Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nanomaterials and Stem Cell Differentiation Potential: An Overview of Biological Aspects and Biomedical Efficacy

Author(s): Ali Ehsani, Asma Jodaei, Mohammad Barzegar-Jalali, Ezzatollah Fathi, Raheleh Farahzadi* and Khosro Adibkia*

Volume 29, Issue 10, 2022

Published on: 12 July, 2021

Page: [1804 - 1823] Pages: 20

DOI: 10.2174/0929867328666210712193113

Price: $65

Abstract

Nanoparticles (NPs), due to their medical applications, are widely used. Accordingly, the use of mesenchymal stem cells is one of the most important alternatives in the tissue engineering field. NPs play effective roles in stem cells proliferation and differentiation. The combination of NPs and tissue regeneration by stem cells has created a new therapeutic approach towards humanity. Of note, the physicochemical properties of NPs determine their biological function. Interestingly, various mechanisms such as modulation of signaling pathways and generation of reactive oxygen species, are involved in NPs-induced cellular proliferation and differentiation. This review summarized the types of nanomaterials effective on stem cell differentiation, the physicochemical features, biomedical application of these materials and the relationship between nanomaterials and environment.

Keywords: Nanoparticles, Mesenchymal stem cells, Tissue regeneration, Cell differentiation, Biomedical application, Nanomaterials.

« Previous
[1]
El-Sayed, M.A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res., 2001, 34(4), 257-264.
[http://dx.doi.org/10.1021/ar960016n] [PMID: 11308299]
[2]
Dos Santos Ramos, M.A.; Da Silva, P.B.; Spósito, L.; De Toledo, L.G.; Bonifácio, B.V.; Rodero, C.F.; Dos Santos, K.C.; Chorilli, M.; Bauab, T.M. Nanotechnology-based drug delivery systems for control of microbial biofilms: a review. Int. J. Nanomedicine, 2018, 13, 1179-1213.
[http://dx.doi.org/10.2147/IJN.S146195] [PMID: 29520143]
[3]
Abdal Dayem, A.; Lee, S.B.; Cho, S-G. The impact of metallic nanoparticles on stem cell proliferation and differentiation. Nanomaterials (Basel), 2018, 8(10), 761.
[http://dx.doi.org/10.3390/nano8100761] [PMID: 30261637]
[4]
De, M.; Ghosh, P.S.; Rotello, V.M. Applications of nanoparticles in biology. Adv. Mater., 2008, 20(22), 4225-4241.
[http://dx.doi.org/10.1002/adma.200703183]
[5]
Rivera_Gil, P. Development of an assay based on cell counting with quantum dot labels for comparing cell adhesion within cocultures. Nano Today, 2011, 6(1), 20-27.
[6]
Rivera Gil, P.; Hühn, D.; del Mercato, L.L.; Sasse, D.; Parak, W.J. Nanopharmacy: Inorganic nanoscale devices as vectors and active compounds. Pharmacol. Res., 2010, 62(2), 115-125.
[http://dx.doi.org/10.1016/j.phrs.2010.01.009] [PMID: 20097288]
[7]
Wei, M.; Li, S.; Le, W. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. J. Nanobiotechnology, 2017, 15(1), 75.
[http://dx.doi.org/10.1186/s12951-017-0310-5] [PMID: 29065876]
[8]
Ilie, I.; Ilie, R.; Mocan, T.; Bartos, D.; Mocan, L. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface. Int. J. Nanomedicine, 2012, 7, 2211-2225.
[PMID: 22619557]
[9]
Ravichandran, R.; Sridhar, R.; Venugopal, J.R.; Sundarrajan, S.; Mukherjee, S.; Ramakrishna, S. Gold nanoparticle loaded hybrid nanofibers for cardiogenic differentiation of stem cells for infarcted myocardium regeneration. Macromol. Biosci., 2014, 14(4), 515-525.
[http://dx.doi.org/10.1002/mabi.201300407] [PMID: 24327549]
[10]
Prochazkova, M. Embryonic versus adult stem cells.Stem Cell Biology and Tissue Engineering in Dental Sciences; Elsevier, 2015, pp. 249-262.
[http://dx.doi.org/10.1016/B978-0-12-397157-9.00020-5]
[11]
Kaufman, M.H.; Robertson, E.J.; Handyside, A.H.; Evans, M.J. Establishment of pluripotential cell lines from haploid mouse embryos. J. Embryol. Exp. Morphol., 1983, 73(1), 249-261.
[PMID: 6875460]
[12]
Takahashi, K.; Okita, K.; Nakagawa, M.; Yamanaka, S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc., 2007, 2(12), 3081-3089.
[http://dx.doi.org/10.1038/nprot.2007.418] [PMID: 18079707]
[13]
Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ichisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 2008, 26(1), 101-106.
[http://dx.doi.org/10.1038/nbt1374] [PMID: 18059259]
[14]
Yu, J.; Hu, K.; Smuga-Otto, K.; Tian, S.; Stewart, R.; Slukvin, I.I.; Thomson, J.A. Human induced pluripotent stem cells free of vector and transgene sequences. Science, 2009, 324(5928), 797-801.
[http://dx.doi.org/10.1126/science.1172482] [PMID: 19325077]
[15]
Kalra, K.; Tomar, P. Stem cell: basics, classification and applications. Am. J. Phytomed. Clin. Ther., 2014, 2(7), 919-930.
[16]
Williams, A.R.; Hare, J.M. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ. Res., 2011, 109(8), 923-940.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.243147] [PMID: 21960725]
[17]
Quevedo, H.C.; Hatzistergos, K.E.; Oskouei, B.N.; Feigenbaum, G.S.; Rodriguez, J.E.; Valdes, D.; Pattany, P.M.; Zambrano, J.P.; Hu, Q.; McNiece, I.; Heldman, A.W.; Hare, J.M. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. USA, 2009, 106(33), 14022-14027.
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[18]
Sridhar, S.; Venugopal, J.R.; Sridhar, R.; Ramakrishna, S. Cardiogenic differentiation of mesenchymal stem cells with gold nanoparticle loaded functionalized nanofibers. Colloids Surf. B Biointerfaces, 2015, 134, 346-354.
[http://dx.doi.org/10.1016/j.colsurfb.2015.07.019] [PMID: 26209968]
[19]
Zhang, Y.; Fan, W.; Wang, K.; Wei, H.; Zhang, R.; Wu, Y. Novel preparation of Au nanoparticles loaded Laponite nanoparticles/ECM injectable hydrogel on cardiac differentiation of resident cardiac stem cells to cardiomyocytes. J. Photochem. Photobiol. B, 2019, 192, 49-54.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.12.022] [PMID: 30682654]
[20]
Wang, Y.; Yang, D.; Song, L.; Li, T.; Yang, J.; Zhang, X.; Le, W. Mifepristone-inducible caspase-1 expression in mouse embryonic stem cells eliminates tumor formation but spares differentiated cells in vitro and in vivo. Stem Cells, 2012, 30(2), 169-179.
[http://dx.doi.org/10.1002/stem.1000] [PMID: 22131096]
[21]
Lee, W.C.; Lim, C.H.; Shi, H.; Tang, L.A.; Wang, Y.; Lim, C.T.; Loh, K.P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano, 2011, 5(9), 7334-7341.
[http://dx.doi.org/10.1021/nn202190c] [PMID: 21793541]
[22]
Przyborski, S.A. Differentiation of human embryonic stem cells after transplantation in immune-deficient mice. Stem Cells, 2005, 23(9), 1242-1250.
[http://dx.doi.org/10.1634/stemcells.2005-0014] [PMID: 16210408]
[23]
Le Blanc, K.; Ringdén, O. Mesenchymal stem cells: properties and role in clinical bone marrow transplantation. Curr. Opin. Immunol., 2006, 18(5), 586-591.
[http://dx.doi.org/10.1016/j.coi.2006.07.004] [PMID: 16879957]
[24]
Chamberlain, G.; Fox, J.; Ashton, B.; Middleton, J. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells, 2007, 25(11), 2739-2749.
[http://dx.doi.org/10.1634/stemcells.2007-0197] [PMID: 17656645]
[25]
Meirelles, Lda.S.; Fontes, A.M.; Covas, D.T.; Caplan, A.I. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev., 2009, 20(5-6), 419-427.
[http://dx.doi.org/10.1016/j.cytogfr.2009.10.002] [PMID: 19926330]
[26]
Ayala-Cuellar, A.P.; Kang, J.H.; Jeung, E.B.; Choi, K.C. Roles of mesenchymal stem cells in tissue regeneration and immunomodulation. Biomol. Ther. (Seoul), 2019, 27(1), 25-33.
[http://dx.doi.org/10.4062/biomolther.2017.260] [PMID: 29902862]
[27]
Reiter, J.; Drummond, S.; Sammour, I.; Huang, J.; Florea, V.; Dornas, P.; Hare, J.M.; Rodrigues, C.O.; Young, K.C. Stromal derived factor-1 mediates the lung regenerative effects of mesenchymal stem cells in a rodent model of bronchopulmonary dysplasia. Respir. Res., 2017, 18(1), 137.
[http://dx.doi.org/10.1186/s12931-017-0620-z] [PMID: 28701189]
[28]
Schlosser, S.; Dennler, C.; Schweizer, R.; Eberli, D.; Stein, J.V.; Enzmann, V.; Giovanoli, P.; Erni, D.; Plock, J.A. Paracrine effects of mesenchymal stem cells enhance vascular regeneration in ischemic murine skin. Microvasc. Res., 2012, 83(3), 267-275.
[http://dx.doi.org/10.1016/j.mvr.2012.02.011] [PMID: 22391452]
[29]
Maxson, S.; Lopez, E.A.; Yoo, D.; Danilkovitch-Miagkova, A.; Leroux, M.A. Concise review: role of mesenchymal stem cells in wound repair. Stem Cells Transl. Med., 2012, 1(2), 142-149.
[http://dx.doi.org/10.5966/sctm.2011-0018] [PMID: 23197761]
[30]
Zimmermann, W-H.; Melnychenko, I.; Wasmeier, G.; Didié, M.; Naito, H.; Nixdorff, U.; Hess, A.; Budinsky, L.; Brune, K.; Michaelis, B.; Dhein, S.; Schwoerer, A.; Ehmke, H.; Eschenhagen, T. Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts. Nat. Med., 2006, 12(4), 452-458.
[http://dx.doi.org/10.1038/nm1394] [PMID: 16582915]
[31]
Davies, B. Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training. Ann. Thorac. Surg., 2010, 89(2), 585-593.
[http://dx.doi.org/10.1016/j.athoracsur.2009.10.035]
[32]
Khorsand, A.; Eslaminejad, M.B.; Arabsolghar, M.; Paknejad, M.; Ghaedi, B.; Rokn, A.R.; Moslemi, N.; Nazarian, H.; Jahangir, S. Autologous dental pulp stem cells in regeneration of defect created in canine periodontal tissue. J. Oral Implantol., 2013, 39(4), 433-443.
[http://dx.doi.org/10.1563/AAID-JOI-D-12-00027] [PMID: 23964777]
[33]
Bai, L.; Caplan, A.; Lennon, D.; Miller, R.H. Human mesenchymal stem cells signals regulate neural stem cell fate. Neurochem. Res., 2007, 32(2), 353-362.
[http://dx.doi.org/10.1007/s11064-006-9212-x] [PMID: 17191131]
[34]
de Miguel, M.P. Mesenchymal stem cells for liver regeneration in liver failure: from experimental models to clinical trials. Stem Cells Int., 2019, 2019, 3945672.
[http://dx.doi.org/10.1155/2019/3945672]
[35]
Goldberg, A.; Mitchell, K.; Soans, J.; Kim, L.; Zaidi, R. The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J. Orthop. Surg. Res., 2017, 12(1), 39.
[http://dx.doi.org/10.1186/s13018-017-0534-y] [PMID: 28279182]
[36]
Farahzadi, R.; Fathi, E.; Vietor, I. Mesenchymal stem cells could be considered as a candidate for further studies in cell-based therapy of Alzheimer’s disease via targeting the signaling pathways. ACS Chem. Neurosci., 2020, 11(10), 1424-1435.
[http://dx.doi.org/10.1021/acschemneuro.0c00052] [PMID: 32310632]
[37]
Donaldson, K. Resolving the nanoparticles paradox. Nanomedicine (Lond), 2006, 1(2), 229-34.
[http://dx.doi.org/10.2217/17435889.1.2.229]
[38]
Arora, S.; Rajwade, J.M.; Paknikar, K.M. Nanotoxicology and in vitro studies: the need of the hour. Toxicol. Appl. Pharmacol., 2012, 258(2), 151-165.
[http://dx.doi.org/10.1016/j.taap.2011.11.010] [PMID: 22178382]
[39]
Napierska, D.; Thomassen, L.C.; Lison, D.; Martens, J.A.; Hoet, P.H. The nanosilica hazard: another variable entity. Part. Fibre Toxicol., 2010, 7(1), 39.
[http://dx.doi.org/10.1186/1743-8977-7-39] [PMID: 21126379]
[40]
Linsinger, T. Requirements on measurements the European Commission definition of the term “nanomaterial”. 2012.
[41]
Mageswari, A. Nanomaterials: classification, biological synthesis and characterization in nanoscience in food and agriculture. Springer, 2016, 3, 31-71.
[http://dx.doi.org/10.1007/978-3-319-48009-1_2]
[42]
Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities; Environmental Technology & Innovation. , 2020, p. p. 101067.
[43]
Mashinchian, O.; Turner, L.A.; Dalby, M.J.; Laurent, S.; Shokrgozar, M.A.; Bonakdar, S.; Imani, M.; Mahmoudi, M. Regulation of stem cell fate by nanomaterial substrates. Nanomedicine (Lond.), 2015, 10(5), 829-847.
[http://dx.doi.org/10.2217/nnm.14.225] [PMID: 25816883]
[44]
Kim, S.; Choi, I.H. Phagocytosis and endocytosis of silver nanoparticles induce interleukin-8 production in human macrophages. Yonsei Med. J. 2012, 53(3), 654-7.
[45]
Zhao, F. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small, 2011, 7(10), 1322-1337.
[http://dx.doi.org/10.1002/smll.201100001]
[46]
Wei, M.; Li, S.; Yang, Z.; Zheng, W.; Le, W. Gold nanoparticles enhance the differentiation of embryonic stem cells into dopaminergic neurons via mTOR/p70S6K pathway. Nanomedicine (Lond.), 2017, 12(11), 1305-1317.
[http://dx.doi.org/10.2217/nnm-2017-0001] [PMID: 28520507]
[47]
Baranes, K.; Shevach, M.; Shefi, O.; Dvir, T. Gold nanoparticle-decorated scaffolds promote neuronal differentiation and maturation. Nano Lett., 2016, 16(5), 2916-2920.
[http://dx.doi.org/10.1021/acs.nanolett.5b04033] [PMID: 26674672]
[48]
Gurunathan, S.; Kim, J-H. Biocompatible gold nanoparticles ameliorate retinoic acid-induced cell death and induce differentiation in F9 teratocarcinoma stem cells. Nanomaterials (Basel), 2018, 8(6), 396.
[http://dx.doi.org/10.3390/nano8060396] [PMID: 29865197]
[49]
Khan, A.R.; Farid, T.A.; Pathan, A.; Tripathi, A.; Ghafghazi, S.; Wysoczynski, M.; Bolli, R. Impact of cell therapy on myocardial perfusion and cardiovascular outcomes in patients with angina refractory to medical therapy: a systematic review and meta-analysis. Circ. Res., 2016, 118(6), 984-993.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.308056] [PMID: 26838794]
[50]
Ko, W-K.; Heo, D.N.; Moon, H.J.; Lee, S.J.; Bae, M.S.; Lee, J.B.; Sun, I.C.; Jeon, H.B.; Park, H.K.; Kwon, I.K. The effect of gold nanoparticle size on osteogenic differentiation of adipose-derived stem cells. J. Colloid Interface Sci., 2015, 438, 68-76.
[http://dx.doi.org/10.1016/j.jcis.2014.08.058] [PMID: 25454427]
[51]
Choi, S.Y.; Song, M.S.; Ryu, P.D.; Lam, A.T.; Joo, S.W.; Lee, S.Y. Gold nanoparticles promote osteogenic differentiation in human adipose-derived mesenchymal stem cells through the Wnt/β-catenin signaling pathway. Int. J. Nanomedicine, 2015, 10, 4383-4392.
[PMID: 26185441]
[52]
Zhang, D.; Liu, D.; Zhang, J.; Fong, C.; Yang, M. Gold nanoparticles stimulate differentiation and mineralization of primary osteoblasts through the ERK/MAPK signaling pathway. Mater. Sci. Eng. C, 2014, 42, 70-77.
[http://dx.doi.org/10.1016/j.msec.2014.04.042] [PMID: 25063094]
[53]
Yun, Y-R.; Won, J.E.; Jeon, E.; Lee, S.; Kang, W.; Jo, H.; Jang, J.H.; Shin, U.S.; Kim, H.W. Fibroblast growth factors: biology, function, and application for tissue regeneration. J. Tissue Eng., 2010, 2010(1), 218142.
[http://dx.doi.org/10.4061/2010/218142] [PMID: 21350642]
[54]
Samberg, M.E.; Loboa, E.G.; Oldenburg, S.J.; Monteiro-Riviere, N.A. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine (Lond.), 2012, 7(8), 1197-1209.
[http://dx.doi.org/10.2217/nnm.12.18] [PMID: 22583572]
[55]
He, W.; Kienzle, A.; Liu, X.; Müller, W.E.; Elkhooly, T.A.; Feng, Q. In vitro effect of 30 nm silver nanoparticles on adipogenic differentiation of human mesenchymal stem cells. J. Biomed. Nanotechnol., 2016, 12(3), 525-535.
[http://dx.doi.org/10.1166/jbn.2016.2182] [PMID: 27280250]
[56]
Sengstock, C.; Diendorf, J.; Epple, M.; Schildhauer, T.A.; Köller, M. Effect of silver nanoparticles on human mesenchymal stem cell differentiation. Beilstein J. Nanotechnol., 2014, 5(1), 2058-2069.
[http://dx.doi.org/10.3762/bjnano.5.214] [PMID: 25551033]
[57]
Zhang, R.; Lee, P.; Lui, V.C.; Chen, Y.; Liu, X.; Lok, C.N.; To, M.; Yeung, K.W.; Wong, K.K. Silver nanoparticles promote osteogenesis of mesenchymal stem cells and improve bone fracture healing in osteogenesis mechanism mouse model. Nanomedicine (Lond.), 2015, 11(8), 1949-1959.
[http://dx.doi.org/10.1016/j.nano.2015.07.016] [PMID: 26282383]
[58]
Qureshi, A.T.; Monroe, W.T.; Dasa, V.; Gimble, J.M.; Hayes, D.J. miR-148b-nanoparticle conjugates for light mediated osteogenesis of human adipose stromal/stem cells. Biomaterials, 2013, 34(31), 7799-7810.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.004] [PMID: 23870854]
[59]
Carinci, F.; Guidi, R.; Franco, M.; Viscioni, A.; Rigo, L.; De Santis, B.; Tropina, E. Implants inserted in fresh-frozen bone: a retrospective analysis of 88 implants loaded 4 months after insertion. Quintessence Int., 2009, 40(5), 413-419.
[PMID: 19582246]
[60]
Gapski, R.; Wang, H.L.; Mascarenhas, P.; Lang, N.P. Critical review of immediate implant loading. Clin. Oral Implants Res., 2003, 14(5), 515-527.
[http://dx.doi.org/10.1034/j.1600-0501.2003.00950.x] [PMID: 12969355]
[61]
Liu, X.; Ren, X.; Deng, X.; Huo, Y.; Xie, J.; Huang, H.; Jiao, Z.; Wu, M.; Liu, Y.; Wen, T. A protein interaction network for the analysis of the neuronal differentiation of neural stem cells in response to titanium dioxide nanoparticles. Biomaterials, 2010, 31(11), 3063-3070.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.054] [PMID: 20071024]
[62]
Bauer, S.; Park, J.; Faltenbacher, J.; Berger, S.; von der Mark, K.; Schmuki, P. Size selective behavior of mesenchymal stem cells on ZrO(2) and TiO(2) nanotube arrays. Integr. Biol., 2009, 1(8-9), 525-532.
[http://dx.doi.org/10.1039/b908196h] [PMID: 20023767]
[63]
Oh, S.; Brammer, K.S.; Li, Y.S.; Teng, D.; Engler, A.J.; Chien, S.; Jin, S. Stem cell fate dictated solely by altered nanotube dimension. Proc. Natl. Acad. Sci. USA, 2009, 106(7), 2130-2135.
[http://dx.doi.org/10.1073/pnas.0813200106] [PMID: 19179282]
[64]
Park, J.; Bauer, S.; von der Mark, K.; Schmuki, P. Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett., 2007, 7(6), 1686-1691.
[http://dx.doi.org/10.1021/nl070678d] [PMID: 17503870]
[65]
Pozio, A.; Palmieri, A.; Girardi, A.; Cura, F.; Carinci, F. Titanium nanotubes stimulate osteoblast differentiation of stem cells from pulp and adipose tissue. Dent Res J (Isfahan), 2012, 9(Suppl. 2), S169-S174.
[PMID: 23814578]
[66]
Lv, L.; Liu, Y.; Zhang, P.; Zhang, X.; Liu, J.; Chen, T.; Su, P.; Li, H.; Zhou, Y. The nanoscale geometry of TiO2 nanotubes influences the osteogenic differentiation of human adipose-derived stem cells by modulating H3K4 trimethylation. Biomaterials, 2015, 39, 193-205.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.002] [PMID: 25468371]
[67]
Namgung, S.; Baik, K.Y.; Park, J.; Hong, S. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano, 2011, 5(9), 7383-7390.
[http://dx.doi.org/10.1021/nn2023057] [PMID: 21819114]
[68]
Holmes, B.; Castro, N.J.; Li, J.; Keidar, M.; Zhang, L.G. Enhanced human bone marrow mesenchymal stem cell functions in novel 3D cartilage scaffolds with hydrogen treated multi-walled carbon nanotubes. Nanotechnology, 2013, 24(36), 365102.
[http://dx.doi.org/10.1088/0957-4484/24/36/365102] [PMID: 23959974]
[69]
Karadzic, I.; Vucic, V.; Jokanovic, V.; Debeljak-Martacic, J.; Markovic, D.; Petrovic, S.; Glibetic, M. Effects of novel hydroxyapatite-based 3D biomaterials on proliferation and osteoblastic differentiation of mesenchymal stem cells. J. Biomed. Mater. Res. A, 2015, 103(1), 350-357.
[http://dx.doi.org/10.1002/jbm.a.35180] [PMID: 24665062]
[70]
Ebrahimi-Barough, S.; Hoveizi, E.; Norouzi Javidan, A.; Ai, J. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold. J. Biomed. Mater. Res. A, 2015, 103(8), 2621-2627.
[http://dx.doi.org/10.1002/jbm.a.35397] [PMID: 25611196]
[71]
Qu, T.; Liu, X. Nano-structured gelatin/bioactive glass hybrid scaffolds for the enhancement of odontogenic differentiation of human dental pulp stem cells. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(37), 4764-4772.
[http://dx.doi.org/10.1039/c3tb21002b] [PMID: 24098854]
[72]
Pullisaar, H.; Verket, A.; Szoke, K.; Tiainen, H.; Haugen, H.J.; Brinchmann, J.E.; Reseland, J.E.; Østrup, E. Alginate hydrogel enriched with enamel matrix derivative to target osteogenic cell differentiation in TiO2 scaffolds. J. Tissue Eng., 2015, 6, 2041731415575870.
[http://dx.doi.org/10.1177/2041731415575870] [PMID: 26090086]
[73]
Pullisaar, H.; Tiainen, H.; Landin, M.A.; Lyngstadaas, S.P.; Haugen, H.J.; Reseland, J.E.; Ostrup, E. Enhanced in vitro osteoblast differentiation on TiO2 scaffold coated with alginate hydrogel containing simvastatin. J. Tissue Eng., 2013, 4, 2041731413515670.
[http://dx.doi.org/10.1177/2041731413515670] [PMID: 24555011]
[74]
Crowder, S.W.; Liang, Y.; Rath, R.; Park, A.M.; Maltais, S.; Pintauro, P.N.; Hofmeister, W.; Lim, C.C.; Wang, X.; Sung, H.J. Poly(ε-caprolactone)-carbon nanotube composite scaffolds for enhanced cardiac differentiation of human mesenchymal stem cells. Nanomedicine (Lond.), 2013, 8(11), 1763-1776.
[http://dx.doi.org/10.2217/nnm.12.204] [PMID: 23530764]
[75]
Wang, F.; Guan, J. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev., 2010, 62(7-8), 784-797.
[http://dx.doi.org/10.1016/j.addr.2010.03.001] [PMID: 20214939]
[76]
Mooney, E.; Dockery, P.; Greiser, U.; Murphy, M.; Barron, V. Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett., 2008, 8(8), 2137-2143.
[http://dx.doi.org/10.1021/nl073300o] [PMID: 18624387]
[77]
Meng, X.; Stout, D.A.; Sun, L.; Beingessner, R.L.; Fenniri, H.; Webster, T.J. Novel injectable biomimetic hydrogels with carbon nanofibers and self assembled rosette nanotubes for myocardial applications. J. Biomed. Mater. Res. A, 2013, 101(4), 1095-1102.
[http://dx.doi.org/10.1002/jbm.a.34400] [PMID: 23008178]
[78]
Mooney, E.; Mackle, J.N.; Blond, D.J.; O’Cearbhaill, E.; Shaw, G.; Blau, W.J.; Barry, F.P.; Barron, V.; Murphy, J.M. The electrical stimulation of carbon nanotubes to provide a cardiomimetic cue to MSCs. Biomaterials, 2012, 33(26), 6132-6139.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.032] [PMID: 22681974]
[79]
Martinelli, V.; Cellot, G.; Toma, F.M.; Long, C.S.; Caldwell, J.H.; Zentilin, L.; Giacca, M.; Turco, A.; Prato, M.; Ballerini, L.; Mestroni, L. Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes. Nano Lett., 2012, 12(4), 1831-1838.
[http://dx.doi.org/10.1021/nl204064s] [PMID: 22432413]
[80]
Rivera-Gil, P.; Jimenez de Aberasturi, D.; Wulf, V.; Pelaz, B.; del Pino, P.; Zhao, Y.; de la Fuente, J.M.; Ruiz de Larramendi, I.; Rojo, T.; Liang, X.J.; Parak, W.J. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res., 2013, 46(3), 743-749.
[http://dx.doi.org/10.1021/ar300039j] [PMID: 22786674]
[81]
Liu, X.; He, W.; Fang, Z.; Kienzle, A.; Feng, Q. Influence of silver nanoparticles on osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Nanotechnol., 2014, 10(7), 1277-1285.
[http://dx.doi.org/10.1166/jbn.2014.1824] [PMID: 24804548]
[82]
Chithrani, B.D.; Chan, W.C. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett., 2007, 7(6), 1542-1550.
[http://dx.doi.org/10.1021/nl070363y] [PMID: 17465586]
[83]
Nel, A. Toxic potential of materials at the nanolevel. science, 2006, 311(5761), 622-627.
[http://dx.doi.org/10.1126/science.1114397]
[84]
Li, J.; Li, J.J.; Zhang, J.; Wang, X.; Kawazoe, N.; Chen, G. Gold nanoparticle size and shape influence on osteogenesis of mesenchymal stem cells. Nanoscale, 2016, 8(15), 7992-8007.
[http://dx.doi.org/10.1039/C5NR08808A] [PMID: 27010117]
[85]
Seong, J.M.; Kim, B.C.; Park, J.H.; Kwon, I.K.; Mantalaris, A.; Hwang, Y.S. Stem cells in bone tissue engineering. Biomed. Mater., 2010, 5(6), 062001.
[http://dx.doi.org/10.1088/1748-6041/5/6/062001] [PMID: 20924139]
[86]
Li, J.J.; Kawazoe, N.; Chen, G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials, 2015, 54, 226-236.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.001] [PMID: 25858865]
[87]
Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano, 2008, 2(1), 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
[88]
Arvizo, R.R.; Miranda, O.R.; Thompson, M.A.; Pabelick, C.M.; Bhattacharya, R.; Robertson, J.D.; Rotello, V.M.; Prakash, Y.S.; Mukherjee, P. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett., 2010, 10(7), 2543-2548.
[http://dx.doi.org/10.1021/nl101140t] [PMID: 20533851]
[89]
Leroueil, P.R.; Hong, S.; Mecke, A.; Baker, J.R., Jr; Orr, B.G.; Banaszak Holl, M.M. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc. Chem. Res., 2007, 40(5), 335-342.
[http://dx.doi.org/10.1021/ar600012y] [PMID: 17474708]
[90]
Yi, C.; Liu, D.; Fong, C.C.; Zhang, J.; Yang, M. Gold nanoparticles promote osteogenic differentiation of mesenchymal stem cells through p38 MAPK pathway. ACS Nano, 2010, 4(11), 6439-6448.
[http://dx.doi.org/10.1021/nn101373r] [PMID: 21028783]
[91]
Ferreira, L. Nanoparticles as tools to study and control stem cells. J. Cell. Biochem., 2009, 108(4), 746-752.
[http://dx.doi.org/10.1002/jcb.22303] [PMID: 19708027]
[92]
Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006, 156(4), 663-676.
[http://dx.doi.org/10.1016/j.cell.2006.07.024]
[93]
Zavan, B.; Vindigni, V.; Vezzù, K.; Zorzato, G.; Luni, C.; Abatangelo, G.; Elvassore, N.; Cortivo, R. Hyaluronan based porous nano-particles enriched with growth factors for the treatment of ulcers: a placebo-controlled study. J. Mater. Sci. Mater. Med., 2009, 20(1), 235-247.
[http://dx.doi.org/10.1007/s10856-008-3566-3] [PMID: 18758917]
[94]
Lee, J.K.; Jin, H.K.; Endo, S.; Schuchman, E.H.; Carter, J.E.; Bae, J.S. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells, 2010, 28(2), 329-343.
[PMID: 20014009]
[95]
Pagani, F.D.; DerSimonian, H.; Zawadzka, A.; Wetzel, K.; Edge, A.S.; Jacoby, D.B.; Dinsmore, J.H.; Wright, S.; Aretz, T.H.; Eisen, H.J.; Aaronson, K.D. Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J. Am. Coll. Cardiol., 2003, 41(5), 879-888.
[http://dx.doi.org/10.1016/S0735-1097(03)00081-0] [PMID: 12628737]
[96]
Buschke, D.G.; Squirrell, J.M.; Fong, J.J.; Eliceiri, K.W.; Ogle, B.M. Cell death, non-invasively assessed by intrinsic fluorescence intensity of NADH, is a predictive indicator of functional differentiation of embryonic stem cells. Biol. Cell, 2012, 104(6), 352-364.
[http://dx.doi.org/10.1111/boc.201100091] [PMID: 22304470]
[97]
Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W.W.; Prasher, D.C. Green fluorescent protein as a marker for gene expression. Science, 1994, 263(5148), 802-805.
[http://dx.doi.org/10.1126/science.8303295] [PMID: 8303295]
[98]
Wang, H.; Cao, F.; De, A.; Cao, Y.; Contag, C.; Gambhir, S.S.; Wu, J.C.; Chen, X. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells, 2009, 27(7), 1548-1558.
[http://dx.doi.org/10.1002/stem.81] [PMID: 19544460]
[99]
Perán, M.; García, M.A.; López-Ruiz, E.; Bustamante, M.; Jiménez, G.; Madeddu, R.; Marchal, J.A. Functionalized nanostructures with application in regenerative medicine. Int. J. Mol. Sci., 2012, 13(3), 3847-3886.
[http://dx.doi.org/10.3390/ijms13033847] [PMID: 22489186]
[100]
Solanki, A.; Kim, J.D.; Lee, K.-B. Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine (Lond), 2008, 3(4), 567-78.
[http://dx.doi.org/10.2217/17435889.3.4.567]
[101]
Deb, K.D.; Griffith, M.; Muinck, E.D.; Rafat, M. Nanotechnology in stem cells research: advances and applications. Front. Biosci., 2012, 17, 1747-1760.
[http://dx.doi.org/10.2741/4016] [PMID: 22201833]
[102]
Villa, C.; Erratico, S.; Razini, P.; Fiori, F.; Rustichelli, F.; Torrente, Y.; Belicchi, M. Stem cell tracking by nanotechnologies. Int. J. Mol. Sci., 2010, 11(3), 1070-1081.
[http://dx.doi.org/10.3390/ijms11031070] [PMID: 20480000]
[103]
Bruchez, M. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281(5385), 2013-2016.
[http://dx.doi.org/10.1126/science.281.5385.2013]
[104]
Chan, W.C.; Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385), 2016-2018.
[http://dx.doi.org/10.1126/science.281.5385.2016] [PMID: 9748158]
[105]
Rizvi, S.B.; Ghaderi, S.; Keshtgar, M.; Seifalian, A.M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev., 2010, 1(1), 5161.
[http://dx.doi.org/10.3402/nano.v1i0.5161] [PMID: 22110865]
[106]
Medintz, I.L.; Uyeda, H.T.; Goldman, E.R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater., 2005, 4(6), 435-446.
[http://dx.doi.org/10.1038/nmat1390] [PMID: 15928695]
[107]
Jaiswal, J.K.; Mattoussi, H.; Mauro, J.M.; Simon, S.M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol., 2003, 21(1), 47-51.
[http://dx.doi.org/10.1038/nbt767] [PMID: 12459736]
[108]
Derfus, A.M.; Chan, W.C.W.; Bhatia, S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett., 2004, 4(1), 11-18.
[http://dx.doi.org/10.1021/nl0347334] [PMID: 28890669]
[109]
Michalet, X. Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 2005, 307(5709), 538-544.
[http://dx.doi.org/10.1126/science.1104274]
[110]
Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16(1), 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003] [PMID: 15722017]
[111]
Hoshino, A. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett., 2004, 4(11), 2163-2169.
[http://dx.doi.org/10.1021/nl048715d]
[112]
Chakraborty, S.K.; Fitzpatrick, J.A.; Phillippi, J.A.; Andreko, S.; Waggoner, A.S.; Bruchez, M.P.; Ballou, B. Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett., 2007, 7(9), 2618-2626.
[http://dx.doi.org/10.1021/nl0709930] [PMID: 17663586]
[113]
Shah, B.S.; Clark, P.A.; Moioli, E.K.; Stroscio, M.A.; Mao, J.J. Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett., 2007, 7(10), 3071-3079.
[http://dx.doi.org/10.1021/nl071547f] [PMID: 17887799]
[114]
Shah, B.S.; Mao, J.J. Labeling of mesenchymal stem cells with bioconjugated quantum dots. Molecular Imaging; Springer, 2011, pp. 61-75.
[http://dx.doi.org/10.1007/978-1-60761-901-7_4]
[115]
Chen, G.; Tian, F.; Li, C.; Zhang, Y.; Weng, Z.; Zhang, Y.; Peng, R.; Wang, Q. In vivo real-time visualization of mesenchymal stem cells tropism for cutaneous regeneration using NIR-II fluorescence imaging. Biomaterials, 2015, 53, 265-273.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.090] [PMID: 25890725]
[116]
Tang, L.; Cheng, J. Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8(3), 290-312.
[http://dx.doi.org/10.1016/j.nantod.2013.04.007] [PMID: 23997809]
[117]
Tang, F.; Li, L.; Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater., 2012, 24(12), 1504-1534.
[http://dx.doi.org/10.1002/adma.201104763] [PMID: 22378538]
[118]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[119]
Burns, A.; Ow, H.; Wiesner, U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology. Chem. Soc. Rev., 2006, 35(11), 1028-1042.
[http://dx.doi.org/10.1039/B600562B] [PMID: 17057833]
[120]
Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci., 1968, 26(1), 62-69.
[http://dx.doi.org/10.1016/0021-9797(68)90272-5]
[121]
Yamauchi, H.; Ishikawa, T.; Kondo, S. Surface characterization of ultramicro spherical particles of silica prepared by w/o microemulsion method. Colloids Surf., 1989, 37, 71-80.
[http://dx.doi.org/10.1016/0166-6622(89)80107-6]
[122]
Lindberg, R.; Sjöblom, J.; Sundholm, G. Preparation of silica particles utilizing the sol-gel and the emulsion-gel processes. Colloids Surf. A Physicochem. Eng. Asp., 1995, 99(1), 79-88.
[http://dx.doi.org/10.1016/0927-7757(95)03117-V]
[123]
Accomasso, L. Stem cell tracking with nanoparticles for regenerative medicine purposes: An overview. Stem Cells Int., 2016, 2016, 7920358.
[http://dx.doi.org/10.1155/2016/7920358]
[124]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012]
[125]
Dey, P.; Blakey, I.; Stone, N. Diagnostic prospects and preclinical development of optical technologies using gold nanostructure contrast agents to boost endogenous tissue contrast. Chem. Sci. (Camb.), 2020, 11(33), 8671-8685.
[http://dx.doi.org/10.1039/D0SC01926G] [PMID: 34123125]
[126]
Galvão, W.S. Super-paramagnetic nanoparticles with spinel structure: a review of synthesis and biomedical applications. in solid state phenomena; ; Publ, T., Ed.; . , 2016.
[127]
Ricles, L.M.; Nam, S.Y.; Sokolov, K.; Emelianov, S.Y.; Suggs, L.J. Function of mesenchymal stem cells following loading of gold nanotracers. Int. J. Nanomedicine, 2011, 6, 407-416.
[http://dx.doi.org/10.2147/IJN.S16354] [PMID: 21499430]
[128]
Jokerst, J.V.; Thangaraj, M.; Kempen, P.J.; Sinclair, R.; Gambhir, S.S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano, 2012, 6(7), 5920-5930.
[http://dx.doi.org/10.1021/nn302042y] [PMID: 22681633]
[129]
da Silva, A.L. SPR biosensors based on gold and silver nanoparticle multilayer films. J. Braz. Chem. Soc., 2014, 25(5), 928-934.
[http://dx.doi.org/10.5935/0103-5053.20140064]
[130]
Kim, D.; Park, S.; Lee, J.H.; Jeong, Y.Y.; Jon, S. Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J. Am. Chem. Soc., 2007, 129(24), 7661-7665.
[http://dx.doi.org/10.1021/ja071471p] [PMID: 17530850]
[131]
Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine (Lond.), 2010, 6(2), 214-226.
[http://dx.doi.org/10.1016/j.nano.2009.07.009] [PMID: 19699322]
[132]
Yang, X.; Stein, E.W.; Ashkenazi, S.; Wang, L.V. Nanoparticles for photoacoustic imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2009, 1(4), 360-368.
[http://dx.doi.org/10.1002/wnan.42] [PMID: 20049803]
[133]
Vartholomeos, P.; Fruchard, M.; Ferreira, A.; Mavroidis, C. MRI-guided nanorobotic systems for therapeutic and diagnostic applications. Annu. Rev. Biomed. Eng., 2011, 13, 157-184.
[http://dx.doi.org/10.1146/annurev-bioeng-071910-124724] [PMID: 21529162]
[134]
Nietzold, C.; Lisdat, F. Fast protein detection using absorption properties of gold nanoparticles. Analyst (Lond.), 2012, 137(12), 2821-2826.
[http://dx.doi.org/10.1039/c2an35054h] [PMID: 22569135]
[135]
Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9(1), 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[136]
Lim, E-K.; Jang, E.; Lee, K.; Haam, S.; Huh, Y.M. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics, 2013, 5(2), 294-317.
[http://dx.doi.org/10.3390/pharmaceutics5020294] [PMID: 24300452]
[137]
Chen, Y-H.; Tsai, C.Y.; Huang, P.Y.; Chang, M.Y.; Cheng, P.C.; Chou, C.H.; Chen, D.H.; Wang, C.R.; Shiau, A.L.; Wu, C.L. Methotrexate conjugated to gold nanoparticles inhibits tumor growth in a syngeneic lung tumor model. Mol. Pharm., 2007, 4(5), 713-722.
[http://dx.doi.org/10.1021/mp060132k] [PMID: 17708653]
[138]
Wang, F.; Wang, Y.C.; Dou, S.; Xiong, M.H.; Sun, T.M.; Wang, J. Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5(5), 3679-3692.
[http://dx.doi.org/10.1021/nn200007z] [PMID: 21462992]
[139]
Satapathy, S.R.; Mohapatra, P.; Preet, R.; Das, D.; Sarkar, B.; Choudhuri, T.; Wyatt, M.D.; Kundu, C.N. Silver-based nanoparticles induce apoptosis in human colon cancer cells mediated through p53. Nanomedicine (Lond.), 2013, 8(8), 1307-1322.
[http://dx.doi.org/10.2217/nnm.12.176] [PMID: 23514434]
[140]
Nallathamby, P.D.; Xu, X-H.N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale, 2010, 2(6), 942-952.
[http://dx.doi.org/10.1039/c0nr00080a] [PMID: 20648292]
[141]
Guo, D.; Zhu, L.; Huang, Z.; Zhou, H.; Ge, Y.; Ma, W.; Wu, J.; Zhang, X.; Zhou, X.; Zhang, Y.; Zhao, Y.; Gu, N. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions. Biomaterials, 2013, 34(32), 7884-7894.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.015] [PMID: 23876760]
[142]
Fageria, L.; Pareek, V.; Dilip, R.V.; Bhargava, A.; Pasha, S.S.; Laskar, I.R.; Saini, H.; Dash, S.; Chowdhury, R.; Panwar, J. Biosynthesized protein-capped silver nanoparticles induce ros-dependent proapoptotic signals and prosurvival autophagy in cancer cells. ACS Omega, 2017, 2(4), 1489-1504.
[http://dx.doi.org/10.1021/acsomega.7b00045] [PMID: 30023637]
[143]
Abdal Dayem, A.; Hossain, M.K.; Lee, S.B.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int. J. Mol. Sci., 2017, 18(1), 120.
[http://dx.doi.org/10.3390/ijms18010120] [PMID: 28075405]
[144]
Kajani, A.A. Gold nanoparticles as potent anticancer agent: green synthesis, characterization, and in vitro study. RSC Advances, 2016, 6(68), 63973-63983.
[http://dx.doi.org/10.1039/C6RA09050H]
[145]
Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol., 2013, 4(4-5), 91-98.
[http://dx.doi.org/10.1007/s12645-013-0040-9] [PMID: 26069504]
[146]
Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to HeLa cells. Sci. Rep., 2018, 8(1), 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[147]
Mukherjee, S.; Sushma, V.; Patra, S.; Barui, A.K.; Bhadra, M.P.; Sreedhar, B.; Patra, C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45), 455103.
[http://dx.doi.org/10.1088/0957-4484/23/45/455103] [PMID: 23064012]
[148]
Ahamed, M.; Akhtar, M.J.; Raja, M.; Ahmad, I.; Siddiqui, M.K.; AlSalhi, M.S.; Alrokayan, S.A. ZnO nanorod-induced apoptosis in human alveolar adenocarcinoma cells via p53, survivin and bax/bcl-2 pathways: role of oxidative stress. Nanomedicine (Lond.), 2011, 7(6), 904-913.
[http://dx.doi.org/10.1016/j.nano.2011.04.011] [PMID: 21664489]
[149]
Premanathan, M.; Karthikeyan, K.; Jeyasubramanian, K.; Manivannan, G. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. Nanomedicine (Lond.), 2011, 7(2), 184-192.
[http://dx.doi.org/10.1016/j.nano.2010.10.001] [PMID: 21034861]
[150]
Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine (Lond.), 2010, 5(8), 1161-1171.
[http://dx.doi.org/10.2217/nnm.10.85] [PMID: 21039194]
[151]
Lai, T-Y.; Lee, W-C. Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxide nanoparticles. J. Photochem. Photobiol. Chem., 2009, 204(2-3), 148-153.
[http://dx.doi.org/10.1016/j.jphotochem.2009.03.009]
[152]
Yacoby, I.; Benhar, I. Antibacterial nanomedicine. Nanomedicine (Lond), 2008, 3(3), 329-41.
[http://dx.doi.org/10.2217/17435889.3.3.329]
[153]
Lok, C-N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924.
[http://dx.doi.org/10.1021/pr0504079] [PMID: 16602699]
[154]
Li, W-R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y.B. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol., 2010, 85(4), 1115-1122.
[http://dx.doi.org/10.1007/s00253-009-2159-5] [PMID: 19669753]
[155]
Singh, R.; Wagh, P.; Wadhwani, S.; Gaidhani, S.; Kumbhar, A.; Bellare, J.; Chopade, B.A. Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics. Int. J. Nanomedicine, 2013, 8, 4277-4290.
[PMID: 24235826]
[156]
Abdelhamid, H.N.; Wu, H-F. Proteomics analysis of the mode of antibacterial action of nanoparticles and their interactions with proteins. Trends Analyt. Chem., 2015, 65, 30-46.
[http://dx.doi.org/10.1016/j.trac.2014.09.010]
[157]
Yousef, M.S.; Abdelhamid, H.N.; Hidalgo, M.; Fathy, R.; Gómez-Gascón, L.; Dorado, J. Antimicrobial activity of silver-carbon nanoparticles on the bacterial flora of bull semen. Theriogenology, 2021, 161, 219-227.
[http://dx.doi.org/10.1016/j.theriogenology.2020.12.006] [PMID: 33340755]
[158]
Dutta, R.K.; Nenavathu, B.P.; Gangishetty, M.K.; Reddy, A.V. Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation. Colloids Surf. B Biointerfaces, 2012, 94, 143-150.
[http://dx.doi.org/10.1016/j.colsurfb.2012.01.046] [PMID: 22348987]
[159]
Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 2006, 6(4), 866-870.
[http://dx.doi.org/10.1021/nl052326h] [PMID: 16608300]
[160]
Kumar, A.; Pandey, A.K.; Singh, S.S.; Shanker, R.; Dhawan, A. Engineered ZnO and TiO(2) nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med., 2011, 51(10), 1872-1881.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.08.025] [PMID: 21920432]
[161]
Raghupathi, K.R.; Koodali, R.T.; Manna, A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir, 2011, 27(7), 4020-4028.
[http://dx.doi.org/10.1021/la104825u] [PMID: 21401066]
[162]
Skorb, E. Antibacterial activity of thin-film photocatalysts based on metal-modified TiO2 and TiO2: In2O3 nanocomposite. Appl. Catal. B, 2008, 84(1-2), 94-99.
[http://dx.doi.org/10.1016/j.apcatb.2008.03.007]
[163]
Kangwansupamonkon, W.; Lauruengtana, V.; Surassmo, S.; Ruktanonchai, U. Antibacterial effect of apatite-coated titanium dioxide for textiles applications. Nanomedicine (Lond.), 2009, 5(2), 240-249.
[http://dx.doi.org/10.1016/j.nano.2008.09.004] [PMID: 19223243]
[164]
Baghriche, O.; Rtimi, S.; Pulgarin, C.; Sanjines, R.; Kiwi, J. Innovative TiO2/Cu nanosurfaces inactivating bacteria in the minute range under low-intensity actinic light. ACS Appl. Mater. Interfaces, 2012, 4(10), 5234-5240.
[http://dx.doi.org/10.1021/am301153j] [PMID: 23020183]
[165]
Armelao, L. Photocatalytic and antibacterial activity of TiO2 and Au/TiO2 nanosystems. Nanotechnology, 2007, 18(37), 375709.
[http://dx.doi.org/10.1088/0957-4484/18/37/375709]
[166]
Uchiyama, M.K.; Deda, D.K.; Rodrigues, S.F.; Drewes, C.C.; Bolonheis, S.M.; Kiyohara, P.K.; Toledo, S.P.; Colli, W.; Araki, K.; Farsky, S.H. In vivo and in vitro toxicity and anti-inflammatory properties of gold nanoparticle bioconjugates to the vascular system. Toxicol. Sci., 2014, 142(2), 497-507.
[http://dx.doi.org/10.1093/toxsci/kfu202] [PMID: 25260831]
[167]
Rehman, M.U.; Yoshihisa, Y.; Miyamoto, Y.; Shimizu, T. The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW 264.7 macrophages. Inflamm. Res., 2012, 61(11), 1177-1185.
[http://dx.doi.org/10.1007/s00011-012-0512-0] [PMID: 22752115]
[168]
Wong, K.K. Further evidence of the anti-inflammatory effects of silver nanoparticles. ChemMedChem, 2009, 4(7), 1129-35.
[http://dx.doi.org/10.1002/cmdc.200900049]
[169]
Caruso, D.M.; Foster, K.N.; Blome-Eberwein, S.A.; Twomey, J.A.; Herndon, D.N.; Luterman, A.; Silverstein, P.; Antimarino, J.R.; Bauer, G.J. Randomized clinical study of Hydrofiber dressing with silver or silver sulfadiazine in the management of partial-thickness burns. J. Burn Care Res., 2006, 27(3), 298-309.
[http://dx.doi.org/10.1097/01.BCR.0000216741.21433.66] [PMID: 16679897]
[170]
David, L.; Moldovan, B.; Vulcu, A.; Olenic, L.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Crisan, M.; Chiorean, I.; Clichici, S.; Filip, G.A. Green synthesis, characterization and anti-inflammatory activity of silver nanoparticles using European black elderberry fruits extract. Colloids Surf. B Biointerfaces, 2014, 122, 767-777.
[http://dx.doi.org/10.1016/j.colsurfb.2014.08.018] [PMID: 25174985]
[171]
Umrani, R.D.; Paknikar, K.M. Zinc oxide nanoparticles show antidiabetic activity in streptozotocin-induced Type 1 and 2 diabetic rats. Nanomedicine (Lond.), 2014, 9(1), 89-104.
[http://dx.doi.org/10.2217/nnm.12.205] [PMID: 23427863]
[172]
Alkaladi, A.; Abdelazim, A.M.; Afifi, M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int. J. Mol. Sci., 2014, 15(2), 2015-2023.
[http://dx.doi.org/10.3390/ijms15022015] [PMID: 24477262]
[173]
Mohammadpour, M.; Hashemi, H.; Jabbarvand, M.; Delrish, E. Penetration of silicate nanoparticles into the corneal stroma and intraocular fluids. Cornea, 2014, 33(7), 738-743.
[http://dx.doi.org/10.1097/ICO.0000000000000144] [PMID: 24886997]
[174]
Kim, J.H.; Kim, M.H.; Jo, D.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. The inhibition of retinal neovascularization by gold nanoparticles via suppression of VEGFR-2 activation. Biomaterials, 2011, 32(7), 1865-1871.
[http://dx.doi.org/10.1016/j.biomaterials.2010.11.030] [PMID: 21145587]
[175]
Jo, D.H.; Kim, J.H.; Yu, Y.S.; Lee, T.G.; Kim, J.H. Antiangiogenic effect of silicate nanoparticle on retinal neovascularization induced by vascular endothelial growth factor. Nanomedicine (Lond.), 2012, 8(5), 784-791.
[http://dx.doi.org/10.1016/j.nano.2011.09.003] [PMID: 21945900]
[176]
Jo, D.H.; Kim, J.H.; Son, J.G.; Song, N.W.; Kim, Y.I.; Yu, Y.S.; Lee, T.G.; Kim, J.H. Anti-angiogenic effect of bare titanium dioxide nanoparticles on pathologic neovascularization without unbearable toxicity. Nanomedicine (Lond.), 2014, 10(5), 1109-1117.
[http://dx.doi.org/10.1016/j.nano.2014.02.007] [PMID: 24566275]
[177]
Rastogi, S.; Sharma, G.; Kandasubramanian, B. Nanomaterials and the Environment. The ELSI Handbook of Nanotechnology: Risk, Safety, ELSI and Commercialization, 2020; Chapter 1, p. 1-23.
[178]
Sidiropoulou, E.; Feidantsis, K.; Kalogiannis, S.; Gallios, G.P.; Kastrinaki, G.; Papaioannou, E.; Václavíková, M.; Kaloyianni, M. Insights into the toxicity of iron oxides nanoparticles in land snails. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2018, 206-207, 1-10.
[http://dx.doi.org/10.1016/j.cbpc.2018.02.001] [PMID: 29408432]
[179]
Thomas, S.P.; Al-Mutairi, E.M.; De, S.K. Impact of nanomaterials on health and environment. Arab. J. Sci. Eng., 2013, 38(3), 457-477.
[http://dx.doi.org/10.1007/s13369-012-0324-0]
[180]
Bhatia, M. Implicating nanoparticles as potential biodegradation enhancers: a review. J. Nanomed. Nanotechnol., 2013, 4(175), 2.
[http://dx.doi.org/10.4172/2157-7439.1000175]
[181]
Li, Q.; Wang, J.; Wu, Q.; Cao, N.; Yang, H.T. Perspective on human pluripotent stem cell-derived cardiomyocytes in heart disease modeling and repair. Stem Cells Transl. Med., 2020, 9(10), 1121-1128.
[http://dx.doi.org/10.1002/sctm.19-0340] [PMID: 32725800]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy