Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

New Scope of Targeted Therapies in Lung Carcinoma

Author(s): Archana Sonkar, Pranesh Kumar, Anurag Gautam, Biswanath Maity and Sudipta Saha*

Volume 22, Issue 4, 2022

Published on: 05 August, 2021

Page: [629 - 639] Pages: 11

DOI: 10.2174/1389557521666210805104714

Price: $65

Abstract

Lung Cancer (LC) is the leading cause of cancer deaths worldwide. Recent research has also shown LC as a genomic disease, causing somatic mutations in the patients. Tests related to mutational analysis and genome profiles have lately expanded significantly in the genetics/genomics field of LC. This review summarizes the current knowledge about different signalling pathways of LC based on the clinical impact of molecular targets. It describes the main molecular pathways and changes involved in the development, progression, and cellular breakdown of LC and molecular changes. This review focuses on approved and targeted experimental therapies such as immunotherapy and clinical trials that examine the different targeted approaches to treating LC. We aim to clarify the differences in the extent of various genetic mutations in DNA for LC patients. Targeted molecular therapies for LC can be continued with advanced racial differences in genetic changes, which have a significant impact on the choice of drug treatment and our understanding of the profile of drug susceptibility/ resistance. The most relevant genes described in this review are EGFR, KRAS, MET, BRAF, PIK3CA, STK11, ERBB3, PTEN, and RB1. Combined research efforts in this field are required to understand the genetic difference in LC outcomes in the future.

Keywords: Lung cancer, targeted therapy, immunotherapy, cancer gene, survival pathway, specific biomarker.

Graphical Abstract
[1]
Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung Cancer. Med. Clin. North Am., 2019, 103(3), 463-473.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[2]
de Groot, P.M.; Wu, C.C.; Carter, B.W.; Munden, R.F. The epidemiology of lung cancer. Transl. Lung Cancer Res., 2018, 7(3), 220-233.
[http://dx.doi.org/10.21037/tlcr.2018.05.06] [PMID: 30050761]
[3]
Gomez, D.R.; Liao, Z. Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). InTarget Volume Delineation and Field Setup; Springer: Berlin, Heidelberg, 2013, pp. 87-103.
[4]
Brambilla, E.; Gazdar, A. Pathogenesis of lung cancer signalling pathways: Roadmap for therapies. Eur. Respir. J., 2009, 33(6), 1485-1497.
[http://dx.doi.org/10.1183/09031936.00014009] [PMID: 19483050]
[6]
Facchinetti, F.; Proto, C.; Minari, R.; Garassino, M.; Tiseo, M. Mechanisms of resistance to target therapies in non-small cell lung cancer.Mechanisms of Drug Resistance in Cancer Therapy; Springer: Cham, 2017, pp. 63-89.
[http://dx.doi.org/10.1007/164_2017_16]
[7]
Assal, A.; Kaner, J.; Pendurti, G.; Zang, X. Emerging targets in cancer immunotherapy: Beyond CTLA-4 and PD-1. Immunotherapy, 2015, 7(11), 1169-1186.
[http://dx.doi.org/10.2217/imt.15.78] [PMID: 26567614]
[8]
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 255.
[http://dx.doi.org/10.1186/s13046-019-1259-z] [PMID: 31196207]
[9]
Farago, A.F.; Azzoli, C.G. Beyond ALK and ROS1: RET, NTRK, EGFR and BRAF gene rearrangements in non-small cell lung cancer. Transl. Lung Cancer Res., 2017, 6(5), 550-559.
[http://dx.doi.org/10.21037/tlcr.2017.08.02] [PMID: 29114471]
[10]
Chen, L.; Engel, B.E.; Welsh, E.A.; Yoder, S.J.; Brantley, S.G.; Chen, D.T.; Beg, A.A.; Cao, C.; Kaye, F.J.; Haura, E.B.; Schabath, M.B.; Cress, W.D. A sensitive NanoString-based assay to score STK11 (LKB1) pathway disruption in lung adenocarcinoma. J. Thorac. Oncol., 2016, 11(6), 838-849.
[http://dx.doi.org/10.1016/j.jtho.2016.02.009] [PMID: 26917230]
[11]
Hemminki, A.; Markie, D.; Tomlinson, I.; Avizienyte, E.; Roth, S.; Loukola, A.; Bignell, G.; Warren, W.; Aminoff, M.; Höglund, P.; Järvinen, H.; Kristo, P.; Pelin, K.; Ridanpää, M.; Salovaara, R.; Toro, T.; Bodmer, W.; Olschwang, S.; Olsen, A.S.; Stratton, M.R.; de la Chapelle, A.; Aaltonen, L.A. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature, 1998, 391(6663), 184-187.
[http://dx.doi.org/10.1038/34432] [PMID: 9428765]
[12]
Jenne, D.E.; Reimann, H.; Nezu, J.; Friedel, W.; Loff, S.; Jeschke, R.; Müller, O.; Back, W.; Zimmer, M. Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat. Genet., 1998, 18(1), 38-43.
[http://dx.doi.org/10.1038/ng0198-38] [PMID: 9425897]
[13]
Sanchez-Cespedes, M.; Parrella, P.; Esteller, M.; Nomoto, S.; Trink, B.; Engles, J.M.; Westra, W.H.; Herman, J.G.; Sidransky, D. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res., 2002, 62(13), 3659-3662.
[PMID: 12097271]
[14]
Shah, U.; Sharpless, N.E.; Hayes, D.N. LKB1 and lung cancer: More than the usual suspects. Cancer Res., 2008, 68(10), 3562-3565.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6620] [PMID: 18483235]
[15]
Sanchez-Cespedes, M. The role of LKB1 in lung cancer. Fam. Cancer, 2011, 10(3), 447-453.
[http://dx.doi.org/10.1007/s10689-011-9443-0] [PMID: 21516316]
[16]
Gao, Y.; Ge, G.; Ji, H. LKB1 in lung cancerigenesis: A serine/threonine kinase as tumor suppressor. Protein Cell, 2011, 2(2), 99-107.
[http://dx.doi.org/10.1007/s13238-011-1021-6] [PMID: 21380642]
[17]
Matsumoto, S.; Iwakawa, R.; Takahashi, K.; Kohno, T.; Nakanishi, Y.; Matsuno, Y.; Suzuki, K.; Nakamoto, M.; Shimizu, E.; Minna, J.D.; Yokota, J. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene, 2007, 26(40), 5911-5918.
[http://dx.doi.org/10.1038/sj.onc.1210418] [PMID: 17384680]
[18]
Ji, H.; Ramsey, M.R.; Hayes, D.N.; Fan, C.; McNamara, K.; Kozlowski, P.; Torrice, C.; Wu, M.C.; Shimamura, T.; Perera, S.A.; Liang, M.C.; Cai, D.; Naumov, G.N.; Bao, L.; Contreras, C.M.; Li, D.; Chen, L.; Krishnamurthy, J.; Koivunen, J.; Chirieac, L.R.; Padera, R.F.; Bronson, R.T.; Lindeman, N.I.; Christiani, D.C.; Lin, X.; Shapiro, G.I.; Jänne, P.A.; Johnson, B.E.; Meyerson, M.; Kwiatkowski, D.J.; Castrillon, D.H.; Bardeesy, N.; Sharpless, N.E.; Wong, K.K. LKB1 modulates lung cancer differentiation and metastasis. Nature, 2007, 448(7155), 807-810.
[http://dx.doi.org/10.1038/nature06030] [PMID: 17676035]
[19]
Beroukhim, R.; Mermel, C.H.; Porter, D.; Wei, G.; Raychaudhuri, S.; Donovan, J.; Barretina, J.; Boehm, J.S.; Dobson, J.; Urashima, M.; Mc Henry, K.T.; Pinchback, R.M.; Ligon, A.H.; Cho, Y.J.; Haery, L.; Greulich, H.; Reich, M.; Winckler, W.; Lawrence, M.S.; Weir, B.A.; Tanaka, K.E.; Chiang, D.Y.; Bass, A.J.; Loo, A.; Hoffman, C.; Prensner, J.; Liefeld, T.; Gao, Q.; Yecies, D.; Signoretti, S.; Maher, E.; Kaye, F.J.; Sasaki, H.; Tepper, J.E.; Fletcher, J.A.; Tabernero, J.; Baselga, J.; Tsao, M.S.; Demichelis, F.; Rubin, M.A.; Janne, P.A.; Daly, M.J.; Nucera, C.; Levine, R.L.; Ebert, B.L.; Gabriel, S.; Rustgi, A.K.; Antonescu, C.R.; Ladanyi, M.; Letai, A.; Garraway, L.A.; Loda, M.; Beer, D.G.; True, L.D.; Okamoto, A.; Pomeroy, S.L.; Singer, S.; Golub, T.R.; Lander, E.S.; Getz, G.; Sellers, W.R.; Meyerson, M. The landscape of somatic copy-number alteration across human cancers. Nature, 2010, 463(7283), 899-905.
[http://dx.doi.org/10.1038/nature08822] [PMID: 20164920]
[20]
Ding, L.; Getz, G.; Wheeler, D.A.; Mardis, E.R.; McLellan, M.D.; Cibulskis, K.; Sougnez, C.; Greulich, H.; Muzny, D.M.; Morgan, M.B.; Fulton, L.; Fulton, R.S.; Zhang, Q.; Wendl, M.C.; Lawrence, M.S.; Larson, D.E.; Chen, K.; Dooling, D.J.; Sabo, A.; Hawes, A.C.; Shen, H.; Jhangiani, S.N.; Lewis, L.R.; Hall, O.; Zhu, Y.; Mathew, T.; Ren, Y.; Yao, J.; Scherer, S.E.; Clerc, K.; Metcalf, G.A.; Ng, B.; Milosavljevic, A.; Gonzalez-Garay, M.L.; Osborne, J.R.; Meyer, R.; Shi, X.; Tang, Y.; Koboldt, D.C.; Lin, L.; Abbott, R.; Miner, T.L.; Pohl, C.; Fewell, G.; Haipek, C.; Schmidt, H.; Dunford-Shore, B.H.; Kraja, A.; Crosby, S.D.; Sawyer, C.S.; Vickery, T.; Sander, S.; Robinson, J.; Winckler, W.; Baldwin, J.; Chirieac, L.R.; Dutt, A.; Fennell, T.; Hanna, M.; Johnson, B.E.; Onofrio, R.C.; Thomas, R.K.; Tonon, G.; Weir, B.A.; Zhao, X.; Ziaugra, L.; Zody, M.C.; Giordano, T.; Orringer, M.B.; Roth, J.A.; Spitz, M.R.; Wistuba, I.I.; Ozenberger, B.; Good, P.J.; Chang, A.C.; Beer, D.G.; Watson, M.A.; Ladanyi, M.; Broderick, S.; Yoshizawa, A.; Travis, W.D.; Pao, W.; Province, M.A.; Weinstock, G.M.; Varmus, H.E.; Gabriel, S.B.; Lander, E.S.; Gibbs, R.A.; Meyerson, M.; Wilson, R.K. Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 2008, 455(7216), 1069-1075.
[http://dx.doi.org/10.1038/nature07423] [PMID: 18948947]
[21]
Woods, A.; Johnstone, S.R.; Dickerson, K.; Leiper, F.C.; Fryer, L.G.; Neumann, D.; Schlattner, U.; Wallimann, T.; Carlson, M.; Carling, D. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol., 2003, 13(22), 2004-2008.
[http://dx.doi.org/10.1016/j.cub.2003.10.031] [PMID: 14614828]
[22]
Schabath, M.B.; Welsh, E.A.; Fulp, W.J.; Chen, L.; Teer, J.K.; Thompson, Z.J.; Engel, B.E.; Xie, M.; Berglund, A.E.; Creelan, B.C.; Antonia, S.J.; Gray, J.E.; Eschrich, S.A.; Chen, D.T.; Cress, W.D.; Haura, E.B.; Beg, A.A. Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene, 2016, 35(24), 3209-3216.
[http://dx.doi.org/10.1038/onc.2015.375] [PMID: 26477306]
[23]
Esteller, M.; Avizienyte, E.; Corn, P.G.; Lothe, R.A.; Baylin, S.B.; Aaltonen, L.A.; Herman, J.G. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene, 2000, 19(1), 164-168.
[http://dx.doi.org/10.1038/sj.onc.1203227] [PMID: 10644993]
[24]
Gill, R.K.; Yang, S.H.; Meerzaman, D.; Mechanic, L.E.; Bowman, E.D.; Jeon, H.S.; Roy Chowdhuri, S.; Shakoori, A.; Dracheva, T.; Hong, K.M.; Fukuoka, J.; Zhang, J.H.; Harris, C.C.; Jen, J. Frequent homozygous deletion of the LKB1/STK11 gene in non-small cell lung cancer. Oncogene, 2011, 30(35), 3784-3791.
[http://dx.doi.org/10.1038/onc.2011.98] [PMID: 21532627]
[25]
Pécuchet, N.; Laurent-Puig, P.; Mansuet-Lupo, A.; Legras, A.; Alifano, M.; Pallier, K.; Didelot, A.; Gibault, L.; Danel, C.; Just, P.A.; Riquet, M.; Le Pimpec-Barthes, F.; Damotte, D.; Fabre, E.; Blons, H. Different prognostic impact of STK11 mutations in non-squamous non-small-cell lung cancer. Oncotarget, 2017, 8(14), 23831-23840.
[http://dx.doi.org/10.18632/oncotarget.6379] [PMID: 26625312]
[26]
Dong, Z.Y.; Zhong, W.Z.; Zhang, X.C.; Su, J.; Xie, Z.; Liu, S.Y.; Tu, H.Y.; Chen, H.J.; Sun, Y.L.; Zhou, Q.; Yang, J.J.; Yang, X.N.; Lin, J.X.; Yan, H.H.; Zhai, H.R.; Yan, L.X.; Liao, R.Q.; Wu, S.P.; Wu, Y.L. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin. Cancer Res., 2017, 23(12), 3012-3024.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2554] [PMID: 28039262]
[27]
Biton, J.; Mansuet-Lupo, A.; Pécuchet, N.; Alifano, M.; Ouakrim, H.; Arrondeau, J.; Boudou-Rouquette, P.; Goldwasser, F.; Leroy, K.; Goc, J.; Wislez, M.; Germain, C.; Laurent-Puig, P.; Dieu-Nosjean, M.C.; Cremer, I.; Herbst, R.; Blons, H.; Damotte, D. TP53, STK11, and EGFR mutations predict tumor immune profile and the response to anti–PD-1 in lung adenocarcinoma. Clin. Cancer Res., 2018, 24(22), 5710-5723.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0163] [PMID: 29764856]
[28]
Facchinetti, F.; Bluthgen, M.V.; Tergemina-Clain, G.; Faivre, L.; Pignon, J.P.; Planchard, D.; Remon, J.; Soria, J.C.; Lacroix, L.; Besse, B. LKB1/STK11 mutations in non-small cell lung cancer patients: Descriptive analysis and prognostic value. Lung Cancer, 2017, 112, 62-68.
[http://dx.doi.org/10.1016/j.lungcan.2017.08.002] [PMID: 29191602]
[29]
Alessi, D.R.; Sakamoto, K.; Bayascas, J.R. LKB1-dependent signaling pathways. Annu. Rev. Biochem., 2006, 75, 137-163.
[http://dx.doi.org/10.1146/annurev.biochem.75.103004.142702] [PMID: 16756488]
[30]
Faubert, B.; Vincent, E.E.; Griss, T.; Samborska, B.; Izreig, S.; Svensson, R.U.; Mamer, O.A.; Avizonis, D.; Shackelford, D.B.; Shaw, R.J.; Jones, R.G. Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer cells via HIF-1α. Proc. Natl. Acad. Sci. USA, 2014, 111(7), 2554-2559.
[http://dx.doi.org/10.1073/pnas.1312570111] [PMID: 24550282]
[31]
Liu, Y.; Marks, K.; Cowley, G.S.; Carretero, J.; Liu, Q.; Nieland, T.J.; Xu, C.; Cohoon, T.J.; Gao, P.; Zhang, Y.; Chen, Z.; Altabef, A.B.; Tchaicha, J.H.; Wang, X.; Choe, S.; Driggers, E.M.; Zhang, J.; Bailey, S.T.; Sharpless, N.E.; Hayes, D.N.; Patel, N.M.; Janne, P.A.; Bardeesy, N.; Engelman, J.A.; Manning, B.D.; Shaw, R.J.; Asara, J.M.; Scully, R.; Kimmelman, A.; Byers, L.A.; Gibbons, D.L.; Wistuba, I.I.; Heymach, J.V.; Kwiatkowski, D.J.; Kim, W.Y.; Kung, A.L.; Gray, N.S.; Root, D.E.; Cantley, L.C.; Wong, K.K. Metabolic and functional genomic studies identify deoxythymidylate kinase as a target in LKB1-mutant lung cancer. Cancer Discov., 2013, 3(8), 870-879.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0015] [PMID: 23715154]
[32]
Gao, Y.; Xiao, Q.; Ma, H.; Li, L.; Liu, J.; Feng, Y.; Fang, Z.; Wu, J.; Han, X.; Zhang, J.; Sun, Y.; Wu, G.; Padera, R.; Chen, H.; Wong, K.K.; Ge, G.; Ji, H. LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc. Natl. Acad. Sci. USA, 2010, 107(44), 18892-18897.
[http://dx.doi.org/10.1073/pnas.1004952107] [PMID: 20956321]
[33]
Chan, K.T.; Asokan, S.B.; King, S.J.; Bo, T.; Dubose, E.S.; Liu, W.; Berginski, M.E.; Simon, J.M.; Davis, I.J.; Gomez, S.M.; Sharpless, N.E.; Bear, J.E. LKB1 loss in melanoma disrupts directional migration toward extracellular matrix cues. J. Cell Biol., 2014, 207(2), 299-315.
[http://dx.doi.org/10.1083/jcb.201404067] [PMID: 25349262]
[34]
Berger, A.H.; Brooks, A.N.; Wu, X.; Shrestha, Y.; Chouinard, C.; Piccioni, F.; Bagul, M.; Kamburov, A.; Imielinski, M.; Hogstrom, L.; Zhu, C.; Yang, X.; Pantel, S.; Sakai, R.; Watson, J.; Kaplan, N.; Campbell, J.D.; Singh, S.; Root, D.E.; Narayan, R.; Natoli, T.; Lahr, D.L.; Tirosh, I.; Tamayo, P.; Getz, G.; Wong, B.; Doench, J.; Subramanian, A.; Golub, T.R.; Meyerson, M.; Boehm, J.S. High-throughput phenotyping of lung cancer somatic mutations. Cancer Cell, 2016, 30(2), 214-228.
[http://dx.doi.org/10.1016/j.ccell.2016.06.022] [PMID: 27478040]
[35]
Carretero, J.; Medina, P.P.; Pio, R.; Montuenga, L.M.; Sanchez-Cespedes, M. Novel and natural knockout lung cancer cell lines for the LKB1/STK11 tumor suppressor gene. Oncogene, 2004, 23(22), 4037-4040.
[http://dx.doi.org/10.1038/sj.onc.1207502] [PMID: 15021901]
[36]
Fang, R.; Zheng, C.; Sun, Y.; Han, X.; Gao, B.; Li, C.; Liu, H.; Wong, K.K.; Liu, X.Y.; Chen, H.; Ji, H. Integrative genomic analysis reveals a high frequency of LKB1 genetic alteration in Chinese lung adenocarcinomas. J. Thorac. Oncol., 2014, 9(2), 254-258.
[http://dx.doi.org/10.1097/JTO.0000000000000056] [PMID: 24419424]
[37]
Koivunen, J.P.; Kim, J.; Lee, J.; Rogers, A.M.; Park, J.O.; Zhao, X.; Naoki, K.; Okamoto, I.; Nakagawa, K.; Yeap, B.Y.; Meyerson, M.; Wong, K.K.; Richards, W.G.; Sugarbaker, D.J.; Johnson, B.E.; Jänne, P.A. Mutations in the LKB1 tumour suppressor are frequently detected in tumours from Caucasian but not Asian lung cancer patients. Br. J. Cancer, 2008, 99(2), 245-252.
[http://dx.doi.org/10.1038/sj.bjc.6604469] [PMID: 18594528]
[38]
Gao, B.; Sun, Y.; Zhang, J.; Ren, Y.; Fang, R.; Han, X.; Shen, L.; Liu, X.Y.; Pao, W.; Chen, H.; Ji, H. Spectrum of LKB1, EGFR, and KRAS mutations in chinese lung adenocarcinomas. J. Thorac. Oncol., 2010, 5(8), 1130-1135.
[http://dx.doi.org/10.1097/JTO.0b013e3181e05016] [PMID: 20559149]
[39]
Sattler, M.; Reddy, M.M.; Hasina, R.; Gangadhar, T.; Salgia, R. The role of the c-Met pathway in lung cancer and the potential for targeted therapy. Ther. Adv. Med. Oncol., 2011, 3(4), 171-184.
[http://dx.doi.org/10.1177/1758834011408636] [PMID: 21904579]
[40]
Mazzone, M.; Comoglio, P.M. The Met pathway: Master switch and drug target in cancer progression. FASEB J., 2006, 20(10), 1611-1621.
[http://dx.doi.org/10.1096/fj.06-5947rev] [PMID: 16873884]
[41]
Krishnaswamy, S.; Kanteti, R.; Duke-Cohan, J.S.; Loganathan, S.; Liu, W.; Ma, P.C.; Sattler, M.; Singleton, P.A.; Ramnath, N.; Innocenti, F.; Nicolae, D.L.; Ouyang, Z.; Liang, J.; Minna, J.; Kozloff, M.F.; Ferguson, M.K.; Natarajan, V.; Wang, Y.C.; Garcia, J.G.; Vokes, E.E.; Salgia, R. Ethnic differences and functional analysis of MET mutations in lung cancer. Clin. Cancer Res., 2009, 15(18), 5714-5723.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0070] [PMID: 19723643]
[42]
Bean, J.; Brennan, C.; Shih, J.Y.; Riely, G.; Viale, A.; Wang, L.; Chitale, D.; Motoi, N.; Szoke, J.; Broderick, S.; Balak, M.; Chang, W.C.; Yu, C.J.; Gazdar, A.; Pass, H.; Rusch, V.; Gerald, W.; Huang, S.F.; Yang, P.C.; Miller, V.; Ladanyi, M.; Yang, C.H.; Pao, W. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc. Natl. Acad. Sci. USA, 2007, 104(52), 20932-20937.
[http://dx.doi.org/10.1073/pnas.0710370104] [PMID: 18093943]
[43]
Onozato, R.; Kosaka, T.; Kuwano, H.; Sekido, Y.; Yatabe, Y.; Mitsudomi, T. Activation of MET by gene amplification or by splice mutations deleting the juxtamembrane domain in primary resected lung cancers. J. Thorac. Oncol., 2009, 4(1), 5-11.
[http://dx.doi.org/10.1097/JTO.0b013e3181913e0e] [PMID: 19096300]
[44]
Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; Richards, W.; Sugarbaker, D.; Husain, A.N.; Christensen, J.G.; Salgia, R. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res., 2005, 65(4), 1479-1488.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2650] [PMID: 15735036]
[45]
Peghini, P.L.; Iwamoto, M.; Raffeld, M.; Chen, Y.J.; Goebel, S.U.; Serrano, J.; Jensen, R.T. Overexpression of epidermal growth factor and hepatocyte growth factor receptors in a proportion of gastrinomas correlates with aggressive growth and lower curability. Clin. Cancer Res., 2002, 8(7), 2273-2285.
[PMID: 12114431]
[46]
Tsao, M.S.; Yang, Y.; Marcus, A.; Liu, N.; Mou, L. Hepatocyte growth factor is predominantly expressed by the carcinoma cells in non-small-cell lung cancer. Hum. Pathol., 2001, 32(1), 57-65.
[http://dx.doi.org/10.1053/hupa.2001.21133] [PMID: 11172296]
[47]
Sequist, L.V.; von Pawel, J.; Garmey, E.G.; Akerley, W.L.; Brugger, W.; Ferrari, D.; Chen, Y.; Costa, D.B.; Gerber, D.E.; Orlov, S.; Ramlau, R.; Arthur, S.; Gorbachevsky, I.; Schwartz, B.; Schiller, J.H. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(24), 3307-3315.
[http://dx.doi.org/10.1200/JCO.2010.34.0570] [PMID: 21768463]
[48]
Shapiro, G.I.; McCallum, S.; Adams, L.M.; Sherman, L.; Weller, S.; Swann, S.; Keer, H.; Miles, D.; Müller, T.; Lorusso, P. A Phase 1 dose-escalation study of the safety and pharmacokinetics of once-daily oral foretinib, a multi-kinase inhibitor, in patients with solid tumors. Invest. New Drugs, 2013, 31(3), 742-750.
[http://dx.doi.org/10.1007/s10637-012-9881-z] [PMID: 23054208]
[49]
Surati, M.; Patel, P.; Peterson, A.; Salgia, R. Role of MetMAb (OA-5D5) in c-MET active lung malignancies. Expert Opin. Biol. Ther., 2011, 11(12), 1655-1662.
[http://dx.doi.org/10.1517/14712598.2011.626762] [PMID: 22047509]
[50]
Gordon, M.S.; Sweeney, C.S.; Mendelson, D.S.; Eckhardt, S.G.; Anderson, A.; Beaupre, D.M.; Branstetter, D.; Burgess, T.L.; Coxon, A.; Deng, H.; Kaplan-Lefko, P.; Leitch, I.M.; Oliner, K.S.; Yan, L.; Zhu, M.; Gore, L. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin. Cancer Res., 2010, 16(2), 699-710.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1365] [PMID: 20068101]
[51]
Aurisicchio, L.; Marra, E.; Roscilli, G.; Mancini, R.; Ciliberto, G. The promise of anti-ErbB3 monoclonals as new cancer therapeutics. Oncotarget, 2012, 3(8), 744-758.
[http://dx.doi.org/10.18632/oncotarget.550] [PMID: 22889873]
[52]
Huang, S.; Li, C.; Armstrong, E.A.; Peet, C.R.; Saker, J.; Amler, L.C.; Sliwkowski, M.X.; Harari, P.M. Dual targeting of EGFR and HER3 with MEHD7945A overcomes acquired resistance to EGFR inhibitors and radiation. Cancer Res., 2013, 73(2), 824-833.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1611] [PMID: 23172311]
[53]
Noto, A.; De Vitis, C.; Roscilli, G.; Fattore, L.; Malpicci, D.; Marra, E.; Luberto, L.; D’Andrilli, A.; Coluccia, P.; Giovagnoli, M.R.; Normanno, N.; Ruco, L.; Aurisicchio, L.; Mancini, R.; Ciliberto, G. Combination therapy with anti-ErbB3 monoclonal antibodies and EGFR TKIs potently inhibits non-small cell lung cancer. Oncotarget, 2013, 4(8), 1253-1265.
[http://dx.doi.org/10.18632/oncotarget.1141] [PMID: 23896512]
[54]
Salt, M.B.; Bandyopadhyay, S.; McCormick, F. Epithelial-to-mesenchymal transition rewires the molecular path to PI3K-dependent proliferation. Cancer Discov., 2014, 4(2), 186-199.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0520] [PMID: 24302555]
[55]
Brose, M.S.; Volpe, P.; Feldman, M.; Kumar, M.; Rishi, I.; Gerrero, R.; Einhorn, E.; Herlyn, M.; Minna, J.; Nicholson, A.; Roth, J.A.; Albelda, S.M.; Davies, H.; Cox, C.; Brignell, G.; Stephens, P.; Futreal, P.A.; Wooster, R.; Stratton, M.R.; Weber, B.L. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res., 2002, 62(23), 6997-7000.
[PMID: 12460918]
[56]
Mao, C.; Qiu, L.X.; Liao, R.Y.; Du, F.B.; Ding, H.; Yang, W.C.; Li, J.; Chen, Q. KRAS mutations and resistance to EGFR-TKIs treatment in patients with non-small cell lung cancer: A meta-analysis of 22 studies. Lung Cancer, 2010, 69(3), 272-278.
[http://dx.doi.org/10.1016/j.lungcan.2009.11.020] [PMID: 20022659]
[57]
Martin, P.; Leighl, N.B.; Tsao, M.S.; Shepherd, F.A. KRAS mutations as prognostic and predictive markers in non-small cell lung cancer. J. Thorac. Oncol., 2013, 8(5), 530-542.
[http://dx.doi.org/10.1097/JTO.0b013e318283d958] [PMID: 23524403]
[58]
Mascaux, C.; Iannino, N.; Martin, B.; Paesmans, M.; Berghmans, T.; Dusart, M.; Haller, A.; Lothaire, P.; Meert, A.P.; Noel, S.; Lafitte, J.J.; Sculier, J.P. The role of RAS oncogene in survival of patients with lung cancer: A systematic review of the literature with meta-analysis. Br. J. Cancer, 2005, 92(1), 131-139.
[http://dx.doi.org/10.1038/sj.bjc.6602258] [PMID: 15597105]
[59]
Linardou, H.; Dahabreh, I.J.; Kanaloupiti, D.; Siannis, F.; Bafaloukos, D.; Kosmidis, P.; Papadimitriou, C.A.; Murray, S. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: A systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol., 2008, 9(10), 962-972.
[http://dx.doi.org/10.1016/S1470-2045(08)70206-7] [PMID: 18804418]
[60]
Castellano, E.; Sheridan, C.; Thin, M.Z.; Nye, E.; Spencer-Dene, B.; Diefenbacher, M.E.; Moore, C.; Kumar, M.S.; Murillo, M.M.; Grönroos, E.; Lassailly, F.; Stamp, G.; Downward, J. Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance. Cancer Cell, 2013, 24(5), 617-630.
[http://dx.doi.org/10.1016/j.ccr.2013.09.012] [PMID: 24229709]
[61]
Corcoran, R.B.; Cheng, K.A.; Hata, A.N.; Faber, A.C.; Ebi, H.; Coffee, E.M.; Greninger, P.; Brown, R.D.; Godfrey, J.T.; Cohoon, T.J.; Song, Y.; Lifshits, E.; Hung, K.E.; Shioda, T.; Dias-Santagata, D.; Singh, A.; Settleman, J.; Benes, C.H.; Mino-Kenudson, M.; Wong, K.K.; Engelman, J.A. Synthetic lethal interaction of combined BCL-XL and MEK inhibition promotes tumor regressions in KRAS mutant cancer models. Cancer Cell, 2013, 23(1), 121-128.
[http://dx.doi.org/10.1016/j.ccr.2012.11.007] [PMID: 23245996]
[62]
Zimmermann, G.; Papke, B.; Ismail, S.; Vartak, N.; Chandra, A.; Hoffmann, M.; Hahn, S.A.; Triola, G.; Wittinghofer, A.; Bastiaens, P.I.; Waldmann, H. Small molecule inhibition of the KRAS-PDEδ interaction impairs oncogenic KRAS signalling. Nature, 2013, 497(7451), 638-642.
[http://dx.doi.org/10.1038/nature12205] [PMID: 23698361]
[63]
Zhu, Z.; Aref, A.R.; Cohoon, T.J.; Barbie, T.U.; Imamura, Y.; Yang, S.; Moody, S.E.; Shen, R.R.; Schinzel, A.C.; Thai, T.C.; Reibel, J.B.; Tamayo, P.; Godfrey, J.T.; Qian, Z.R.; Page, A.N.; Maciag, K.; Chan, E.M.; Silkworth, W.; Labowsky, M.T.; Rozhansky, L.; Mesirov, J.P.; Gillanders, W.E.; Ogino, S.; Hacohen, N.; Gaudet, S.; Eck, M.J.; Engelman, J.A.; Corcoran, R.B.; Wong, K.K.; Hahn, W.C.; Barbie, D.A. Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov., 2014, 4(4), 452-465.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0646] [PMID: 24444711]
[64]
Ostrem, J.M.; Peters, U.; Sos, M.L.; Wells, J.A.; Shokat, K.M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature, 2013, 503(7477), 548-551.
[http://dx.doi.org/10.1038/nature12796] [PMID: 24256730]
[65]
Naoki, K.; Chen, T.H.; Richards, W.G.; Sugarbaker, D.J.; Meyerson, M. Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res., 2002, 62(23), 7001-7003.
[PMID: 12460919]
[66]
Paik, P.K.; Arcila, M.E.; Fara, M.; Sima, C.S.; Miller, V.A.; Kris, M.G.; Ladanyi, M.; Riely, G.J. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J. Clin. Oncol., 2011, 29(15), 2046-2051.
[http://dx.doi.org/10.1200/JCO.2010.33.1280] [PMID: 21483012]
[67]
Cardarella, S.; Ogino, A.; Nishino, M.; Butaney, M.; Shen, J.; Lydon, C.; Yeap, B.Y.; Sholl, L.M.; Johnson, B.E.; Jänne, P.A. Clinical, pathologic, and biologic features associated with BRAF mutations in non-small cell lung cancer. Clin. Cancer Res., 2013, 19(16), 4532-4540.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0657] [PMID: 23833300]
[68]
González-Sánchez, E.; Martín-Caballero, J.; Flores, J.M.; Hernández-Losa, J.; Cortés, J.; Mares, R.; Barbacid, M.; Recio, J.A.; Recio, J.A. Lkb1 loss promotes tumor progression of BRAF(V600E)-induced lung adenomas. PLoS One, 2013, 8(6)e66933
[http://dx.doi.org/10.1371/journal.pone.0066933] [PMID: 23825589]
[69]
Strohecker, A.M.; Guo, J.Y.; Karsli-Uzunbas, G.; Price, S.M.; Chen, G.J.; Mathew, R.; McMahon, M.; White, E. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-driven lung tumors. Cancer Discov., 2013, 3(11), 1272-1285.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0397] [PMID: 23965987]
[70]
Lin, L.; Asthana, S.; Chan, E.; Bandyopadhyay, S.; Martins, M.M.; Olivas, V.; Yan, J.J.; Pham, L.; Wang, M.M.; Bollag, G.; Solit, D.B.; Collisson, E.A.; Rudin, C.M.; Taylor, B.S.; Bivona, T.G. Mapping the molecular determinants of BRAF oncogene dependence in human lung cancer. Proc. Natl. Acad. Sci. USA, 2014, 111(7), E748-E757.
[http://dx.doi.org/10.1073/pnas.1320956111] [PMID: 24550319]
[71]
Yamamoto, H.; Shigematsu, H.; Nomura, M.; Lockwood, W.W.; Sato, M.; Okumura, N.; Soh, J.; Suzuki, M.; Wistuba, I.I.; Fong, K.M.; Lee, H.; Toyooka, S.; Date, H.; Lam, W.L.; Minna, J.D.; Gazdar, A.F. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res., 2008, 68(17), 6913-6921.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5084] [PMID: 18757405]
[72]
Cumberbatch, M.; Tang, X.; Beran, G.; Eckersley, S.; Wang, X.; Ellston, R.P.; Dearden, S.; Cosulich, S.; Smith, P.D.; Behrens, C.; Kim, E.S.; Su, X.; Fan, S.; Gray, N.; Blowers, D.P.; Wistuba, I.I.; Womack, C. Identification of a subset of human non-small cell lung cancer patients with high PI3Kβ and low PTEN expression, more prevalent in squamous cell carcinoma. Clin. Cancer Res., 2014, 20(3), 595-603.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1638] [PMID: 24284056]
[73]
Jin, G.; Kim, M.J.; Jeon, H.S.; Choi, J.E.; Kim, D.S.; Lee, E.B.; Cha, S.I.; Yoon, G.S.; Kim, C.H.; Jung, T.H.; Park, J.Y. PTEN mutations and relationship to EGFR, ERBB2, KRAS, and TP53 mutations in non-small cell lung cancers. Lung Cancer, 2010, 69(3), 279-283.
[http://dx.doi.org/10.1016/j.lungcan.2009.11.012] [PMID: 20018398]
[74]
Marsit, C.J.; Zheng, S.; Aldape, K.; Hinds, P.W.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. PTEN expression in non-small-cell lung cancer: Evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum. Pathol., 2005, 36(7), 768-776.
[http://dx.doi.org/10.1016/j.humpath.2005.05.006] [PMID: 16084946]
[75]
Curry, N.L.; Mino-Kenudson, M.; Oliver, T.G.; Yilmaz, Ö.H.; Yilmaz, V.O.; Moon, J.Y.; Jacks, T.; Sabatini, D.M.; Kalaany, N.Y. Pten-null tumors cohabiting the same lung display differential AKT activation and sensitivity to dietary restriction. Cancer Discov., 2013, 3(8), 908-921.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0507] [PMID: 23719831]
[76]
Modi, S.; Kubo, A.; Oie, H.; Coxon, A.B.; Rehmatulla, A.; Kaye, F.J. Protein expression of the RB-related gene family and SV40 large T antigen in mesothelioma and lung cancer. Oncogene, 2000, 19(40), 4632-4639.
[http://dx.doi.org/10.1038/sj.onc.1203815] [PMID: 11030152]
[77]
Ohashi, K.; Sequist, L.V.; Arcila, M.E.; Lovly, C.M.; Chen, X.; Rudin, C.M.; Moran, T.; Camidge, D.R.; Vnencak-Jones, C.L.; Berry, L.; Pan, Y.; Sasaki, H.; Engelman, J.A.; Garon, E.B.; Dubinett, S.M.; Franklin, W.A.; Riely, G.J.; Sos, M.L.; Kris, M.G.; Dias-Santagata, D.; Ladanyi, M.; Bunn, P.A., Jr; Pao, W. Characteristics of lung cancers harboring NRAS mutations. Clin. Cancer Res., 2013, 19(9), 2584-2591.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-3173] [PMID: 23515407]
[78]
Kodaz, H.; Kostek, O.; Hacioglu, M.B.; Erdogan, B.; Kodaz, C.E.; Hacibekiroglu, I.; Turkmen, E.; Uzunoglu, S.; Cicin, I. Frequency of RAS mutations (KRAS, NRAS, HRAS) in human solid cancer. Breast Cancer, 2017, 7, 5.
[79]
Krebs, M.; Graham, D.; Ayub, M.; Dransfield, J.; Frost, H.; Aruketty, S.; Kilerci, B.; Wallace, A.; Kamboj, R.; Bakhle, D.; Palle, V. P2. 13-33 A case report of exceptional clinical response to MEK inhibition in a patient with NRAS mutation positive NSCLC. J. Thorac. Oncol., 2018, 13(10), S811-S812.
[http://dx.doi.org/10.1016/j.jtho.2018.08.1428]
[80]
Nicoś, M.; Krawczyk, P.; Jarosz, B.; Sawicki, M.; Trojanowski, T.; Milanowski, J. Prevalence of NRAS, PTEN and AKT1 gene mutations in the central nervous system metastases of non-small cell lung cancer. Brain Tumor Pathol., 2017, 34(1), 36-41.
[http://dx.doi.org/10.1007/s10014-016-0276-2] [PMID: 28097440]
[81]
MacDonald, B.T.; Tamai, K.; He, X. Wnt/β-catenin signaling: Components, mechanisms, and diseases. Dev. Cell, 2009, 17(1), 9-26.
[http://dx.doi.org/10.1016/j.devcel.2009.06.016] [PMID: 19619488]
[82]
Shigemitsu, K.; Sekido, Y.; Usami, N.; Mori, S.; Sato, M.; Horio, Y.; Hasegawa, Y.; Bader, S.A.; Gazdar, A.F.; Minna, J.D.; Hida, T.; Yoshioka, H.; Imaizumi, M.; Ueda, Y.; Takahashi, M.; Shimokata, K. Genetic alteration of the β-catenin gene (CTNNB1) in human lung cancer and malignant mesothelioma and identification of a new 3p21.3 homozygous deletion. Oncogene, 2001, 20(31), 4249-4257.
[http://dx.doi.org/10.1038/sj.onc.1204557] [PMID: 11464291]
[83]
Tornesello, M.L.; Buonaguro, L.; Tatangelo, F.; Botti, G.; Izzo, F.; Buonaguro, F.M. Mutations in TP53, CTNNB1 and PIK3CA genes in hepatocellular carcinoma associated with hepatitis B and hepatitis C virus infections. Genomics, 2013, 102(2), 74-83.
[http://dx.doi.org/10.1016/j.ygeno.2013.04.001] [PMID: 23583669]
[84]
Cieply, B.; Zeng, G.; Proverbs-Singh, T.; Geller, D.A.; Monga, S.P. Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology, 2009, 49(3), 821-831.
[http://dx.doi.org/10.1002/hep.22695] [PMID: 19101982]
[85]
Mohi, M.G.; Neel, B.G. The role of Shp2 (PTPN11) in cancer. Curr. Opin. Genet. Dev., 2007, 17(1), 23-30.
[http://dx.doi.org/10.1016/j.gde.2006.12.011] [PMID: 17227708]
[86]
Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell, 2004, 117(6), 699-711.
[http://dx.doi.org/10.1016/j.cell.2004.05.018] [PMID: 15186772]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy