Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Pluripotent Stem Cells for Livestock Health and Production

Author(s): Meeti Punetha, Kamlesh K. Bajwa, Seema Dua, Sonu Bansal, Vineichuno Kuotsu, Atul Parashar, Naresh L. Selokar, Pradeep Kumar, P.S. Yadav and Dharmendra Kumar*

Volume 17, Issue 3, 2022

Published on: 03 August, 2021

Page: [252 - 266] Pages: 15

DOI: 10.2174/1574888X16666210803162019

Price: $65

Abstract

Pluripotent stem cells (PSCs) have unlimited capacity for self-renewal and differentiation so that they can potentially produce any cell or tissue of animal’s body. The PSCs derived from livestock represents a more appropriate model than a rodent for investigating human diseases due to their higher anatomical and physiological resemblance with human. Apart from that, livestock PSCs hold immense promises for innovative therapies, transgenic animal production and their biomedical interest. The realization of the full potential of PSCs, however, depends on the elucidation of the molecular mechanisms which play a critical role in the maintenance of pluripotency and reprogramming procedure remains poorly understood in livestock which in turn impedes the generation of true PSCs and their usage for clinical research. An in-depth understanding of pluripotency is extremely essential for improving health and welfare of livestock animals. Therefore, the present review focuses on the milestone achievements of PSCs in livestock animals and their potential application in health and production of livestock.

Keywords: Cellular reprogramming, livestock, pluripotency, stem cells, iPS cells, health, production., stem cells (PSCs).

[1]
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292(5819): 154-6.
[http://dx.doi.org/10.1038/292154a0] [PMID: 7242681]
[2]
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78(12): 7634-8.
[http://dx.doi.org/10.1073/pnas.78.12.7634] [PMID: 6950406]
[3]
Evans MJ, Notarianni E, Laurie S, Moor RM. Derivation and preliminary characterization of pluripotent cell lines from porcine and bovine blastocysts. Theriogenology 1990; 33: 125-8.
[http://dx.doi.org/10.1016/0093-691X(90)90603-Q]
[4]
Piedrahita JA, Anderson GB, Bondurant RH. On the isolation of embryonic stem cells: Comparative behavior of murine, porcine and ovine embryos. Theriogenology 1990; 34(5): 879-901.
[http://dx.doi.org/10.1016/0093-691X(90)90559-C] [PMID: 16726890]
[5]
Chen LR, Shiue YL, Bertolini L, Medrano JF, BonDurant RH, Anderson GB. Establishment of pluripotent cell lines from porcine preimplantation embryos. Theriogenology 1999; 52(2): 195-212.
[http://dx.doi.org/10.1016/S0093-691X(99)00122-3] [PMID: 10734388]
[6]
Li M, Zhang D, Hou Y, Jiao L, Zheng X, Wang WH. Isolation and culture of embryonic stem cells from porcine blastocysts. Mol Reprod Dev 2003; 65(4): 429-34.
[http://dx.doi.org/10.1002/mrd.10301] [PMID: 12840816]
[7]
First NL, Sims MM, Park SP, Kent-First MJ. Systems for production of calves from cultured bovine embryonic cells. Reprod Fertil Dev 1994; 6(5): 553-62.
[http://dx.doi.org/10.1071/RD9940553] [PMID: 7569033]
[8]
Cibelli JB, Stice SL, Golueke PJ, et al. Transgenic bovine chimeric offspring produced from somatic cell-derived stem-like cells. Nat Biotechnol 1998; 16(7): 642-6.
[http://dx.doi.org/10.1038/nbt0798-642] [PMID: 9661197]
[9]
Mitalipova M, Beyhan Z, First NL. Pluripotency of bovine embryonic cell line derived from precompacting embryos. Cloning 2001; 3(2): 59-67.
[http://dx.doi.org/10.1089/15204550152475563] [PMID: 11900640]
[10]
Yadav PS, Kues WA, Herrmann D, Carnwath JW, Niemann H. Bovine ICM derived cells express the Oct4 ortholog. Mol Reprod Dev 2005; 72(2): 182-90.
[http://dx.doi.org/10.1002/mrd.20343] [PMID: 15973686]
[11]
Notarianni E, Galli C, Laurie S, Moor RM, Evans MJ. Derivation of pluripotent, embryonic cell lines from the pig and sheep. J Reprod Fertil Suppl 1991; 43: 255-60.
[PMID: 1843344]
[12]
Zhu SX, Sun Z, Zhang JP. Ovine (Ovis aries) blastula from an in vitro production system and isolation of primary embryonic stem cells. Zygote 2007; 15(1): 35-41.
[http://dx.doi.org/10.1017/S0967199406003959] [PMID: 17391544]
[13]
Behboodi E, Bondareva A, Begin I, et al. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos. Mol Reprod Dev 2011; 78(3): 202-11.
[http://dx.doi.org/10.1002/mrd.21290] [PMID: 21387453]
[14]
Kumar De A, Malakar D, Akshey YS, Jena MK, Dutta R. Isolation and characterization of embryonic stem cell-like cells from in vitro produced goat (Capra hircus) embryos. Anim Biotechnol 2011; 22(4): 181-96.
[http://dx.doi.org/10.1080/10495398.2011.622189] [PMID: 22132812]
[15]
Saito S, Ugai H, Sawai K, et al. Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett 2002; 531(3): 389-96.
[http://dx.doi.org/10.1016/S0014-5793(02)03550-0] [PMID: 12435581]
[16]
Anand T, Kumar D, Singh MK, et al. Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod Domest Anim 2011; 46(1): 50-8.
[http://dx.doi.org/10.1111/j.1439-0531.2009.01564.x] [PMID: 20042025]
[17]
Sharma R, George A, Kamble NM, et al. Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell Reprogram 2011; 13(6): 539-49.
[http://dx.doi.org/10.1089/cell.2011.0041] [PMID: 22029416]
[18]
Byrne JA, Pedersen DA, Clepper LL, et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 2007; 450(7169): 497-502.
[http://dx.doi.org/10.1038/nature06357] [PMID: 18004281]
[19]
Wang L, Duan E, Sung LY, Jeong BS, Yang X, Tian XC. Generation and characterization of pluripotent stem cells from cloned bovine embryos. Biol Reprod 2005; 73(1): 149-55.
[http://dx.doi.org/10.1095/biolreprod.104.037150] [PMID: 15744021]
[20]
George A, Sharma R, Singh KP, et al. Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro fertilized and cloned blastocysts. Cell Reprogram 2011; 13(3): 263-72.
[http://dx.doi.org/10.1089/cell.2010.0094] [PMID: 21548826]
[21]
Xu XM, Hua JL, Jia WW, Huang W, Yang CR, Dou ZY. Parthenogenetic activation of porcine oocytes and isolation of embryonic stem cells-like derived from parthenogenetic blastocysts. Asian-Australas J Anim Sci 2007; 20(10): 1510-6.
[http://dx.doi.org/10.5713/ajas.2007.1510]
[22]
Desmarais JA, Demers SP, Suzuki J Jr, et al. Trophoblast stem cell marker gene expression in inner cell mass-derived cells from parthenogenetic equine embryos. Reproduction 2011; 141(3): 321-32.
[http://dx.doi.org/10.1530/REP-09-0536] [PMID: 21209071]
[23]
Pashaiasl M, Khodadadi K, Holland MK, Verma PJ. The efficient generation of cell lines from bovine parthenotes. Cell Reprogram 2010; 12(5): 571-9.
[http://dx.doi.org/10.1089/cell.2009.0118] [PMID: 20936907]
[24]
Sritanaudomchai H, Pavasuthipaisit K, Kitiyanant Y, Kupradinun P, Mitalipov S, Kusamran T. Characterization and multilineage differentiation of embryonic stem cells derived from a buffalo parthenogenetic embryo. Mol Reprod Dev 2007; 74(10): 1295-302.
[http://dx.doi.org/10.1002/mrd.20592] [PMID: 17290421]
[25]
Muzaffar M, Selokar NL, Singh KP, et al. Equivalency of buffalo (Bubalus bubalis) embryonic stem cells derived from fertilized, parthenogenetic, and hand-made cloned embryos. Cell Reprogram 2012; 14(3): 267-79.
[http://dx.doi.org/10.1089/cell.2011.0090] [PMID: 22582863]
[26]
Singh KP, Kaushik R, Garg V, et al. Expression pattern of pluripotent markers in different embryonic developmental stages of buffalo (Bubalus bubalis) embryos and putative embryonic stem cells generated by parthenogenetic activation. Cell Reprogram 2012; 14(6): 530-8.
[http://dx.doi.org/10.1089/cell.2012.0032] [PMID: 23194456]
[27]
Muñoz M, Rodríguez A, De Frutos C, et al. Conventional pluripotency markers are unspecific for bovine embryonic-derived cell- lines. Theriogenology 2008; 69(9): 1159-64.
[http://dx.doi.org/10.1016/j.theriogenology.2008.02.014] [PMID: 18420262]
[28]
Ezashi T, Yuan Y, Roberts RM. Pluripotent stem cells from domesticated mammals. Annu Rev Anim Biosci 2016; 4: 223-53.
[http://dx.doi.org/10.1146/annurev-animal-021815-111202] [PMID: 26566158]
[29]
Navarro M, Soto DA, Pinzon CA, Wu J, Ross PJ. Livestock pluripotency is finally captured in vitro. Reprod Fertil Dev 2019; 32(2): 11-39.
[http://dx.doi.org/10.1071/RD19272] [PMID: 32188555]
[30]
Kumar D, Talluri TR, Selokar NL, Hyder I, Kues WA. Perspectives of pluripotent stem cells in livestock. World J Stem Cells 2021; 13(1): 1-29.
[http://dx.doi.org/10.4252/wjsc.v13.i1.1] [PMID: 33584977]
[31]
Nayernia K, Nolte J, Michelmann HW, et al. in vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice. Dev Cell 2006; 11(1): 125-32.
[http://dx.doi.org/10.1016/j.devcel.2006.05.010] [PMID: 16824959]
[32]
Leitch HG, Smith A. The mammalian germline as a pluripotency cycle. Development 2013; 140(12): 2495-501.
[http://dx.doi.org/10.1242/dev.091603] [PMID: 23715543]
[33]
Kanatsu-Shinohara M, Inoue K, Lee J, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell 2004; 119(7): 1001-12.
[http://dx.doi.org/10.1016/j.cell.2004.11.011] [PMID: 15620358]
[34]
Guan K, Nayernia K, Maier LS, et al. Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 2006; 440(7088): 1199-203.
[http://dx.doi.org/10.1038/nature04697] [PMID: 16565704]
[35]
Ko K, Tapia N, Wu G, et al. Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 2009; 5(1): 87-96.
[http://dx.doi.org/10.1016/j.stem.2009.05.025] [PMID: 19570517]
[36]
Wang H, Jiang M, Bi H, et al. Conversion of female germline stem cells from neonatal and prepubertal mice into pluripotent stem cells. J Mol Cell Biol 2014; 6(2): 164-71.
[http://dx.doi.org/10.1093/jmcb/mju004] [PMID: 24755856]
[37]
Reik W, Surani MA. Germline and pluripotent stem cells. Cold Spring Harb Perspect Biol 2015; 7(11): a019422.
[http://dx.doi.org/10.1101/cshperspect.a019422] [PMID: 26525151]
[38]
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126(4): 663-76.
[http://dx.doi.org/10.1016/j.cell.2006.07.024] [PMID: 16904174]
[39]
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131(5): 861-72.
[http://dx.doi.org/10.1016/j.cell.2007.11.019] [PMID: 18035408]
[40]
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448(7151): 313-7.
[http://dx.doi.org/10.1038/nature05934] [PMID: 17554338]
[41]
Esteban MA, Xu J, Yang J, et al. Generation of induced pluripotent stem cell lines from Tibetan miniature pig. J Biol Chem 2009; 284(26): 17634-40.
[http://dx.doi.org/10.1074/jbc.M109.008938] [PMID: 19376775]
[42]
Ezashi T, Telugu BPV, Alexenko AP, Sachdev S, Sinha S, Roberts RM. Derivation of induced pluripotent stem cells from pig somatic cells. Proc Natl Acad Sci USA 2009; 106(27): 10993-8.
[http://dx.doi.org/10.1073/pnas.0905284106] [PMID: 19541600]
[43]
Wu Z, Chen J, Ren J, et al. Generation of pig induced pluripotent stem cells with a drug-inducible system. J Mol Cell Biol 2009; 1(1): 46-54.
[http://dx.doi.org/10.1093/jmcb/mjp003] [PMID: 19502222]
[44]
Kues WA, Herrmann D, Barg-Kues B, et al. Derivation and characterization of sleeping beauty transposon-mediated porcine induced pluripotent stem cells. Stem Cells Dev 2013; 22(1): 124-35.
[http://dx.doi.org/10.1089/scd.2012.0382] [PMID: 22989381]
[45]
Bao L, He L, Chen J, et al. Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Res 2011; 21(4): 600-8.
[http://dx.doi.org/10.1038/cr.2011.6] [PMID: 21221129]
[46]
Liu J, Balehosur D, Murray B, Kelly JM, Sumer H, Verma PJ. Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology 2012; 77(2): 338-46.e1.
[http://dx.doi.org/10.1016/j.theriogenology.2011.08.006] [PMID: 21958637]
[47]
Ren J, Pak Y, He L, et al. Generation of hircine-induced pluripotent stem cells by somatic cell reprogramming. Cell Res 2011; 21(5): 849-53.
[http://dx.doi.org/10.1038/cr.2011.37] [PMID: 21403680]
[48]
Song H, Li H, Huang M, et al. Induced pluripotent stem cells from goat fibroblasts. Mol Reprod Dev 2013; 80(12): 1009-17.
[http://dx.doi.org/10.1002/mrd.22266] [PMID: 24123501]
[49]
Nagy K, Sung HK, Zhang P, et al. Induced pluripotent stem cell lines derived from equine fibroblasts. Stem Cell Rev Rep 2011; 7(3): 693-702.
[http://dx.doi.org/10.1007/s12015-011-9239-5] [PMID: 21347602]
[50]
Breton A, Sharma R, Diaz AC, et al. Derivation and characterization of induced pluripotent stem cells from equine fibroblasts. Stem Cells Dev 2013; 22(4): 611-21.
[http://dx.doi.org/10.1089/scd.2012.0052] [PMID: 22897112]
[51]
Whitworth DJ, Ovchinnikov DA, Sun J, Fortuna PR, Wolvetang EJ. Generation and characterization of leukemia inhibitory factor-dependent equine induced pluripotent stem cells from adult dermal fibroblasts. Stem Cells Dev 2014; 23(13): 1515-23.
[http://dx.doi.org/10.1089/scd.2013.0461] [PMID: 24555755]
[52]
Sumer H, Liu J, Malaver-Ortega LF, Lim ML, Khodadadi K, Verma PJ. NANOG is a key factor for induction of pluripotency in bovine adult fibroblasts. J Anim Sci 2011; 89(9): 2708-16.
[http://dx.doi.org/10.2527/jas.2010-3666] [PMID: 21478453]
[53]
Talluri TR, Kumar D, Glage S, et al. Derivation and characterization of bovine induced pluripotent stem cells by transposon-mediated reprogramming. Cell Reprogram 2015; 17(2): 131-40.
[http://dx.doi.org/10.1089/cell.2014.0080] [PMID: 25826726]
[54]
Deng Y, Liu Q, Luo C, et al. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors. Stem Cells Dev 2012; 21(13): 2485-94.
[http://dx.doi.org/10.1089/scd.2012.0018] [PMID: 22420535]
[55]
Kumar D, Anand T, Vijayalakshmy K, et al. Transposon mediated reprogramming of buffalo fetal fibroblasts to induced pluripotent stem cells in feeder free culture conditions. Res Vet Sci 2019; 123: 252-60.
[http://dx.doi.org/10.1016/j.rvsc.2019.01.015] [PMID: 30703616]
[56]
West FD, Terlouw SL, Kwon DJ, et al. Porcine induced pluripotent stem cells produce chimeric offspring. Stem Cells Dev 2010; 19(8): 1211-20.
[http://dx.doi.org/10.1089/scd.2009.0458] [PMID: 20380514]
[57]
Sartori C, DiDomenico AI, Thomson AJ, et al. Ovine-induced pluripotent stem cells can contribute to chimeric lambs. Cell Reprogram 2012; 14(1): 8-19.
[http://dx.doi.org/10.1089/cell.2011.0050] [PMID: 22217199]
[58]
Talbot NC, Blomberg LeAnn. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev 2008; 4(3): 235-54.
[http://dx.doi.org/10.1007/s12015-008-9026-0] [PMID: 18612851]
[59]
Kumar D, Anand T, Lalaji SN, Yadav PS, Singh I. Buffalo embryonic, fetal and adult stem cells: Progress and challenges. Agric Res 2015; 4: 7-20.
[http://dx.doi.org/10.1007/s40003-014-0142-6]
[60]
Brevini TA, Pennarossa G, Gandolfi F. No shortcuts to pig embryonic stem cells. Theriogenology 2010; 74(4): 544-50.
[http://dx.doi.org/10.1016/j.theriogenology.2010.04.020] [PMID: 20570327]
[61]
Malaver-Ortega LF, Sumer H, Liu J, Verma PJ. The state of the art for pluripotent stem cells derivation in domestic ungulates. Theriogenology 2012; 78(8): 1749-62.
[http://dx.doi.org/10.1016/j.theriogenology.2012.03.031] [PMID: 22578625]
[62]
Strelchenko N, Saito S, Niemann H. Towards the establishment of bovine embryonic stem cells. Theriogenology 1991; 35: 274.
[http://dx.doi.org/10.1016/0093-691X(91)90250-H]
[63]
Iwasaki S, Campbell KH, Galli C, Akiyama K. Production of live calves derived from embryonic stem-like cells aggregated with tetraploid embryos. Biol Reprod 2000; 62(2): 470-5.
[http://dx.doi.org/10.1095/biolreprod62.2.470] [PMID: 10642589]
[64]
Saito S, Sawai K, Ugai H, et al. Generation of cloned calves and transgenic chimeric embryos from bovine embryonic stem-like cells. Biochem Biophys Res Commun 2003; 309(1): 104-13.
[http://dx.doi.org/10.1016/S0006-291X(03)01536-5] [PMID: 12943670]
[65]
Gjørret JO, Maddox-Hyttel P. Attempts towards derivation and establishment of bovine embryonic stem cell-like cultures. Reprod Fertil Dev 2005; 17(1-2): 113-24.
[PMID: 15745636]
[66]
Vejlsted M, Avery B, Gjorret JO, Maddox-Hyttel P. Effect of leukemia inhibitory factor (LIF) on in vitro produced bovine embryos and their outgrowth colonies. Mol Reprod Dev 2005; 70(4): 445-54.
[http://dx.doi.org/10.1002/mrd.20221] [PMID: 15685635]
[67]
Lim ML, Vassiliev I, Richings NM, Firsova AB, Zhang C, Verma PJ. A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 2011; 76(1): 133-42.
[http://dx.doi.org/10.1016/j.theriogenology.2011.01.027] [PMID: 21396694]
[68]
Bogliotti YS, Wu J, Vilarino M, et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc Natl Acad Sci USA 2018; 115(9): 2090-5.
[http://dx.doi.org/10.1073/pnas.1716161115] [PMID: 29440377]
[69]
Kumar D, Anand T, Singh KP, et al. Derivation of buffalo embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. J Assist Reprod Genet 2011; 28(8): 679-88.
[http://dx.doi.org/10.1007/s10815-011-9572-2] [PMID: 21573679]
[70]
Shah SM, Saini N, Ashraf S, et al. Retracted: Bone morphogenetic protein 4 (BMP4) induces buffalo (Bubalus bubalis) embryonic stem cell differentiation into germ cells. Biochimie 2015; 119: 113-24.
[71]
Singh MK, Singh KP, Kumar D, et al. Buffalo (Bubalus bubalis) ES cell-like cells are capable of in vitro skeletal myogenic differentiation. Reprod Domest Anim 2013; 48(2): 284-91.
[http://dx.doi.org/10.1111/j.1439-0531.2012.02146.x] [PMID: 22788718]
[72]
Taru Sharma G, Dubey PK, Verma OP, Pratheesh MD, Nath A, Sai Kumar G. Collagen-IV supported embryoid bodies formation and differentiation from buffalo (Bubalus bubalis) embryonic stem cells. Biochem Biophys Res Commun 2012; 424(3): 378-84.
[http://dx.doi.org/10.1016/j.bbrc.2012.06.076] [PMID: 22749767]
[73]
Verma OP, Kumar R, Nath A, et al. In vivo differentiation potential of buffalo (Bubalus bubalis) embryonic stem cell. In vitro Cell Dev Biol Anim 2012; 48(6): 349-58.
[74]
Dattena M, Chessa B, Lacerenza D, et al. Isolation, culture, and characterization of embryonic cell lines from vitrified sheep blastocysts. Mol Reprod Dev 2006; 73(1): 31-9.
[http://dx.doi.org/10.1002/mrd.20378] [PMID: 16206132]
[75]
Zhao Y, Lin J, Wang L, et al. Derivation and characterization of ovine embryonic stem-like cell lines in semi-defined medium without feeder cells. J Exp Zool A Ecol Genet Physiol 2011; 315A: 639-48.
[76]
Wei Q, Xi Q, Liu X, Meng K, Zhao X, Ma B. Characterization of goat inner cell mass derived cells in double kinase inhibition condition. Biochem Biophys Res Commun 2017; 483(1): 325-31.
[http://dx.doi.org/10.1016/j.bbrc.2016.12.144] [PMID: 28025142]
[77]
Vackova I, Ungrova A, Lopes F. Putative embryonic stem cell lines from pig embryos. J Reprod Dev 2007; 53(6): 1137-49.
[http://dx.doi.org/10.1262/jrd.19108] [PMID: 18198476]
[78]
Telugu BP, Ezashi T, Roberts RM. Porcine induced pluripotent stem cells analogous to naïve and primed embryonic stem cells of the mouse. Int J Dev Biol 2010; 54(11-12): 1703-11.
[http://dx.doi.org/10.1387/ijdb.103200bt] [PMID: 21305472]
[79]
Alberio R, Croxall N, Allegrucci C. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev 2010; 19(10): 1627-36.
[http://dx.doi.org/10.1089/scd.2010.0012] [PMID: 20210627]
[80]
Vassiliev I, Vassilieva S, Beebe LF, McIlfatrick SM, Harrison SJ, Nottle MB. Development of culture conditions for the isolation of pluripotent porcine embryonal outgrowths from in vitro produced and in vivo derived embryos. J Reprod Dev 2010; 56(5): 546-51.
[http://dx.doi.org/10.1262/jrd.09-197A] [PMID: 20519828]
[81]
Choi KH, Lee DK, Kim SW, Woo SH, Kim DY, Lee CK. Chemically defined media can maintain pig pluripotency network in vitro. Stem Cell Reports 2019; 13(1): 221-34.
[http://dx.doi.org/10.1016/j.stemcr.2019.05.028] [PMID: 31257130]
[82]
McLaren A. Cloning: Pathways to a pluripotent future. Science 2000; 288(5472): 1775-80.
[http://dx.doi.org/10.1126/science.288.5472.1775] [PMID: 10877698]
[83]
Do JT, Schöler HR. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 2004; 22(6): 941-9.
[http://dx.doi.org/10.1634/stemcells.22-6-941] [PMID: 15536185]
[84]
Nowak-Imialek M, Niemann H. Pluripotent cells in farm animals: State of the art and future perspectives. Reprod Fertil Dev 2012; 25(1): 103-28.
[http://dx.doi.org/10.1071/RD12265] [PMID: 23244833]
[85]
Kumar D, Talluri TR, Anand T, Kues WA. Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World J Stem Cells 2015; 7(2): 315-28.
[http://dx.doi.org/10.4252/wjsc.v7.i2.315] [PMID: 25815117]
[86]
Kumar D, Talluri TR, Anand T, Kues WA. Transposon-based reprogramming to induced pluripotency. Histol Histopathol 2015; 30(12): 1397-409.
[PMID: 26301418]
[87]
Ogorevc J, Orehek S, Dovč P. Cellular reprogramming in farm animals: An overview of iPSC generation in the mammalian farm animal species. J Anim Sci Biotechnol 2016; 7(1): 10.
[http://dx.doi.org/10.1186/s40104-016-0070-3] [PMID: 26900466]
[88]
Haridhasapavalan KK, Borgohain MP, Dey C, et al. An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene 2019; 686: 146-59.
[http://dx.doi.org/10.1016/j.gene.2018.11.069] [PMID: 30472380]
[89]
Kumar D, Anand T, Talluri TR, Kues WA. Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World J Stem Cells 2020; 12(7): 527-44.
[http://dx.doi.org/10.4252/wjsc.v12.i7.527] [PMID: 32843912]
[90]
Montserrat N, de Oñate L, Garreta E, et al. Generation of feeder-free pig induced pluripotent stem cells without Pou5f1. Cell Transplant 2012; 21(5): 815-25.
[http://dx.doi.org/10.3727/096368911X601019] [PMID: 21944493]
[91]
Zhou L, Wang W, Liu Y, et al. Differentiation of induced pluripotent stem cells of swine into rod photoreceptors and their integration into the retina. Stem Cells 2011; 29(6): 972-80.
[http://dx.doi.org/10.1002/stem.637]
[92]
Gao X, Nowak-Imialek M, Chen X, et al. Establishment of porcine and human expanded potential stem cells. Nat Cell Biol 2019; 21(6): 687-99.
[http://dx.doi.org/10.1038/s41556-019-0333-2] [PMID: 31160711]
[93]
West FD, Uhl EW, Liu Y, et al. Brief report: chimeric pigs produced from induced pluripotent stem cells demonstrate germline transmission and no evidence of tumor formation in young pigs. Stem Cells 2011; 29(10): 1640-3.
[http://dx.doi.org/10.1002/stem.713] [PMID: 22039609]
[94]
Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 2003; 115(3): 281-92.
[http://dx.doi.org/10.1016/S0092-8674(03)00847-X] [PMID: 14636556]
[95]
Fukuda T, Tani T, Haraguchi S, et al. Expression of six proteins causes reprogramming of porcine fibroblasts into induced pluripotent stem cells with both active X chromosomes. J Cell Biochem 2017; 118(3): 537-53.
[http://dx.doi.org/10.1002/jcb.25727] [PMID: 27608441]
[96]
Li D, Secher J, Hyttel P, et al. Generation of transgene-free porcine intermediate type induced pluripotent stem cells. Cell Cycle 2018; 17(23): 2547-63.
[http://dx.doi.org/10.1080/15384101.2018.1548790] [PMID: 30457474]
[97]
Xu J, Yu L, Guo J, et al. Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system. Stem Cell Res Ther 2019; 10(1): 193.
[http://dx.doi.org/10.1186/s13287-019-1303-0] [PMID: 31248457]
[98]
Han X, Han J, Ding F, et al. Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Res 2011; 21(10): 1509-12.
[http://dx.doi.org/10.1038/cr.2011.125] [PMID: 21826109]
[99]
Huang B, Li T, Alonso-Gonzalez L, et al. A virus-free poly-promoter vector induces pluripotency in quiescent bovine cells under chemically defined conditions of dual kinase inhibition. PLoS One 2011; 6(9): e24501.
[http://dx.doi.org/10.1371/journal.pone.0024501] [PMID: 21912700]
[100]
Cao H, Yang P, Pu Y, et al. Characterization of bovine induced pluripotent stem cells by lentiviral transduction of reprogramming factor fusion proteins. Int J Biol Sci 2012; 8(4): 498-511.
[http://dx.doi.org/10.7150/ijbs.3723] [PMID: 22457605]
[101]
Bag S. Generation and characterization of induced pluripotent stem cells in domestic Asian water buffalo (Bubalus bubalis). Int J Stem Cell Res Transplant 2016; 4(5): 182-9.
[102]
Mahapatra PS, Singh R, Kumar K, et al. Valproic acid assisted reprogramming of fibroblasts for generation of pluripotent stem cells in buffalo (Bubalus bubalis). Int J Dev Biol 2017; 61(1-2): 81-8.
[http://dx.doi.org/10.1387/ijdb.160006sb] [PMID: 27528045]
[103]
Rawat N, Singh MK, Sharma T, et al. Media switching at different time periods affects the reprogramming efficiency of buffalo fetal fibroblasts. Anim Biotechnol 2021; 32(2): 155-68.
[http://dx.doi.org/10.1080/10495398.2019.1671435] [PMID: 31599201]
[104]
Deng Y, Huang G, Chen F, et al. Hypoxia enhances buffalo adipose-derived mesenchymal stem cells proliferation, stemness, and reprogramming into induced pluripotent stem cells. J Cell Physiol 2019; 234(10): 17254-68.
[http://dx.doi.org/10.1002/jcp.28342] [PMID: 30805934]
[105]
Canizo JR, Vazquez Echegaray C, Klisch D, et al. Exogenous human OKSM factors maintain pluripotency gene expression of bovine and porcine iPS-like cells obtained with STEMCCA delivery system. BMC Res Notes 2018; 11(1): 509.
[http://dx.doi.org/10.1186/s13104-018-3627-8] [PMID: 30053877]
[106]
Pillai VV, Kei TG, Reddy SE, et al. Induced pluripotent stem cell generation from bovine somatic cells indicates unmet needs for pluripotency sustenance. Anim Sci J 2019; 90(9): 1149-60.
[http://dx.doi.org/10.1111/asj.13272] [PMID: 31322312]
[107]
Tai D, Liu P, Gao J, et al. Generation of arbas cashmere goat induced pluripotent stem cells through fibroblast reprogramming. Cell Reprogram 2015; 17(4): 297-305.
[http://dx.doi.org/10.1089/cell.2014.0107] [PMID: 26731591]
[108]
Sandmaier SE, Nandal A, Powell A, et al. Generation of induced pluripotent stem cells from domestic goats. Mol Reprod Dev 2015; 82(9): 709-21.
[http://dx.doi.org/10.1002/mrd.22512] [PMID: 26118622]
[109]
Chen H, Zuo Q, Wang Y, et al. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters. BMC Biotechnol 2017; 17(1): 11.
[http://dx.doi.org/10.1186/s12896-017-0336-7] [PMID: 28193206]
[110]
Shi H, Fu Q, Li G, et al. Roles of p53 and ASF1A in the reprogramming of sheep kidney cells to pluripotent cells. Cell Reprogram 2015; 17(6): 441-52.
[http://dx.doi.org/10.1089/cell.2015.0039] [PMID: 26580119]
[111]
Chu Z, Niu B, Zhu H, et al. PRMT5 enhances generation of induced pluripotent stem cells from dairy goat embryonic fibroblasts via down-regulation of p53. Cell Prolif 2015; 48(1): 29-38.
[http://dx.doi.org/10.1111/cpr.12150] [PMID: 25424361]
[112]
Song H, Li H, Huang M, Xu D, Wang Z, Wang F. Big animal cloning using transgenic induced pluripotent stem cells: A case study of goat transgenic induced pluripotent stem cells. Cell Reprogram 2016; 18(1): 37-47.
[http://dx.doi.org/10.1089/cell.2015.0035] [PMID: 26836033]
[113]
Li Y, Cang M, Lee AS, Zhang K, Liu D. Reprogramming of sheep fibroblasts into pluripotency under a drug-inducible expression of mouse-derived defined factors. PLoS One 2011; 6(1): e15947.
[http://dx.doi.org/10.1371/journal.pone.0015947] [PMID: 21253598]
[114]
Scarfone RA, Pena SM, Russell KA, Betts DH, Koch TG. The use of induced pluripotent stem cells in domestic animals: a narrative review. BMC Vet Res 2020; 16(1): 477.
[http://dx.doi.org/10.1186/s12917-020-02696-7] [PMID: 33292200]
[115]
Hawkins K, Joy S, McKay T. Cell signalling pathways underlying induced pluripotent stem cell reprogramming. World J Stem Cells 2014; 6(5): 620-8.
[http://dx.doi.org/10.4252/wjsc.v6.i5.620] [PMID: 25426259]
[116]
Romito A, Cobellis G. Pluripotent Stem Cells: Current understanding and future directions. Stem Cells Int 2016; 2016: 9451492.
[http://dx.doi.org/10.1155/2016/9451492] [PMID: 26798367]
[117]
Ivanova N, Dobrin R, Lu R, et al. Dissecting self-renewal in stem cells with RNA interference. Nature 2006; 442(7102): 533-8.
[http://dx.doi.org/10.1038/nature04915] [PMID: 16767105]
[118]
Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24(4): 372-6.
[http://dx.doi.org/10.1038/74199] [PMID: 10742100]
[119]
Loh YH, Wu Q, Chew JL, et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38(4): 431-40.
[http://dx.doi.org/10.1038/ng1760] [PMID: 16518401]
[120]
Yuan H, Corbi N, Basilico C, Dailey L. Developmental-specific activity of the FGF-4 enhancer requires the synergistic action of Sox2 and Oct-3. Genes Dev 1995; 9(21): 2635-45.
[http://dx.doi.org/10.1101/gad.9.21.2635] [PMID: 7590241]
[121]
Mitsui K, Tokuzawa Y, Itoh H, et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631-42.
[122]
Meissner A. Epigenetic modifications in pluripotent and differentiated cells. Nat Bio technol 2010; 28: 1079-88.
[http://dx.doi.org/10.1038/nbt.1684]
[123]
Marks H, Kalkan T, Menafra R, et al. The transcriptional and epigenomic foundations of ground state plu ripotency. Cell 2012; 149: 590-604.
[124]
Zi Z, Chapnick DA, Liu X. Dynamics of TGF-β/Smad signaling. FEBS Lett 2012; 586(14): 1921-8.
[http://dx.doi.org/10.1016/j.febslet.2012.03.063] [PMID: 22710166]
[125]
James D, Noggle SA, Swigut T, Brivanlou AH. Contribution of human embryonic stem cells to mouse blastocysts. Dev Biol 2006; 295(1): 90-102.
[http://dx.doi.org/10.1016/j.ydbio.2006.03.026] [PMID: 16769046]
[126]
Sakaki-Yumoto M, Katsuno Y, Derynck R. TGF-β family signaling in stem cells. Biochimica et Biophysica Acta (BBA)-General Subjects 2013; 1830(2): 2280-96.
[http://dx.doi.org/10.1016/j.bbagen.2012.08.008]
[127]
Valenta T, Hausmann G, Basler K. The many faces and functions of β-catenin. EMBO J 2012; 31(12): 2714-36.
[http://dx.doi.org/10.1038/emboj.2012.150] [PMID: 22617422]
[128]
Chen CY, Lee DS, Yan YT, et al. Bcl3 bridges LIF‐STAT3 to Oct4 signaling in the maintenance of naïve pluripotency. Stem Cells 2015; 33(12): 3468-80.
[http://dx.doi.org/10.1002/stem.2201] [PMID: 26303070]
[129]
Matsuda T, Nakamura T, Nakao K, et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 1999; 18(15): 4261-9.
[http://dx.doi.org/10.1093/emboj/18.15.4261] [PMID: 10428964]
[130]
Raz R, Lee CK, Cannizzaro LA, d’Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci USA 1999; 96(6): 2846-51.
[http://dx.doi.org/10.1073/pnas.96.6.2846] [PMID: 10077599]
[131]
Hirai H, Karian P, Kikyo N. Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J 2011; 438(1): 11-23.
[http://dx.doi.org/10.1042/BJ20102152] [PMID: 21793804]
[132]
Ye S, Zhang D, Cheng F, et al. Wnt/β-catenin and LIF-Stat3 signaling pathways converge on Sp5 to promote mouse embryonic stem cell self-renewal. J Cell Sci 2016; 129(2): 269-76.
[PMID: 26598557]
[133]
Blomberg LA, Telugu BP. Twenty years of embryonic stem cell research in farm animals. Reprod Domest Anim 2012; 47(4): 80-5.
[http://dx.doi.org/10.1111/j.1439-0531.2012.02059.x] [PMID: 22827354]
[134]
Gandolfi F, Pennarossa G, Maffei S, Brevini T. Why is it so difficult to derive pluripotent stem cells in domestic ungulates? Reprod Domest Anim 2012; 47(Suppl. 5): 11-7.
[http://dx.doi.org/10.1111/j.1439-0531.2012.02106.x] [PMID: 22913556]
[135]
Gonçalves NN, Ambrósio CE, Piedrahita JA. Stem cells and regenerative medicine in domestic and companion animals: A multispecies perspective. Reprod Domest Anim 2014; 49(Suppl. 4): 2-10.
[http://dx.doi.org/10.1111/rda.12392] [PMID: 25277427]
[136]
Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: History, mechanisms, technologies, and applications. Stem Cell Rev Rep 2020; 16(1): 3-32.
[http://dx.doi.org/10.1007/s12015-019-09935-x] [PMID: 31760627]
[137]
Madeja ZE, Pawlak P, Piliszek A. Beyond the mouse: Non-rodent animal models for study of early mammalian development and biomedical research. Int J Dev Biol 2019; 63(3-4-5): 187-201.
[http://dx.doi.org/10.1387/ijdb.180414ap] [PMID: 31058296]
[138]
Singh B, Mal G, Kues WA, Yadav PS. The domesticated buffalo-An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology 2020; 151: 95-102.
[http://dx.doi.org/10.1016/j.theriogenology.2020.04.003] [PMID: 32320839]
[139]
Cebrian-Serrano A, Stout T, Dinnyes A. Veterinary applications of induced pluripotent stem cells: Regenerative medicine and models for disease? Vet J 2013; 198(1): 34-42.
[http://dx.doi.org/10.1016/j.tvjl.2013.03.028] [PMID: 24129109]
[140]
Roberts RM, Smith GW, Bazer FW, et al. Research priorities. Farm animal research in crisis. Science 2009; 324(5926): 468-9.
[http://dx.doi.org/10.1126/science.1168521] [PMID: 19390030]
[141]
Elsik CG, Tellam RL, Worley KC, et al. The genome sequence of taurine cattle: A window to ruminant biology and evolution. Science 2009; 324(5926): 522-8.
[http://dx.doi.org/10.1126/science.1169588] [PMID: 19390049]
[142]
Galibert F, Wilton AN, Chuat JC. The canine model in medical genetics. In: Ruvinsky A, Sampson J, Eds. The Genetics of the Dog. New York: CAB International 2011; pp. 505-20.
[143]
Voga M, Adamic N, Vengust M, Majdic G. Stem cells in veterinary medicine-current state and treatment options. Front Vet Sci 2020; 7: 278.
[http://dx.doi.org/10.3389/fvets.2020.00278] [PMID: 32656249]
[144]
Mauritz C, Schwanke K, Reppel M, et al. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 2008; 118(5): 507-17.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.778795] [PMID: 18625890]
[145]
Zhang J, Wilson GF, Soerens AG, et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ Res 2009; 104(4): e30-41.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.192237] [PMID: 19213953]
[146]
Lee AS, Xu D, Plews JR, et al. Preclinical derivation and imaging of autologously transplanted canine induced pluripotent stem cells. J Biol Chem 2011; 286(37): 32697-704.
[http://dx.doi.org/10.1074/jbc.M111.235739] [PMID: 21719696]
[147]
Gu M, Nguyen PK, Lee AS, et al. Microfluidic single-cell analysis shows that porcine induced pluripotent stem cell-derived endothelial cells improve myocardial function by paracrine activation. Circ Res 2012; 111(7): 882-93.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.269001] [PMID: 22821929]
[148]
Duan B. Concise review: Harnessing iPSC-derived Cells for ischemic heart disease treatment. J Transl Int Med 2020; 8(1): 20-5.
[http://dx.doi.org/10.2478/jtim-2020-0004] [PMID: 32435608]
[149]
Li Y, Tsai YT, Hsu CW, et al. Long-term safety and efficacy of human-induced pluripotent stem cell (iPS) grafts in a preclinical model of retinitis pigmentosa. Mol Med 2012; 18(1): 1312-9.
[http://dx.doi.org/10.2119/molmed.2012.00242] [PMID: 22895806]
[150]
Tucker BA, Park IH, Qi SD, et al. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS One 2011; 6(4): e18992.
[http://dx.doi.org/10.1371/journal.pone.0018992] [PMID: 21559507]
[151]
Noronha NC, Mizukami A, Caliári-Oliveira C, et al. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10(1): 131.
[http://dx.doi.org/10.1186/s13287-019-1224-y] [PMID: 31046833]
[152]
Watts AE, Yeager AE, Kopyov OV, Nixon AJ. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model. Stem Cell Res Ther 2011; 2(1): 4.
[http://dx.doi.org/10.1186/scrt45] [PMID: 21272343]
[153]
Uto S, Nishizawa S, Hikita A, Takato T, Hoshi K. Application of induced pluripotent stem cells for cartilage regeneration in CLAWN miniature pig osteochondral replacement model. Regen Ther 2018; 9: 58-70.
[http://dx.doi.org/10.1016/j.reth.2018.06.003] [PMID: 30525076]
[154]
Liao YJ, Tang PC, Chen YH, et al. Porcine induced pluripotent stem cell-derived osteoblast-like cells prevent glucocorticoid-induced bone loss in Lanyu pigs. PLoS One 2018; 13(8): 1-21.
[http://dx.doi.org/10.1371/journal.pone.0202155]
[155]
Chung MJ, Park S, Son JY, et al. Differentiation of equine induced pluripotent stem cells into mesenchymal lineage for therapeutic use. Cell Cycle 2019; 18(21): 2954-71.
[http://dx.doi.org/10.1080/15384101.2019.1664224] [PMID: 31505996]
[156]
Kumar D, Anand T, Kues WA. Clinical potential of human-induced pluripotent stem cells: Perspectives of induced pluripotent stem cells. Cell Biol Toxicol 2017; 33(2): 99-112.
[http://dx.doi.org/10.1007/s10565-016-9370-9] [PMID: 27900567]
[157]
Moradi S, Mahdizadeh H, Šarić T, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther 2019; 10(1): 341.
[http://dx.doi.org/10.1186/s13287-019-1455-y] [PMID: 31753034]
[158]
Schäffler A, Büchler C. Concise review: adipose tissue-derived stromal cells-basic and clinical implications for novel cell-based therapies. Stem Cells 2007; 25(4): 818-27.
[http://dx.doi.org/10.1634/stemcells.2006-0589] [PMID: 17420225]
[159]
Whiting P, Kerby J, Coffey P, da Cruz L, McKernan R. Progressing a human embryonic stem-cell-based regenerative medicine therapy towards the clinic. Philos Trans R Soc Lond B Biol Sci 2015; 370(1680): 20140375.
[http://dx.doi.org/10.1098/rstb.2014.0375] [PMID: 26416684]
[160]
Doss MX, Sachinidis A. Current challenges of iPSC-based disease modeling and therapeutic Implications. Cells 2019; 8(5): 403.
[http://dx.doi.org/10.3390/cells8050403] [PMID: 31052294]
[161]
Roach M, Wang L, Yang X, Tian XC. Bovine embryonic stem cells. Methods Enzymol 2006; 418: 21-37.
[http://dx.doi.org/10.1016/S0076-6879(06)18002-7] [PMID: 17141027]
[162]
Furusawa T, Ohkoshi K, Kimura K, et al. Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses. Biol Reprod 2013; 89(2): 28.
[http://dx.doi.org/10.1095/biolreprod.112.106641] [PMID: 23782837]
[163]
Wu X, Song M, Yang X, et al. Establishment of bovine embryonic stem cells after knockdown of CDX2. Sci Rep 2016; 6: 28343.
[http://dx.doi.org/10.1038/srep28343] [PMID: 27320776]
[164]
Yang JR, Shiue YL, Liao CH, Lin SZ, Chen LR. Establishment and characterization of novel porcine embryonic stem cell lines expressing hrGFP. Cloning Stem Cells 2009; 11(2): 235-44.
[http://dx.doi.org/10.1089/clo.2008.0050] [PMID: 19508116]
[165]
Telugu BPVL, Ezashi T, Sinha S, et al. Leukemia inhibitory factor (LIF)- dependent, pluripotent stem cells established from inner cell mass of porcine embryos. J Biol Chem 2011; 286: 28948-53.
[166]
Jung SK, Kim HJ, Kim CL, et al. Enhancing effects of serum-rich and cytokine-supplemented culture conditions on developing blastocysts and deriving porcine parthenogenetic embryonic stem cells. J Vet Sci 2014; 15(4): 519-28.
[http://dx.doi.org/10.4142/jvs.2014.15.4.519] [PMID: 24962410]
[167]
Hou DR, Jin Y, Nie XW, et al. Derivation of porcine embryonic stem-like cells from in vitro-produced blastocyst-stage embryos. Sci Rep 2016; 6: 25838.
[http://dx.doi.org/10.1038/srep25838] [PMID: 27173828]
[168]
Xue B, Li Y, He Y, et al. Porcine pluripotent stem cells derived from IVF embryos contribute to chimeric development in vivo. PLoS One 2016; 11(3): e0151737.
[http://dx.doi.org/10.1371/journal.pone.0151737] [PMID: 26991423]
[169]
Kawaguchi T, Tsukiyama T, Kimura K, et al. Generation of naïve bovine induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible transcription factors. PLoS One 2015; 10(8): e0135403.
[http://dx.doi.org/10.1371/journal.pone.0135403] [PMID: 26287611]
[170]
Cheng D, Guo Y, Li Z, et al. Porcine induced pluripotent stem cells require LIF and maintain their developmental potential in early stage of embryos. PLoS One 2012; 7(12): e51778.
[http://dx.doi.org/10.1371/journal.pone.0051778] [PMID: 23251622]
[171]
Fujishiro S, Nakano K, Mizukami Y, et al. Generation of naive- like porcineinduced pluripotent stem cells capable of contributing to embryonic and fetal development. Stem Cells Dev 2013; 22: 473-82.
[172]
Gao Y, Guo Y, Duan A, Cheng D, Zhang S, Wang H. Optimization of culture conditions for maintaining porcine induced pluripotent stem cells. DNA Cell Biol 2013; 23: 1-11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy