Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Role of Protein Tyrosine Phosphatase in Regulation of Cell Signaling Cascades Affecting Tumor Cell Growth: A Future Perspective as Anti-Cancer Drug Target

Author(s): Archanalakshmi Kambaru and Nidhee Chaudhary*

Volume 23, Issue 7, 2022

Published on: 10 August, 2021

Page: [920 - 931] Pages: 12

DOI: 10.2174/1389201022666210810094739

Price: $65

Abstract

Protein Tyrosine Phosphatase (PTP) superfamily is a key enzyme involved in the regulation of growth-related cell signaling cascades, such as the RAS/MAPK pathway, that directly affect cancer cell growth and metastasis. Several studies have indicated that the drug resistance observed in several late-stage tumors might also be affected by the levels of PTP in the cell. Hence, these phosphatases have been in the limelight for the past few decades as potential drug targets and several promising drug candidates have been developed, even though none of these drugs have reached the market yet. In this review, we explore the potential of PTP as a viable anti-cancer drug target by studying PTPs, their regulation of several key cancer cell signaling pathways, and how their levels affect various types of cancer. Furthermore, we present the current scenario of PTP as a molecular target and the various challenges faced in the development of PTP-targeting anti-cancer drugs.

Keywords: PTP, SHP2, DUSP6, Cancer, Drug target, signal transduction.

Graphical Abstract
[1]
Tonks, N.K.; Muthuswamy, S.K. A brake becomes an accelerator: PTP1B-A new therapeutic target for breast cancer. Cancer Cell, 2007, 11(3), 214-216.
[http://dx.doi.org/10.1016/j.ccr.2007.02.022] [PMID: 17349579]
[2]
Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117(6), 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]
[3]
Tonks, N.K. Protein tyrosine phosphatases--from housekeeping enzymes to master regulators of signal transduction. FEBS J., 2013, 280(2), 346-378.
[http://dx.doi.org/10.1111/febs.12077] [PMID: 23176256]
[4]
Hartmann, J.T.; Haap, M.; Kopp, H.G.; Lipp, H.P. Tyrosine kinase inhibitors - A review on pharmacology, metabolism and side effects. Curr. Drug Metab., 2009, 10(5), 470-481.
[http://dx.doi.org/10.2174/138920009788897975] [PMID: 19689244]
[5]
Dempke, W.C.M.; Uciechowski, P.; Fenchel, K.; Chevassut, T. Targeting SHP-1, 2 and SHIP pathways: A novel strategy for cancer treatment? Oncology, 2018, 95(5), 257-269.
[http://dx.doi.org/10.1159/000490106] [PMID: 29925063]
[6]
Fedele, C.; Ran, H.; Diskin, B.; Wei, W.; Jen, J.; Geer, M.J.; Araki, K.; Ozerdem, U.; Simeone, D.M.; Miller, G.; Neel, B.G.; Tang, K.H. Shp2 inhibition prevents adaptive resistance to MEK inhibitors in multiple cancer models. Cancer Discov., 2018, 8(10), 1237-1249.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0444] [PMID: 30045908]
[7]
Zargari, F.; Lotfi, M.; Shahraki, O.; Nikfarjam, Z.; Shahraki, J. Flavonoids as potent allosteric inhibitors of protein tyrosine phosphatase 1B: molecular dynamics simulation and free energy calculation. J. Biomol. Struct. Dyn., 2018, 36(15), 4126-4142.
[http://dx.doi.org/10.1080/07391102.2017.1409651] [PMID: 29216799]
[8]
Kostrzewa, T.; Styszko, J.; Gorska-Ponikowska, M.; Sledzinski, T.; Kuban-Jankowska, A. Gorska -Ponikowska, M.; Sledzinski, T. Inhibitors of protein tyrosine phosphatase PTP1B with anticancer potential. Anticancer Res., 2019, 39(7), 3379-3384.
[http://dx.doi.org/10.21873/anticanres.13481] [PMID: 31262859]
[9]
Romero, C.; Lambert, L.J.; Sheffler, D.J.; de Backer, L.J.S.; Raveendra-Panickar, D. Celerida d, M.; Grotegut, S.; Rodiles, S.; Holleran, J.; Sergienko, E.; Pasquale, E.B.; Cosford, N.D.P.; Tautz, L.A. Cellular target engagement a ssay f or the characterization of SHP2 (PTPN11) phosphatase inhibitors. J. Biol. Chem., 2020, 295(9), 2601-2613.
[http://dx.doi.org/10.1074/jbc.RA119.010838] [PMID: 31953320]
[10]
Cao, M.; Gao, D.; Zhang, N.; Duan, Y.; Wang, Y.; Mujtaba, H.; Wang, Y. Shp2 expression is upregulated in cervical cancer, and Shp2 contributes to cell growth and migration and reduces sensitivity to cisplatin in cervical cancer cells. Pathol. Res. Pract., 2019, 215(11) ,152621
[http://dx.doi.org/10.1016/j.prp.2019.152621] [PMID: 31564571]
[11]
Bagnyukova, T.V.; Restifo, D.; Beeharry, N.; Gabitova, L.; Li, T.; Serebriiskii, I.G.; Golemis, E.A.; Astsaturov, I. DUSP6 regulates drug sensitivity by modulating DNA damage response. Br. J. Cancer, 2013, 109(4), 1063-1071.
[http://dx.doi.org/10.1038/bjc.2013.353] [PMID: 23839489]
[12]
Bellomo, E.; Birla Singh, K.; Massarotti, A.; Hogstrand, C.; Maret, W. The metal face of protein tyrosine phosphatase 1B. Coord. Chem. Rev., 2016, 327-328, 70-83.
[http://dx.doi.org/10.1016/j.ccr.2016.07.002] [PMID: 27890939]
[13]
Julien, S.G.; Dubé, N.; Hardy, S.; Tremblay, M.L. Inside the human cancer tyrosine phosphatome. Nat. Rev. Cancer, 2011, 11(1), 35-49.
[http://dx.doi.org/10.1038/nrc2980] [PMID: 21179176]
[14]
Ruddraraju, K.V.; Zhang, Z.Y. Covalent inhibition of protein tyrosine phosphatases. Mol. Biosyst., 2017, 13(7), 1257-1279.
[http://dx.doi.org/10.1039/C7MB00151G] [PMID: 28534914]
[15]
Zhang, Z.Y.; Wang, Y.; Wu, L.; Fauman, E.B.; Stuckey, J.A.; Schubert, H.L.; Saper, M.A.; Dixon, J.E. The Cys(X)5Arg catalytic motif in phosphoester hydrolysis. Biochemistry, 1994, 33(51), 15266-15270.
[http://dx.doi.org/10.1021/bi00255a007] [PMID: 7803389]
[16]
Jia, Z.; Barford, D.; Flint, A.J.; Tonks, N.K. Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. Science, 1995, 268(5218), 1754-1758.
[http://dx.doi.org/10.1126/science.7540771] [PMID: 7540771]
[17]
Tonks, N.K. PTP1B: from the sidelines to the front lines! FEBS Lett., 2003, 546(1), 140-148.
[http://dx.doi.org/10.1016/S0014-5793(03)00603-3] [PMID: 12829250]
[18]
Zhao, Y.; Wu, L.; Noh, S.J.; Guan, K.L.; Zhang, Z.Y. Altering the nucleophile specificity of a protein-tyrosine phosphatase-catalyzed reaction. Probing the function of the invariant glutamine residues. J. Biol. Chem., 1998, 273(10), 5484-5492.
[http://dx.doi.org/10.1074/jbc.273.10.5484] [PMID: 9488671]
[19]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[20]
Lanahan, A.A.; Lech, D.; Dubrac, A.; Zhang, J.; Zhuang, Z.W.; Eichmann, A.; Simons, M. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation, 2014, 130(11), 902-909.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.009683] [PMID: 24982127]
[21]
Hale, A.J.; Ter Steege, E.; den Hertog, J. Recent advances in understanding the role of protein-tyrosine phosphatases in development and disease. Dev. Biol., 2017, 428(2), 283-292.
[http://dx.doi.org/10.1016/j.ydbio.2017.03.023] [PMID: 28728679]
[22]
Yi, T.; Lindner, D. The role and target potential of protein tyrosine phosphatases in cancer. Curr. Oncol. Rep., 2008, 10(2), 114-121.
[http://dx.doi.org/10.1007/s11912-008-0019-6] [PMID: 18377824]
[23]
Chan, R.J.; Feng, G.S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, 2007, 109(3), 862-867.
[http://dx.doi.org/10.1182/blood-2006-07-028829] [PMID: 17053061]
[24]
Cai, P.; Guo, W.; Yuan, H.Q.; Li, Q.; Wang, W.; Cai, P.; Guo, W.; Yuan, H.; Li, Q.; Wang, W.; Sun, Y.; Li, X.; Gu, Y. Expression and clinical significance of tyrosine phosphatase SHP-2 in colon cancer. Biomed. Pharmacother., 2014, 68(3), 285-290.
[http://dx.doi.org/10.1016/j.biopha.2013.10.012] [PMID: 24439672]
[25]
Ran, H.; Tsutsumi, R.; Araki, T.; Neel, B.G. Sticking it to cancer with molecular glue for SHP2. Cancer Cell, 2016, 30(2), 194-196.
[http://dx.doi.org/10.1016/j.ccell.2016.07.010] [PMID: 27505669]
[26]
Zhang, J.; Zhang, F.; Niu, R. Functions of Shp2 in cancer. J. Cell. Mol. Med., 2015, 19(9), 2075-2083.
[http://dx.doi.org/10.1111/jcmm.12618] [PMID: 26088100]
[27]
Aceto, N.; Sausgruber, N.; Brinkhaus, H.; Gaidatzis, D.; Martiny-Baron, G.; Mazzarol, G.; Confalonieri, S.; Quarto, M.; Hu, G.; Balwierz, P.J.; Pachkov, M.; Elledge, S.J.; van Nimwegen, E.; Stadler, M.B.; Bentires-Alj, M. Tyrosine phosphatase SHP2 promotes breast cancer progression and maintains tumor-initiating cells via activation of key transcription factors and a positive feedback signaling loop. Nat. Med., 2012, 18(4), 529-537.
[http://dx.doi.org/10.1038/nm.2645] [PMID: 22388088]
[28]
Marasco, M.; Berteotti, A.; Weyershaeuser, J.; Thorausch, N.; Sikorska, J.; Krausze, J.; Brandt, H.J.; Kirkpatrick, J.; Rios, P.; Schamel, W.W.; Köhn, M.; Carlomagno, T. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv., 2020, 6(5) ,eaay4458
[http://dx.doi.org/10.1126/sciadv.aay4458] [PMID: 32064351]
[29]
Wong, G.S.; Zhou, J.; Liu, J.B.; Wu, Z.; Xu, X.; Li, T.; Xu, D.; Schumacher, S.E.; Puschhof, J.; McFarland, J.; Zou, C.; Dulak, A.; Henderson, L.; Xu, P.; O’Day, E.; Rendak, R.; Liao, W.L.; Cecchi, F.; Hembrough, T.; Schwartz, S.; Szeto, C.; Rustgi, A.K.; Wong, K.K.; Diehl, J.A.; Jensen, K.; Graziano, F.; Ruzzo, A.; Fereshetian, S.; Mertins, P.; Carr, S.A.; Beroukhim, R.; Nakamura, K.; Oki, E.; Watanabe, M.; Baba, H.; Imamura, Y.; Catenacci, D.; Bass, A.J. Targeting wild-type KRAS-amplified gastroesophageal cancer through combined MEK and SHP2 inhibition. Nat. Med., 2018, 24(7), 968-977.
[http://dx.doi.org/10.1038/s41591-018-0022-x] [PMID: 29808010]
[30]
Mainardi, S.; Mulero-Sánchez, A.; Prahallad, A.; Germano, G.; Bosma, A.; Krimpenfort, P.; Lieftink, C.; Steinberg, J.D.; de Wit, N.; Gonçalves-Ribeiro, S.; Nadal, E.; Bardelli, A.; Villanueva, A.; Bernards, R. SHP2 is required for growth of KRAS-mutant non-small-cell lung cancer in vivo. Nat. Med., 2018, 24(7), 961-967.
[http://dx.doi.org/10.1038/s41591-018-0023-9] [PMID: 29808006]
[31]
Dardaei, L.; Wang, H.Q.; Singh, M.; Fordjour, P.; Shaw, K.X.; Yoda, S.; Kerr, G.; Yu, K.; Liang, J.; Cao, Y.; Chen, Y.; Lawrence, M.S.; Langenbucher, A.; Gainor, J.F.; Friboulet, L.; Dagogo-Jack, I.; Myers, D.T.; Labrot, E.; Ruddy, D.; Parks, M.; Lee, D.; DiCecca, R.H.; Moody, S.; Hao, H.; Mohseni, M.; LaMarche, M.; Williams, J.; Hoffmaster, K.; Caponigro, G.; Shaw, A.T.; Hata, A.N.; Benes, C.H.; Li, F.; Engelman, J.A. SHP2 inhibition restores sensitivity in ALK-rearranged non-small-cell lung cancer resistant to ALK inhibitors. Nat. Med., 2018, 24(4), 512-517.
[http://dx.doi.org/10.1038/nm.4497] [PMID: 29505033]
[32]
Matalkah, F.; Martin, E.; Zhao, H. Aga zie, Y.M. SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal- like and triple-nega tive breast cancer. Breast Cancer Res., 2016, 18(1), 1-14.
[http://dx.doi.org/10.1186/s13058-015-0659-z] [PMID: 26728744]
[33]
Roccograndi, L.; Binder, Z.A.; Zhang, L.; Aceto, N.; Zhang, Z.; Bentires-Alj, M.; Nakano, I.; Dahmane, N.; O’Rourke, D.M. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. J. Neurooncol., 2017, 135(3), 487-496.
[http://dx.doi.org/10.1007/s11060-017-2610-x] [PMID: 28852935]
[34]
Feng, G.S. Shp2-mediated molecular signaling in control of embryonic stem cell self-renewal and differentiation. Cell Res., 2007, 17(1), 37-41.
[http://dx.doi.org/10.1038/sj.cr.7310140] [PMID: 17211446]
[35]
Yu, S.J.; Yu, J.K.; Ge, W.T.; Hu, H.G.; Yuan, Y.; Zheng, S. SPARCL1, Shp2, MSH2, E-cadherin, p53, ADCY-2 and MAPK are prognosis-related in colorectal cancer. World J. Gastroenterol., 2011, 17(15), 2028-2036.
[http://dx.doi.org/10.3748/wjg.v17.i15.2028] [PMID: 21528083]
[36]
Bard-Chapeau, E.A.; Li, S.; Ding, J.; Zhang, S.S.; Zhu, H.H.; Princen, F.; Fang, D.D.; Han, T.; Bailly-Maitre, B.; Poli, V.; Varki, N.M.; Wang, H.; Feng, G.S. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer Cell, 2011, 19(5), 629-639.
[http://dx.doi.org/10.1016/j.ccr.2011.03.023] [PMID: 21575863]
[37]
Li, S.; Hsu, D.D.F.; Wang, H.; Feng, G.S. Dual faces of SH2-containing protein-tyrosine phosphatase Shp2/PTPN11 in tumorigenesis. Front. Med., 2012, 6(3), 275-279.
[http://dx.doi.org/10.1007/s11684-012-0216-4] [PMID: 22869052]
[38]
Tartaglia, M.; Niemeyer, C.M.; Fragale, A.; Song, X.; Buechner, J.; Jung, A.; Hählen, K.; Hasle, H.; Licht, J.D.; Gelb, B.D. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet., 2003, 34(2), 148-150.
[http://dx.doi.org/10.1038/ng1156] [PMID: 12717436]
[39]
Liu, Z.; Zhao, Y.; Fang, J.; Cui, R.; Xiao, Y.; Xu, Q. SHP2 negatively regulates HLA-ABC and PD-L1 expression via STAT1 phosphorylation in prostate cancer cells. Oncotarget, 2017, 8(32), 53518-53530.
[http://dx.doi.org/10.18632/oncotarget.18591] [PMID: 28881828]
[40]
Xie, H.; Huang, S.; Li, W.; Zhao, H.; Zhang, T.; Zhang, D. Upregulation of Src homology phosphotyrosyl phosphatase 2 (Shp2) expression in oral cancer and knockdown of Shp2 expression inhibit tumor cell viability and invasion in vitro. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2014, 117(2), 234-242.
[http://dx.doi.org/10.1016/j.oooo.2013.10.018] [PMID: 24439919]
[41]
Hu, Z.; Li, J.; Gao, Q.; Wei, S.; Yang, B. SHP2 overexpression enhances the invasion and metastasis of ovarian cancer in vitro and in vivo. OncoTargets Ther., 2017, 10, 3881-3891.
[http://dx.doi.org/10.2147/OTT.S138833] [PMID: 28814887]
[42]
Mohi, M.G.; Williams, I.R.; Dearolf, C.R.; Chan, G.; Kutok, J.L.; Cohen, S.; Morgan, K.; Boulton, C.; Shigematsu, H.; Keilhack, H.; Akashi, K.; Gilliland, D.G.; Neel, B.G. Prognostic, therapeutic, and mechanistic implications of a mouse model of leukemia evoked by Shp2 (PTPN11) mutations. Cancer Cell, 2005, 7(2), 179-191.
[http://dx.doi.org/10.1016/j.ccr.2005.01.010] [PMID: 15710330]
[43]
Gu, S.; Sayad, A.; Chan, G.; Yang, W.; Lu, Z.; Virtanen, C.; Van Etten, R.A.; Neel, B.G. SHP2 is required for BCR-ABL1-induced hematologic neoplasia. Leukemia, 2018, 32(1), 203-213.
[http://dx.doi.org/10.1038/leu.2017.250] [PMID: 28804122]
[44]
Lee, I.O.; Kim, J.H.; Choi, Y.J.; Pillinger, M.H.; Kim, S.Y.; Blaser, M.J.; Lee, Y.C. Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J. Biol. Chem., 2010, 285(21), 16042-16050.
[http://dx.doi.org/10.1074/jbc.M110.111054] [PMID: 20348091]
[45]
Ruess, D.A.; Heynen, G.J.; Ciecielski, K.J.; Ai, J.; Berninger, A.; Kabacaoglu, D.; Görgülü, K.; Dantes, Z.; Wörmann, S.M.; Diakopoulos, K.N.; Karpathaki, A.F.; Kowalska, M.; Kaya-Aksoy, E.; Song, L.; van der Laan, E.A.Z.; López-Alberca, M.P.; Nazaré, M.; Reichert, M.; Saur, D.; Erkan, M.M.; Hopt, U.T.; Sainz, B., Jr; Birchmeier, W.; Schmid, R.M.; Lesina, M.; Algül, H. Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat. Med., 2018, 24(7), 954-960.
[http://dx.doi.org/10.1038/s41591-018-0024-8] [PMID: 29808009]
[46]
Yang, F.; Xu, M.; Wang, S.; Song, L.; Yu, D.; Li, Y.; Cao, R.; Xiong, Z.; Chen, Z.; Zhang, Q.; Zhao, B.; Wang, S. Gain-of-function E76K-mutant SHP2 promotes cell proliferation, metastasis, and tumor growth in glioblastoma through activation of the ERK/CREB pathway. OncoTargets Ther., 2019, 12, 9435-9447.
[http://dx.doi.org/10.2147/OTT.S222881] [PMID: 31807022]
[47]
Gu, J.; Han, T.; Ma, R.H.; Zhu, Y.L.; Jia, Y.N.; Du, J.J.; Chen, Y.; Jiang, X.J.; Xie, X.D.; Guo, X. SHP2 promotes laryngeal cancer growth through the Ras/Raf/Mek/Erk pathway and serves as a prognostic indicator for laryngeal cancer. Int. J. Oncol., 2014, 44(2), 481-490.
[http://dx.doi.org/10.3892/ijo.2013.2191] [PMID: 24297342]
[48]
Luo, X.; Liao, R.; Hanley, K.L.; Zhu, H.H.; Malo, K.N.; Hernandez, C.; Wei, X.; Varki, N.M.; Luo, X.; Liao, R.; Hanley, K.L.; Zhu, H.H.; Malo, K.N.; Hernandez, C.; Wei, X.; Varki, N.M.; Alderson, N.; Chu, C.; Li, S.; Fan, J.; Loomba, R.; Qiu, S.J.; Feng, G.S. Dual Shp2 and Pten deficiencies promote non-alcoholic steatohepatitis and genesis of liver tumor-initiating cells. Cell Rep., 2016, 17(11), 2979-2993.
[http://dx.doi.org/10.1016/j.celrep.2016.11.048] [PMID: 27974211]
[49]
Arighi, E.; Borrello, M.G.; Sariola, H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev., 2005, 16(4-5), 441-467.
[http://dx.doi.org/10.1016/j.cytogfr.2005.05.010] [PMID: 15982921]
[50]
Zhou, X.; Coad, J.; Ducatman, B.; Agazie, Y.M. SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology, 2008, 53(4), 389-402.
[http://dx.doi.org/10.1111/j.1365-2559.2008.03103.x] [PMID: 18643929]
[51]
Agazie, Y.M.; Hayman, M.J. Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol. Cell. Biol., 2003, 23(21), 7875-7886.
[http://dx.doi.org/10.1128/MCB.23.21.7875-7886.2003] [PMID: 14560030]
[52]
Bunda, S.; Burrell, K.; Heir, P.; Zeng, L.; Alamsahebpour, A.; Kano, Y.; Raught, B.; Zhang, Z.Y.; Zadeh, G.; Ohh, M. Inhibition of SHP2-mediated dephosphorylation of Ras suppresses oncogenesis. Nat. Commun., 2015, 6(1), 8859.
[http://dx.doi.org/10.1038/ncomms9859] [PMID: 26617336]
[53]
Bard-Chapeau, E.A.; Yuan, J.; Droin, N.; Long, S.; Bard-Chapeau, E.A.; Yuan, J.; Droin, N.; Long, S.; Zhang, E.E.; Nguyen, T.V.; Feng, G.S. Concerted functions of Gab1 and Shp2 in liver regeneration and hepatoprotection. Mol. Cell. Biol., 2006, 26(12), 4664-4674.
[http://dx.doi.org/10.1128/MCB.02253-05] [PMID: 16738330]
[54]
Hui, E.; Cheung, J.; Zhu, J.; Su, X.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; Vale, R.D. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science, 2017, 355(6332), 1428-1433.
[http://dx.doi.org/10.1126/science.aaf1292] [PMID: 28280247]
[55]
Xu, S.; Furukawa, T.; Kanai, N.; Sunamura, M.; Horii, A. Abrogation of DUSP6 by hypermethylation in human pancreatic cancer. J. Hum. Genet., 2005, 50(4), 159-167.
[http://dx.doi.org/10.1007/s10038-005-0235-y] [PMID: 15824892]
[56]
Ahmad, M.K.; Abdollah, N.A.; Shafie, N.H.; Ahmad, M.K.; Abdollah, N.A.; Shafie, N.H.; Yusof, N.M.; Razak, S.R.A. Dual-specificity phosphatase 6 (DUSP6): a review of its molecular characteristics and clinical relevance in cancer. Cancer Biol. Med., 2018, 15(1), 14-28.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0107] [PMID: 29545965]
[57]
Li, C.; Scott, D.A.; Hatch, E.; Tian, X.; Mansour, S.L. Dusp6 (Mkp3) is a negative feedback regulator of FGF-stimulated ERK signaling during mouse development. Development, 2007, 134(1), 167-176.
[http://dx.doi.org/10.1242/dev.02701] [PMID: 17164422]
[58]
Arkell, R.S.; Dickinson, R.J.; Squires, M.; Hayat, S.; Keyse, S.M.; Cook, S.J. DUSP6/MKP-3 inactivates ERK1/2 but fails to bind and inactivate ERK5. Cell. Signal., 2008, 20(5), 836-843.
[http://dx.doi.org/10.1016/j.cellsig.2007.12.014] [PMID: 18280112]
[59]
Ríos, P.; Nunes-Xavier, C.E.; Tabernero, L.; Köhn, M.; Pulido, R. Dual-specificity phosphatases as molecular targets for inhibition in human disease. Antioxid. Redox Signal., 2014, 20(14), 2251-2273.
[http://dx.doi.org/10.1089/ars.2013.5709] [PMID: 24206177]
[60]
Theodosiou, A.; Ashworth, A. MAP kinase phosphatases. Genome Biol., 2002, 3(7), S3009.
[http://dx.doi.org/10.1186/gb-2002-3-7-reviews3009] [PMID: 12184814]
[61]
Camps, M.; Nichols, A.; Gillieron, C.; Antonsson, B.; Muda, M.; Chabert, C.; Boschert, U.; Arkinstall, S. Catalytic activation of the phosphatase MKP-3 by ERK2 mitogen-activated protein kinase. Science, 1998, 280(5367), 1262-1265.
[http://dx.doi.org/10.1126/science.280.5367.1262] [PMID: 9596579]
[62]
Pulido, R.; Lang, R. Dual specificity phosphatases: From molecular mechanisms to biological function. Int. J. Mol. Sci., 2019, 20(18), 4372.
[http://dx.doi.org/10.3390/ijms20184372] [PMID: 31489884]
[63]
Lang, R.; Raffi, F.A.M. Dual-specificity phosphatases in immunity and infection: An update. Int. J. Mol. Sci., 2019, 20(11), 2710.
[http://dx.doi.org/10.3390/ijms20112710] [PMID: 31159473]
[64]
Bertin, S.; Lozano-Ruiz, B.; Bachiller, V.; García-Martínez, I.; Herdman, S.; Zapater, P.; Francés, R.; Such, J.; Lee, J.; Raz, E.; González-Navajas, J.M. Dual-specificity phosphatase 6 regulates CD4+ T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal Immunol., 2015, 8(3), 505-515.
[http://dx.doi.org/10.1038/mi.2014.84] [PMID: 25227984]
[65]
Moncho-Amor, V.; Pintado-Berninches, L.; Ibañez de Cáceres, I.; Martín-Villar, E.; Quintanilla, M.; Chakravarty, P.; Cortes-Sempere, M.; Fernández-Varas, B.; Rodriguez-Antolín, C.; de Castro, J.; Sastre, L.; Perona, R. Role of Dusp6 phosphatase as a tumor suppressor in non-small cell lung cancer. Int. J. Mol. Sci., 2019, 20(8), 2036.
[http://dx.doi.org/10.3390/ijms20082036] [PMID: 31027181]
[66]
Kim, S.H.; Lee, H.Y.; Yi, H.; Ahn, Y.M.; Kim, Y.S. Haloperidol induces demethylation and expression of the dual specificity phosphatase 6 gene in MIA PaCa-2 human pancreatic cancer cells. Life Sci., 2012, 91(25-26), 1317-1322.
[http://dx.doi.org/10.1016/j.lfs.2012.10.002] [PMID: 23063941]
[67]
Zhai, X.; Han, Q.; Shan, Z.; Qu, X.; Guo, L.; Zhou, Y. Dual specificity phosphatase 6 suppresses the growth and metastasis of prostate cancer cells. Mol. Med. Rep., 2014, 10(6), 3052-3058.
[http://dx.doi.org/10.3892/mmr.2014.2575] [PMID: 25241655]
[68]
Fan, M.J.; Liang, S.M.; He, P.J.; Zhao, X.B.; Li, M.J.; Geng, F. Dusp6 inhibits epithelial-mesenchymal transition in endometrial adenocarcinoma via ERK signaling pathway. Radiol. Oncol., 2019, 53(3), 307-315.
[http://dx.doi.org/10.2478/raon-2019-0034] [PMID: 31553703]
[69]
Ma, J.; Yu, X.; Guo, L.; Lu, S.H. DUSP6, a tumor suppressor, is involved in differentiation and apoptosis in esophageal squamous cell carcinoma. Oncol. Lett., 2013, 6(6), 1624-1630.
[http://dx.doi.org/10.3892/ol.2013.1605] [PMID: 24260056]
[70]
Mendell, A.L.; MacLusky, N.J. The testosterone metabolite 3α-androstanediol inhibits oxidative stress-induced ERK phosphorylation and neurotoxicity in SH-SY5Y cells through an MKP3/DUSP6-dependent mechanism. Neurosci. Lett., 2019, 696, 60-66.
[http://dx.doi.org/10.1016/j.neulet.2018.12.012] [PMID: 30552945]
[71]
Yokoyama, N.; Matsunobu, T.; Matsumoto, Y.; Fukushi, J.I.; Endo, M.; Hatano, M. Na beshima, A.; Fukushima, S.; Okada, S.; Iwamoto, Y. Activation of ERK1/2 causes pazopanib resistance via downregulation of DUSP6 in synovial sarcoma cells. Sci. Rep., 2017, 7(1), 1-2.
[http://dx.doi.org/10.1038/srep45332] [PMID: 28127051]
[72]
Kidger, A.M.; Keyse, S.M. The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs). Semin. Cell Dev. Biol., 2016, 50, 125-132.
[http://dx.doi.org/10.1016/j.semcdb.2016.01.009] [PMID: 26791049]
[73]
D.; Romeo, P.; Tarantino, E.; Sensi, M.; Cassinelli, G.; Catalano, V.; Lanzi, C.; Perrone, F.; Pilotti, S.; Seregni, E.; Pierotti, M.A.; Greco, A.; Borrello, M.G. DUSP6/MKP3 is overexpressed in papillary and poorly differentiated thyroid carcinoma and contributes to neoplastic properties of thyroid cancer cells. Endocr. Relat. Cancer, 2013, 20(1), 23-37.
[http://dx.doi.org/10.1530/ERC-12-0078] [PMID: 23132790]
[74]
Rezaei, Z.; Shakoori, A.; Karimi, E.; Mokhtari, Z.; Saffarzadeh, N.; Nazari, T.; Ahmadi, M.; Bazzaz, J.T. Expression analysis of DUSP6, DAB2IP, and RKIP genes in patients with head and neck squamous cell carcinoma. Meta Gene, 2020, 24 ,100692
[http://dx.doi.org/10.1016/j.mgene.2020.100692]
[75]
Song, H.; Wu, C.; Wei, C.; Li, D.; Hua, K.; Song, J.; Xu, H.; Chen, L.; Fang, L. Silencing of DUSP6 gene by RNAi-mediation inhibits proliferation and growth in MDA-MB-231 breast cancer cells: an in vitro study. Int. J. Clin. Exp. Med., 2015, 8(7), 10481-10490.
[PMID: 26379838]
[76]
Wu, Q.N.; Liao, Y.F.; Lu, Y.X.; Wang, Y.; Lu, J.H.; Zeng, Z.L.; Huang, Q.T.; Sheng, H.; Yun, J.P.; Xie, D.; Ju, H.Q.; Xu, R.H. Pharmacological inhibition of DUSP6 suppresses gastric cancer growth and metastasis and overcomes cisplatin resistance. Cancer Lett., 2018, 412, 243-255.
[http://dx.doi.org/10.1016/j.canlet.2017.10.007] [PMID: 29050982]
[77]
Manzano, R.G.; Martinez-Navarro, E.M.; Forteza, J.; Brugarolas, A. Microarray phosphatome profiling of breast cancer patients unveils a complex phosphatase regulatory role of the MAPK and PI3K pathways in estrogen receptor-negative breast cancers. Int. J. Oncol., 2014, 45(6), 2250-2266.
[http://dx.doi.org/10.3892/ijo.2014.2648] [PMID: 25201346]
[78]
Gao, Y.; Li, H.; Han, Q.; Li, Y.; Wang, T.; Huang, C.; Mao, Y.; Wang, X.; Zhang, Q.; Tian, J.; Irwin, D.M.; Tan, H.; Guo, H. Overexpression of DUSP6 enhances chemotherapy-resistance of ovarian epithelial cancer by regulating the ERK signaling pathway. J. Cancer, 2020, 11(11), 3151-3164.
[http://dx.doi.org/10.7150/jca.37267] [PMID: 32231719]
[79]
Zhang, Z.Y. Drugging the undruggable: Therapeutic potential of targeting protein tyrosine phosphatases. Acc. Chem. Res., 2017, 50(1), 122-129.
[http://dx.doi.org/10.1021/acs.accounts.6b00537] [PMID: 27977138]
[80]
Caunt, C.J.; Sale, M.J.; Smith, P.D.; Cook, S.J. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat. Rev. Cancer, 2015, 15(10), 577-592.
[http://dx.doi.org/10.1038/nrc4000] [PMID: 26399658]
[81]
El-Jawahri, A.; Patel, D.; Zhang, M.; Mladkova, N.; Chakravarti, A. Biomarkers of clinical responsiveness in brain tumor patients: progress and potential. Mol. Diagn. Ther., 2008, 12(4), 199-208.
[http://dx.doi.org/10.1007/BF03256285] [PMID: 18652516]
[82]
Noorolyai, S.; Shajari, N.; Baghbani, E.; Sadreddini, S.; Baradaran, B. The relation between PI3K/AKT signalling pathway and cancer. Gene, 2019, 698, 120-128.
[http://dx.doi.org/10.1016/j.gene.2019.02.076] [PMID: 30849534]
[83]
Nozhat, Z.; Hedayati, M. PI3K/AKT pathway and its mediators in thyroid carcinomas. Mol. Diagn. Ther., 2016, 20(1), 13-26.
[http://dx.doi.org/10.1007/s40291-015-0175-y] [PMID: 26597586]
[84]
Vashishta, P.; Chaudhary, N.; Sharma, C.B. Plant protein tyrosine phosphatases: An overview. Proc. Natl. Acad. Sci. India, 2006, 76(3), 207-215.
[85]
Naing, A.; Reuben, J.M.; Camacho, L.H.; Gao, H.; Naing, A.; Reuben, J.M.; Camacho, L.H.; Gao, H.; Lee, B.N.; Cohen, E.N.; Verschraegen, C.; Stephen, S.; Aaron, J.; Hong, D.; Wheler, J.; Kurzrock, R. Phase I dose escalation study of sodium stibogluconate (SSG), a protein tyrosine phosphatase inhibitor, combined with interferon alpha for patients with solid tumors. J. Cancer, 2011, 2, 81-89.
[http://dx.doi.org/10.7150/jca.2.81] [PMID: 21326629]
[86]
Yi, T.; Pathak, M.K.; Lindner, D.J.; Ketterer, M.E.; Farver, C.; Borden, E.C. Anticancer activity of sodium stibogluconate in synergy with IFNs. J. Immunol., 2002, 169(10), 5978-5985.
[http://dx.doi.org/10.4049/jimmunol.169.10.5978] [PMID: 12421984]
[87]
Liu, Q.; Qu, J.; Zhao, M.; Xu, Q.; Sun, Y. Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol. Res., 2020, 152 ,104595
[http://dx.doi.org/10.1016/j.phrs.2019.104595] [PMID: 31838080]
[88]
Hellmuth, K.; Grosskopf, S.; Lum, C.T.; Würtele, M.; Röder, N.; von Kries, J.P.; Rosario, M.; Rademann, J.; Birchmeier, W. Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking. Proc. Natl. Acad. Sci. USA, 2008, 105(20), 7275-7280.
[http://dx.doi.org/10.1073/pnas.0710468105] [PMID: 18480264]
[89]
Chen, Y.N.P.; LaMarche, M.J.; Chan, H.M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M.G.; Antonakos, B.; Chen, C.H.T.; Chen, Z.; Cooke, V.G.; Dobson, J.R.; Deng, Z.; Fei, F.; Firestone, B.; Fodor, M.; Fridrich, C.; Gao, H.; Grunenfelder, D.; Hao, H.X.; Jacob, J.; Ho, S.; Hsiao, K.; Kang, Z.B.; Karki, R.; Kato, M.; Larrow, J.; La Bonte, L.R.; Lenoir, F.; Liu, G.; Liu, S.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Price, E.; Quinn, C.; Shakya, S.; Shultz, M.D.; Slisz, J.; Venkatesan, K.; Wang, P.; Warmuth, M.; Williams, S.; Yang, G.; Yuan, J.; Zhang, J.H.; Zhu, P.; Ramsey, T.; Keen, N.J.; Sellers, W.R.; Stams, T.; Fortin, P.D. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature, 2016, 535(7610), 148-152.
[http://dx.doi.org/10.1038/nature18621] [PMID: 27362227]
[90]
Garcia Fortanet, J.; Chen, C.H.T.; Chen, Y.N.P.; Chen, Z.; Deng, Z.; Firestone, B.; Fekkes, P.; Fodor, M.; Fortin, P.D.; Fridrich, C.; Grunenfelder, D.; Ho, S.; Kang, Z.B.; Karki, R.; Kato, M.; Keen, N.; LaBonte, L.R.; Larrow, J.; Lenoir, F.; Liu, G.; Liu, S.; Lombardo, F.; Majumdar, D.; Meyer, M.J.; Palermo, M.; Perez, L.; Pu, M.; Ramsey, T.; Sellers, W.R.; Shultz, M.D.; Stams, T.; Towler, C.; Wang, P.; Williams, S.L.; Zhang, J.H.; LaMarche, M.J. Allosteric inhibition of SHP2: Identification of a potent, selective, and orally efficacious phosphatase inhibitor. J. Med. Chem., 2016, 59(17), 7773-7782.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00680] [PMID: 27347692]
[91]
Pádua, R.A.P.; Sun, Y.; Marko, I.; Pitsawong, W.; Pádua, R.A.P.; Sun, Y.; Marko, I.; Pitsawong, W.; Stiller, J.B.; Otten, R.; Kern, D. Mechanism of activating mutations and allosteric drug inhibition of the phosphatase SHP2. Nat. Commun., 2018, 9(1), 4507.
[http://dx.doi.org/10.1038/s41467-018-06814-w] [PMID: 30375376]
[92]
Sarver, P.; Acker, M.; Bagdanoff, J.T.; Chen, Z.; Chen, Y.N.; Chan, H.; Firestone, B.; Fodor, M.; Fortanet, J.; Hao, H.; Hentemann, M.; Sarver, P.; Acker, M.; Bagdanoff, J.T.; Chen, Z.; Chen, Y.N.; Chan, H.; Firestone, B.; Fodor, M.; Fortanet, J.; Hao, H.; Hentemann, M.; Kato, M.; Koenig, R.; LaBonte, L.R.; Liu, G.; Liu, S.; Liu, C.; McNeill, E.; Mohseni, M.; Sendzik, M.; Stams, T.; Spence, S.; Tamez, V.; Tichkule, R.; Towler, C.; Wang, H.; Wang, P.; Williams, S.L.; Yu, B.; LaMarche, M.J. 6-Amino-3-methylpyrimidinones as potent, selective, and orally efficacious SHP2 inhibitors. J. Med. Chem., 2019, 62(4), 1793-1802.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01726] [PMID: 30688459]
[93]
Mullard, A. Phosphatases start shedding their stigma of undruggability. Nat. Rev. Drug Discov., 2018, 17(12), 847-849.
[http://dx.doi.org/10.1038/nrd.2018.201] [PMID: 30482950]
[94]
Ramkissoon, A.; Chaney, K.E.; Milewski, D.; Williams, K.B.; Williams, R.L.; Choi, K.; Miller, A.; Kalin, T.V.; Pressey, J.G.; Szabo, S.; Azam, M.; Largaespada, D.A.; Ratner, N. Targeted inhibition of the dual specificity phosphatases DUSP1 and DUSP6 suppress MPNST growth via JNK. Clin. Cancer Res., 2019, 25(13), 4117-4127.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3224] [PMID: 30936125]
[95]
Zhang, F.; Tang, B.; Zhang, Z.; Xu, D.; Ma, G. DUSP6 inhibitor (E/Z)-BCI hydrochloride attenuates lipopolysaccharide-induced inflammatory responses in murine macrophage cells via activating the Nrf2 signaling axis and inhibiting the NF-KB pathway. Inflammation, 2019, 42(2), 672-681.
[http://dx.doi.org/10.1007/s10753-018-0924-2] [PMID: 30506106]
[96]
He, R.; Yu, Z.H.; Zhang, R.Y.; Wu, L.; Gunawan, A.M.; Lane, B.S.; Shim, J.S.; Zeng, L.F.; He, Y.; Chen, L.; Wells, C.D.; Liu, J.O.; Zhang, Z.Y. Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Med. Chem. Lett., 2015, 6(7), 782-786.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00118] [PMID: 26191366]
[97]
Alvarez-Cubero, M.J.; Martinez-Gonzalez, L.J.; Robles-Fernandez, I.; Martinez-Herrera, J.; Garcia-Rodriguez, G.; Pascual-Geler, M.; Cozar, J.M.; Lorente, J.A. Somatic mutations in prostate cancer: Closer to personalized medicine. Mol. Diagn. Ther., 2017, 21(2), 167-178.
[http://dx.doi.org/10.1007/s40291-016-0248-6] [PMID: 27995550]
[98]
Corey, L.; Valente, A.; Wade, K. Personalized medicine in gynecologic cancer: Fact or fiction? Surg. Oncol. Clin., 2020, 29(1), 105-113.
[http://dx.doi.org/10.1016/j.soc.2019.08.008] [PMID: 31757307]
[99]
Abdollahi, P.; Köhn, M.; Børset, M. Protein tyrosine phosphatases in multiple myeloma. Cancer Lett., 2021, 501, 105-113.
[http://dx.doi.org/10.1016/j.canlet.2020.11.042] [PMID: 33290866]
[100]
De Witt Hamer, P.C. Small molecule kinase inhibitors in glioblastoma: a systematic review of clinical studies. Neuro-oncol., 2010, 12(3), 304-316.
[http://dx.doi.org/10.1093/neuonc/nop068] [PMID: 20167819]
[101]
Pardella, E.; Pranzini, E.; Leo, A.; Taddei, M.L.; Paoli, P.; Raugei, G. Oncogenic Tyrosine Phosphatases: Novel therapeutic targets for melanoma treatment. Cancers (Basel), 2020, 12(10), 2799.
[http://dx.doi.org/10.3390/cancers12102799] [PMID: 33003469]
[102]
Yi, Y.S.; Son, Y.J.; Ryou, C.; Sung, G.H.; Kim, J.H.; Yi, Y.S.; Son, Y.J.; Ryou, C.; Sung, G.H.; Kim, J.H.; Cho, J.Y. Functional roles of Syk in macrophage-mediated inflammatory responses. Mediators Inflamm., 2014, 2014 ,270302
[http://dx.doi.org/10.1155/2014/270302] [PMID: 25045209]
[103]
Chen, L.; Juszczynski, P.; Takeyama, K.; Aguiar, R.C.; Shipp, M.A. Protein tyrosine phosphatase receptor-type O truncated (PTPROt) regulates SYK phosphorylation, proximal B-cell-receptor signaling, and cellular proliferation. Blood, 2006, 108(10), 3428-3433.
[http://dx.doi.org/10.1182/blood-2006-03-013821] [PMID: 16888096]
[104]
Hamerman, J.A.; Tchao, N.K.; Lowell, C.A.; Lanier, L.L. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat. Immunol., 2005, 6(6), 579-586.
[http://dx.doi.org/10.1038/ni1204] [PMID: 15895090]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy