NF-κB Signal pathway. Inflammation 2017; 40(2): 523-9.
[http://dx.doi.org/10.1007/s10753-016-0498-9] [PMID: 28028753]
[24]
Vecsey CG, Baillie GS, Jaganath D, et al. Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 2009; 461(7267): 1122-5.
[http://dx.doi.org/10.1038/nature08488] [PMID: 19847264]
[25]
Foley AM, Ammar ZM, Lee RH, Mitchell CS. Systematic review of the relationship between amyloid-β levels and measures of transgenic mouse cognitive deficit in Alzheimer’s disease. J Alzheimers Dis 2015; 44(3): 787-95.
[http://dx.doi.org/10.3233/JAD-142208] [PMID: 25362040]
[26]
Typlt M, Mirkowski M, Azzopardi E, Ruettiger L, Ruth P, Schmid S. Mice with deficient BK channel function show impaired prepulse inhibition and spatial learning, but normal working and spatial reference memory. PLoS One 2013; 8(11): e81270.
[http://dx.doi.org/10.1371/journal.pone.0081270] [PMID: 24303038]
[27]
Gupta R, Gupta LK, Mediratta PK, Bhattacharya SK. Effect of resveratrol on scopolamine-induced cognitive impairment in mice. Pharmacol Rep 2012; 64(2): 438-44.
[http://dx.doi.org/10.1016/S1734-1140(12)70785-5] [PMID: 22661196]
[28]
Vorhees C, Williams M. Morris water maze: Procedures for assessing spatial and related forms of learning and memory. 2006; 1(2): 848-58.
[http://dx.doi.org/10.1038/nprot.2006.116]
[29]
Kurth S, Olini N, Huber R, LeBourgeois M. Sleep and early cortical development. Curr Sleep Med Rep 2015; 1: 64-73.
[http://dx.doi.org/10.1007/s40675-014-0002-8]
[30]
Maski KP, Kothare SV. Sleep deprivation and neurobehavioral functioning in children. Int J Psychophysiol 2013; 89(2): 259-64.
[http://dx.doi.org/10.1016/j.ijpsycho.2013.06.019] [PMID: 23797147]
[31]
Bellesi M, Pfister-Genskow M, Maret S, Keles S, Tononi G, Cirelli C. Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 2013; 33(36): 14288-300.
[http://dx.doi.org/10.1523/JNEUROSCI.5102-12.2013] [PMID: 24005282]
[32]
Maret S, Faraguna U, Nelson AB, Cirelli C, Tononi G. Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci 2011; 14(11): 1418-20.
[http://dx.doi.org/10.1038/nn.2934] [PMID: 21983682]
[33]
Liu Y, Wheaton AG, Chapman DP, Cunningham TJ, Lu H, Croft JB. Prevalence of healthy sleep duration among adults--united states, 2014. MMWR Morb Mortal Wkly Rep 2016; 65(6): 137-41.
[http://dx.doi.org/10.15585/mmwr.mm6506a1] [PMID: 26890214]
[34]
Alzoubi KH, Al Mosabih HS, Mahasneh AF. The protective effect of edaravone on memory impairment induced by chronic sleep deprivation. Psychiatry Res 2019; 281: 112577.
[http://dx.doi.org/10.1016/j.psychres.2019.112577] [PMID: 31586841]
[35]
Ocalan B, Cakir A, Koc C, Suyen GG, Kahveci N. Uridine treatment prevents REM sleep deprivation-induced learning and memory impairment. Neurosci Res 2019; 148: 42-8.
[http://dx.doi.org/10.1016/j.neures.2019.01.003] [PMID: 30685492]
[36]
Tartar JL, Ward CP, McKenna JT, et al. Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 2006; 23(10): 2739-48.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04808.x] [PMID: 16817877]
[37]
Guo H, Cheng Y, Wang C, et al. FFPM, a PDE4 inhibitor, reverses learning and memory deficits in APP/PS1 transgenic miceviacAMP/PKA/CREB signaling and anti-inflammatory effects. Neuropharmacology 2017; 116: 260-9.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.004] [PMID: 28065587]
[38]
Yu M, Liu T, Chen Y, Li Y, Li W. Combination therapy with protein kinase inhibitor H89 and Tetrandrine elicits enhanced synergistic antitumor efficacy. J Exp Clin Cancer Res 2018; 37(1): 114.
[http://dx.doi.org/10.1186/s13046-018-0779-2] [PMID: 29866132]
[39]
Melick CH, Jewell JL. Small molecule H89 renders the phosphorylation of S6K1 and AKT resistant to mTOR inhibitors. Biochem J 2020; 477(10): 1847-63.
[http://dx.doi.org/10.1042/BCJ20190958] [PMID: 32347294]
[40]
Yang X, Li G, Xue Q, et al. Calcineurin/P-ERK/Egr-1 pathway is involved in fear memory impairment after isoflurane exposure in mice. Sci Rep 2017; 7(1): 13947.
[http://dx.doi.org/10.1038/s41598-017-13975-z] [PMID: 29066839]
[41]
Orie NN, Thomas AM, Perrino BA, Tinker A, Clapp LH. Ca2+/calcineurin regulation of cloned vascular K ATP channels: Crosstalk with the protein kinase A pathway. Br J Pharmacol 2009; 157(4): 554-64.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00221.x] [PMID: 19422382]
[42]
Sassone-Corsi P. The cyclic AMP pathway. Cold Spring Harb Perspect Biol 2012; 4(12): a011148.
[http://dx.doi.org/10.1101/cshperspect.a011148] [PMID: 23209152]
[43]
Lochner A, Moolman JA. The many faces of H89: A review. Cardiovasc Drug Rev 2006; 24(3-4): 261-74.
[http://dx.doi.org/10.1111/j.1527-3466.2006.00261.x] [PMID: 17214602]
[44]
Kang S, Ling QL, Liu WT, et al. Down-regulation of dorsal striatal RhoA activity and impairment of working memory in middle-aged rats. Neurobiol Learn Mem 2013; 103: 3-10.
[http://dx.doi.org/10.1016/j.nlm.2013.03.005] [PMID: 23567108]
[45]
Dumaz N, Marais R. Integrating signals between cAMP and the RAS/RAF/MEK/ERK signalling pathways: Based on the Anniversary Prize of the Gesellschaft für Biochemie und Molekularbiologie Lecture delivered on 5 July 2003 at the Special FEBS Meeting in Brussels. FEBS J 2005; 3491-504.
[46]
Maher A, El-Sayed NS-E, Breitinger H-G, Gad MZ. Overexpression of NMDAR2B in an inflammatory model of Alzheimer’s disease: Modulation by NOS inhibitors. Brain Res Bull 2014; 109: 109-16.
[http://dx.doi.org/10.1016/j.brainresbull.2014.10.007] [PMID: 25454121]
[47]
Chen BS, Roche KW. Regulation of NMDA receptors by phosphorylation. Neuropharmacology. NIH Public Access 2007; Vol. 53: pp. 362-8.
[48]
Dash MB, Douglas CL, Vyazovskiy VV, Cirelli C, Tononi G. Long-term homeostasis of extracellular glutamate in the rat cerebral cortex across sleep and waking states. J Neurosci 2009; 29(3): 620-9.
[http://dx.doi.org/10.1523/JNEUROSCI.5486-08.2009] [PMID: 19158289]
[49]
Kristofikova Z, Sirova J, Klaschka J, Ovsepian SV. Acute and chronic sleep deprivation-related changes in N-methyl-D-aspartate receptor-nitric oxide signalling in the rat cerebral cortex with reference to aging and brain lateralization. Int J Mol Sci 2019; 20(13): E3273.
[http://dx.doi.org/10.3390/ijms20133273] [PMID: 31277281]
[50]
Zhang Q, Su G, Zhao T, et al. The memory improving effects of round scad (Decapterus maruadsi) hydrolysates on sleep deprivation-induced memory deficits in ratsviaantioxidant and neurotrophic pathways. Food Funct 2019; 10(12): 7733-44.
[http://dx.doi.org/10.1039/C9FO00855A] [PMID: 31691688]
[51]
Wang W, Yang L, Liu T, Wang J, Wen A, Ding Y. Ellagic acid protects mice against sleep deprivation-induced memory impairment and anxiety by inhibiting TLR4 and activating Nrf2. Aging (Albany NY) 2020; 12(11): 10457-72.
[http://dx.doi.org/10.18632/aging.103270] [PMID: 32433038]
[52]
Yang SQ, Jiang L, Lan F, et al. Inhibited endogenous H2S generation and excessive autophagy in hippocampus contribute to sleep deprivation induced cognitive impairment. Front Psychol 2019; 10(JAN): 53.
[http://dx.doi.org/10.3389/fpsyg.2019.00053] [PMID: 30733697]
[53]
Yang Y, Wang H, Lv X, et al. Involvement of cAMP-PKA pathway in adenosine A1 and A2A receptor-mediated regulation of acetaldehyde-induced activation of HSCs. Biochimie 2015; 115: 59-70.
[http://dx.doi.org/10.1016/j.biochi.2015.04.019] [PMID: 25956975]
[54]
Kim HJ, Hur SW, Park JB, et al. Histone demethylase PHF2 activates CREB and promotes memory consolidation. EMBO Rep 2019; 20(9): e45907.
[http://dx.doi.org/10.15252/embr.201845907] [PMID: 31359606]
[55]
Xiang W, Li T, Gao T, Wang B. CREB down-regulation in the laterodorsal thalamic nucleus deteriorates memory consolidation in rats. Learn Mem 2019; 26(6): 182-6.
[http://dx.doi.org/10.1101/lm.049742.119] [PMID: 31092551]
[56]
Kumar A, Singh N. Inhibitor of Phosphodiestearse-4 improves memory deficits, oxidative stress, neuroinflammation and neuropathological alterations in mouse models of dementia of Alzheimer’s Type. Biomed Pharmacother 2017; 88: 698-707.
[http://dx.doi.org/10.1016/j.biopha.2017.01.059] [PMID: 28152479]
[57]
Wang W, Zhang XY, Feng ZG, et al. Overexpression of phosphodiesterase-4 subtypes involved in surgery-induced neuroinflammation and cognitive dysfunction in mice. Brain Res Bull 2017; 130: 274-82.
[http://dx.doi.org/10.1016/j.brainresbull.2017.02.006] [PMID: 28235598]
[58]
Kulkarni SR, Donepudi AC, Xu J, et al. Fasting induces nuclear factor E2-related factor 2 and ATP-binding Cassette transportersviaprotein kinase A and Sirtuin-1 in mouse and human. Antioxid Redox Signal 2014; 20(1): 15-30.
[http://dx.doi.org/10.1089/ars.2012.5082] [PMID: 23725046]
[59]
Shi G-X, Rehmann H, Andres DA. A novel cyclic AMP-dependent Epac-Rit signaling pathway contributes to PACAP38-mediated neuronal differentiation. Mol Cell Biol 2006; 26(23): 9136-47.
[http://dx.doi.org/10.1128/MCB.00332-06] [PMID: 17000774]
[60]
Ladjimi MH, Barbouche R, Ben Barka Z, et al. Comparison of the effects of PACAP-38 and its analog, acetyl-[Ala15, Ala20] PACAP-38-propylamide, on spatial memory, post-learning BDNF expression and oxidative stress in rat. Behav Brain Res 2019; 359: 247-57.
[http://dx.doi.org/10.1016/j.bbr.2018.10.023] [PMID: 30343054]
[61]
Shi GX, Cai W, Andres DA. Rit subfamily small GTPases: Regulators in neuronal differentiation and survival. Cellular Signalling. NIH Public Access 2013; Vol. 25: pp. 2060-8.
[62]
Zarubin T, Han J. Activation and signaling of the p38 MAP kinase pathway. Cell Research. Nature Publishing Group 2005; 15: pp. 11-8.
[http://dx.doi.org/10.1038/sj.cr.7290257]
[63]
Ouyang M, Zhang L, Zhu JJ, Schwede F, Thomas SA. Epac signaling is required for hippocampus-dependent memory retrieval. Proc Natl Acad Sci USA 2008; 105(33): 11993-7.
[http://dx.doi.org/10.1073/pnas.0804172105] [PMID: 18687890]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy