Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Gold Nanorods are Selective Cytotoxic Agents

Author(s): Mohamed El Gendy*, Michael Weinfeld and Ahmed Abdoon

Volume 22, Issue 5, 2022

Published on: 26 July, 2021

Page: [991 - 998] Pages: 8

DOI: 10.2174/1871520621666210726130028

Price: $65

Abstract

Background: Gold nanorods (GNRs) are very promising agents with multiple applications in medicine and biology. However, the cytotoxic effects of GNRs have not been fully explored.

Objective: Therefore, the main objective of this study was to determine the selective cytotoxic effect of GNRs towards several human tumor cell lines.

Methods: To address this issue, three sizes of GNRs (10-nm, 25-nm, and 50-nm) were tested against two human tumor cell lines, namely, human hepatoma HepG2 and human prostate PC3 cancer cells. As GNRs are usually stored in soft tissues inside living bodies, we also tested the effect of GNRs on murine splenocyte viability. To determine if the GNRs displayed selective cytotoxicity towards cancer cells, active GNRs with the size showing the least cytotoxicity to splenocytes were then tested against a panel of 11 human tumor cell lines and two human non-tumor cell lines.

Results: Our results showed that the most cytotoxic size of GNRs is 10-nm, followed by the 25-nm GNRs, while the 50-nm GNRs did not show a significant effect. In addition, the 25-nm GNRs were the least cytotoxic to splenocytes when tested for 24 and 48 h. These GNRs showed a selective cytotoxic effect to prostate cancer PC3 cells with median inhibitory concentration (IC50) = 8.3 ± 0.37 μM, myeloblastic leukemia HL60 cells (IC50 = 19.7 ± 0.89 μM), cervical cancer HeLa cells (IC50 = 24.6 ± 0.37 μM), renal adenocarcinoma 786.0 cells (IC50 = 27.34 ± 0.6 μM), and hepatoma HepG2 cells (IC50 = 27.79 ± 0.03 μM) when compared to the effect on the non-tumor human cells; skin fibroblast BJ cell line (IC50 = 40.13 ± 0.7 μM) or epithelial breast MCF10A cells (IC50 = 33.2 ± 0.89 μM). High selectivity indices (SIs) were observed in GNRs-treated PC3 and HL60 cells with values ranging from 1.69 to 4.83, whereas moderate SIs were observed in GNRs-treated HeLa, 786.0, and HepG2 cells with values ranging from 1.19 to 1.63. Other cells did not show a similar selective effect, including human laryngeal HEp2 cells, colon HCT116, metastatic renal adenocarcinoma ACHN cells, and human breast cancer cells (MCF7, MDA-MB-231, and MDA-MB-468 cells). The effect of GNRs was confirmed using the colony formation assay and the effect was found to be cell cycle-specific. Finally, it was shown that laser treatment could potentiate the cytotoxic effect of the 25-nm GNRs.

Conclusion: GNRs are selective cytotoxic agents and they have the potential to act as candidate anticancer agents.

Keywords: Gold nanorods, human tumor cell lines, colony formation, selective cytotoxicity, laser treatment, splenocytes.

« Previous
Graphical Abstract
[1]
Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in Egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol., 2014, 2014437971
[http://dx.doi.org/10.1155/2014/437971] [PMID: 25328522]
[2]
Stout, N.L.; Wagner, S.S. Antineoplastic therapy side effects and polypharmacy in older adults with cancer. Top. Geriatr. Rehabil., 2019, 35(1), 15-30.
[http://dx.doi.org/10.1097/TGR.0000000000000212] [PMID: 31011239]
[3]
Jaffee, E.M.; Dang, C.V.; Agus, D.B.; Alexander, B.M.; Anderson, K.C.; Ashworth, A.; Barker, A.D.; Bastani, R.; Bhatia, S.; Bluestone, J.A.; Brawley, O.; Butte, A.J.; Coit, D.G.; Davidson, N.E.; Davis, M.; DePinho, R.A.; Diasio, R.B.; Draetta, G.; Frazier, A.L.; Futreal, A.; Gambhir, S.S.; Ganz, P.A.; Garraway, L.; Gerson, S.; Gupta, S.; Heath, J.; Hoffman, R.I.; Hudis, C.; Hughes-Halbert, C.; Ibrahim, R.; Jadvar, H.; Kavanagh, B.; Kittles, R.; Le, Q.T.; Lippman, S.M.; Mankoff, D.; Mardis, E.R.; Mayer, D.K.; McMasters, K.; Meropol, N.J.; Mitchell, B.; Naredi, P.; Ornish, D.; Pawlik, T.M.; Peppercorn, J.; Pomper, M.G.; Raghavan, D.; Ritchie, C.; Schwarz, S.W.; Sullivan, R.; Wahl, R.; Wolchok, J.D.; Wong, S.L.; Yung, A. Future cancer research priorities in the USA: A lancet oncology commission. Lancet Oncol., 2017, 18(11), e653-e706.
[http://dx.doi.org/10.1016/S1470-2045 (17)30698-8] [PMID: 29208398]
[4]
Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med., 2017, 28(6), 92.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[5]
Austin, L.A.; Mackey, M.A.; Dreaden, E.C.; El-Sayed, M.A. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch. Toxicol., 2014, 88(7), 1391-1417.
[http://dx.doi.org/10.1007/s00204-014-1245-3] [PMID: 24894431]
[6]
Fratoddi, I.; Venditti, I.; Cametti, C.; Russo, M.V. How toxic are gold nanoparticles? The state-of-the-art. Nano Res., 2015, 8, 1771-1799.
[http://dx.doi.org/10.1007/s12274-014-0697-3]
[7]
Alkilany, A.M.; Thompson, L.B.; Boulos, S.P.; Sisco, P.N.; Murphy, C.J. Gold nanorods: their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions. Adv. Drug Deliv. Rev., 2012, 64(2), 190-199.
[http://dx.doi.org/10.1016/j.addr.2011.03.005] [PMID: 21397647]
[8]
Tang, Y.; Shen, Y.; Huang, L.; Lv, G.; Lei, C.; Fan, X.; Lin, F.; Zhang, Y.; Wu, L.; Yang, Y. In vitro cytotoxicity of gold nanorods in A549 cells. Environ. Toxicol. Pharmacol., 2015, 39(2), 871-878.
[http://dx.doi.org/10.1016/j.etap.2015.02.003] [PMID: 25791752]
[9]
Nikoobakht, B.; El-Sayed, M.A. Preparation and growth mechanism of gold nanorods (nrs) using seed-mediated growth method. Chem. Mater., 2003, 15, 1957-1962.
[http://dx.doi.org/10.1021/cm020732l]
[10]
El Gendy, M.A.; Ali, B.H.; Michail, K.; Siraki, A.G.; El-Kadi, A.O. Induction of quinone oxidoreductase 1 enzyme by Rhazya stricta through Nrf2-dependent mechanism. J. Ethnopharmacol., 2012, 144(2), 416-424.
[http://dx.doi.org/10.1016/j.jep.2012.09.032] [PMID: 23026305]
[11]
Courreges, M.C.; Benencia, F.; Coulombie, F.C.; Coto, C.E. In vitro and in vivo activities of Melia azedarach L. aqueous leaf extracts on murine lymphocytes. Phytomedicine, 1998, 5, 47-53.
[12]
Mereniuk, T.R.; El Gendy, M.A.; Mendes-Pereira, A.M.; Lord, C.J.; Ghosh, S.; Foley, E.; Ashworth, A.; Weinfeld, M. Synthetic lethal targeting of PTEN-deficient cancer cells using selective disruption of polynucleotide kinase/phosphatase. Mol. Cancer Ther., 2013, 12(10), 2135-2144.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1093] [PMID: 23883586]
[13]
Nicoletti, I.; Migliorati, G.; Pagliacci, M.C.; Grignani, F.; Riccardi, C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods, 1991, 139(2), 271-279.
[http://dx.doi.org/10.1016/0022-1759(91)90198-O] [PMID: 1710634]
[14]
Prayong, P.; Barusrux, S.; Weerapreeyakul, N. Cytotoxic activity screening of some indigenous Thai plants. Fitoterapia, 2008, 79(7-8), 598-601.
[http://dx.doi.org/10.1016/j.fitote.2008.06.007] [PMID: 18664377]
[15]
Connor, E.E.; Mwamuka, J.; Gole, A.; Murphy, C.J.; Wyatt, M.D. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small, 2005, 1(3), 325-327.
[http://dx.doi.org/10.1002/smll.200400093] [PMID: 17193451]
[16]
Lingabathula, H.; Yellu, N. Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods. Toxicol. Mech. Methods, 2016, 26(5), 340-347.
[http://dx.doi.org/10.3109/15376516.2016.1164268] [PMID: 27098122]
[17]
Yah, C.S. The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed. Res., 2013, 24, 400-413.
[18]
Chithrani, D.B. Intracellular uptake, transport, and processing of gold nanostructures. Mol. Membr. Biol., 2010, 27(7), 299-311.
[http://dx.doi.org/10.3109/09687688.2010.507787] [PMID: 20929337]
[19]
Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta naturae 2011, 3, 34-55.
[20]
Subik, K.; Lee, J.F.; Baxter, L.; Strzepek, T.; Costello, D.; Crowley, P.; Xing, L.; Hung, M.C.; Bonfiglio, T.; Hicks, D.G.; Tang, P. The expression patterns of er, pr, her2, ck5/6, egfr, ki-67 and ar by immunohistochemical analysis in breast cancer cell lines. Breast Cancer (Auckl.), 2010, 4, 35-41.
[http://dx.doi.org/10.1177/117822341000400004] [PMID: 20697531]
[21]
Li, H.; Ning, S.; Ghandi, M.; Kryukov, G.V.; Gopal, S.; Deik, A.; Souza, A.; Pierce, K.; Keskula, P.; Hernandez, D.; Ann, J.; Shkoza, D.; Apfel, V.; Zou, Y.; Vazquez, F.; Barretina, J.; Pagliarini, R.A.; Galli, G.G.; Root, D.E.; Hahn, W.C.; Tsherniak, A.; Giannakis, M.; Schreiber, S.L.; Clish, C.B.; Garraway, L.A.; Sellers, W.R. The landscape of cancer cell line metabolism. Nat. Med., 2019, 25(5), 850-860.
[http://dx.doi.org/10.1038/s41591-019-0404-8] [PMID: 31068703]
[22]
Xu, W.; Luo, T.; Li, P.; Zhou, C.; Cui, D.; Pang, B.; Ren, Q.; Fu, S. RGD-conjugated gold nanorods induce radiosensitization in melanoma cancer cells by downregulating α(v)β3 expression. Int. J. Nanomedicine, 2012, 7, 915-924.
[PMID: 22412298]
[23]
Sun, H.; Jia, J.; Jiang, C.; Zhai, S. Gold nanoparticle-induced cell death and potential applications in nanomedicine. Int. J. Mol. Sci., 2018, 19(3), 954.
[http://dx.doi.org/10.3390/ijms19030754] [PMID: 29518914]
[24]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[http://dx.doi.org/10.1021/cr400532z] [PMID: 25260098]
[25]
Kampinga, H.H. Cell biological effects of hyperthermia alone or combined with radiation or drugs: a short introduction to newcomers in the field. Int. J. Hyperthermia, 2006, 22(3), 191-196.
[http://dx.doi.org/10.1080/02656730500532028] [PMID: 16754338]
[26]
Eweiss, N.F.; Osman, A. Synthesis of heterocycles. Part II. New routes to acetylthiadiazolines and alkylazothiazoles. J. Heterocycl. Chem., 1980, 17, 1713-1717.
[http://dx.doi.org/10.1002/jhet.5570170814]
[27]
Huff, T.B.; Tong, L.; Zhao, Y.; Hansen, M.N.; Cheng, J.X.; Wei, A. Hyperthermic effects of gold nanorods on tumor cells. Nanomedicine (Lond.), 2007, 2(1), 125-132.
[http://dx.doi.org/10.2217/17435889.2.1.125] [PMID: 17716198]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy