Generic placeholder image

Current Drug Research Reviews

Editor-in-Chief

ISSN (Print): 2589-9775
ISSN (Online): 2589-9783

Review Article

IL-23/Th17 Axis: A Potential Therapeutic Target of Psoriasis

Author(s): Amit Sharma, Deepak Kumar Upadhyay, Ghanshyam Das Gupta, Raj Kumar Narang and Vineet Kumar Rai*

Volume 14, Issue 1, 2022

Published on: 30 November, 2021

Page: [24 - 36] Pages: 13

DOI: 10.2174/2589977513666210707114520

Price: $65

Abstract

Psoriasis is an immune-mediated skin disease that leads to the initiation of abnormal production of inflammatory mediators and keratinocytes hyper-proliferation. Th-1 cell expressing cytokines such as IL-1β and TNF-α have been the important hallmarks in the management of psoriasis. However, investigations carried out in the previous few years underline the involvement of another subset of T helper cells, i.e. Th-17 in psoriasis exacerbation, and hence have become the point of focus now. The immunopathogenesis of Th-17 is the result of the IL-23/Th-17 axis. It involves the release of IL-17 and IL-22 in response to the activated NF-kβ dependent activation of IL-23. The function of human Th-17 cells, as well as the crucial role of IL-23/Th-17 axis in the exacerbation of psoriasis and treatment, have been well explored. Therefore, considering IL-23/Th17 axis as a pertinent therapeutic target in immune driven disorders, extensive investigations are now highlighting the utility of biopharmaceuticals and/or biological agents acting on these targets. Here, we review the IL-23/Th-17 axis based therapeutic targets, different types of active moieties based on their source of availability and most useful USFDA approved Mabs targeting the IL-23/Th17 axis in psoriasis for a better understanding of the future possibilities in this area.

Keywords: Psoriasis, biological agents, IL-23/Th-17 axis, Th-17 cells, therapeutic targets, biopharmaceuticals.

Graphical Abstract
[1]
Rachakonda TD, Schupp CW, Armstrong AW. Psoriasis prevalence among adults in the United States. J Am Acad Dermatol 2014; 70(3): 512-6.
[http://dx.doi.org/10.1016/j.jaad.2013.11.013] [PMID: 24388724]
[2]
Raut AS, Prabhu RH, Patravale VB. Psoriasis clinical implications and treatment: A review. Crit Rev Ther Drug Carrier Syst 2013; 30(3): 183-216.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2013005268] [PMID: 23614646]
[3]
Bocheńska K, Smolińska E, Moskot M, Jakóbkiewicz-Banecka J, Gabig-Cimińska M. Models in the research process of psoriasis. Int J Mol Sci 2017; 18(12): E2514.
[http://dx.doi.org/10.3390/ijms18122514] [PMID: 29186769]
[4]
van der Fits L, Mourits S, Voerman JS, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol 2009; 182(9): 5836-45.
[http://dx.doi.org/10.4049/jimmunol.0802999] [PMID: 19380832]
[5]
Cai Y, Fleming C, Yan J. New insights of T cells in the pathogenesis of psoriasis. Cell Mol Immunol 2012; 9(4): 302-9.
[http://dx.doi.org/10.1038/cmi.2012.15] [PMID: 22705915]
[6]
Sun J, Zhao Y, Hu J. Curcumin inhibits imiquimod-induced psoriasis-like inflammation by inhibiting IL-1beta and IL-6 production in mice. PLoS One 2013; 8(6): e67078.
[http://dx.doi.org/10.1371/journal.pone.0067078] [PMID: 23825622]
[7]
Lowes MA, Kikuchi T, Fuentes-Duculan J, et al. Psoriasis vulgaris lesions contain discrete populations of Th1 and Th17 T cells. J Invest Dermatol 2008; 128(5): 1207-11.
[http://dx.doi.org/10.1038/sj.jid.5701213] [PMID: 18200064]
[8]
Liu T, Li S, Ying S, et al. The IL-23/IL-17 pathway in inflammatory skin diseases: From bench to bedside. Front Immunol 2020; 11(2971): 594735.
[http://dx.doi.org/10.3389/fimmu.2020.594735] [PMID: 33281823]
[9]
Wang H, Syrovets T, Kess D, et al. Targeting NF-kappa B with a natural triterpenoid alleviates skin inflammation in a mouse model of psoriasis. J Immunol 2009; 183(7): 4755-63.
[http://dx.doi.org/10.4049/jimmunol.0900521] [PMID: 19752240]
[10]
Karadag AS, Ertugrul DT, Bilgili SG, Takci Z, Akin KO, Calka O. Immunoregulatory effects of isotretinoin in patients with acne. Br J Dermatol 2012; 167(2): 433-5.
[http://dx.doi.org/10.1111/j.1365-2133.2012.10949.x] [PMID: 22435970]
[11]
Rácz E, Prens EP, Kurek D, et al. Effective treatment of psoriasis with narrow-band UVB phototherapy is linked to suppression of the IFN and Th17 pathways. J Invest Dermatol 2011; 131(7): 1547-58.
[http://dx.doi.org/10.1038/jid.2011.53] [PMID: 21412260]
[12]
Zhang LJ. Type1 interferons potential initiating factors linking skin wounds with psoriasis pathogenesis. Front Immunol 2019; 10: 1440.
[http://dx.doi.org/10.3389/fimmu.2019.01440] [PMID: 31293591]
[13]
Rendon A, Schäkel K. Psoriasis pathogenesis and treatment. Int J Mol Sci 2019; 20(6): 1475.
[http://dx.doi.org/10.3390/ijms20061475] [PMID: 30909615]
[14]
Bergboer JGM, Zeeuwen PLJM, Schalkwijk J. Genetics of psoriasis: Evidence for epistatic interaction between skin barrier abnormalities and immune deviation. J Invest Dermatol 2012; 132(10): 2320-31.
[http://dx.doi.org/10.1038/jid.2012.167] [PMID: 22622420]
[15]
Rai V, Sharma A, Upadhyay D, Sarma G, Kaur N, Gupta G. Squalene integrated NLC based gel of tamoxifen citrate for efficient treatment of psoriasis: A preclinical investigation. J Drug Del Sci Technol 2020; 56: 101568.
[16]
Honari G, Maibach H. Skin structure and function.Applied dermatotoxicology. Boston: Academic Press 2014; pp. 1-10.
[http://dx.doi.org/10.1016/B978-0-12-420130-9.00001-3]
[17]
Pennock ND, White JT, Cross EW, Cheney EE, Tamburini BA, Kedl RM. T cell responses: Naive to memory and everything in between. Adv Physiol Educ 2013; 37(4): 273-83.
[http://dx.doi.org/10.1152/advan.00066.2013] [PMID: 24292902]
[18]
Lowes MA, Suárez-Fariñas M, Krueger JG. Immunology of psoriasis. Annu Rev Immunol 2014; 32: 227-55.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120225] [PMID: 24655295]
[19]
Georgescu SR, Tampa M, Caruntu C, et al. Advances in understanding the immunological pathways in psoriasis. Int J Mol Sci 2019; 20(3): 739.
[http://dx.doi.org/10.3390/ijms20030739] [PMID: 30744173]
[20]
Raychaudhuri SP, Raychaudhuri SK. Biologics: Target-specific treatment of systemic and cutaneous autoimmune diseases. Indian J Dermatol 2009; 54(2): 100-9.
[http://dx.doi.org/10.4103/0019-5154.53175] [PMID: 20101303]
[21]
Romagnani S. Type 1 T helper and type 2 T helper cells: Functions, regulation and role in protection and disease. Int J Clin Lab Res 1991; 21(2): 152-8.
[PMID: 1687725]
[22]
Arun KV, Talwar A, Kumar TSS. T-helper cells in the etiopathogenesis of periodontal disease: A mini review. J Indian Soc Periodontol 2011; 15(1): 4-10.
[http://dx.doi.org/10.4103/0972-124X.82255] [PMID: 21772714]
[23]
Yamagata T, Skepner J, Yang J. Targeting Th17 effector cytokines for the treatment of autoimmune diseases. Arch Immunol Ther Exp (Warsz) 2015; 63(6): 405-14.
[http://dx.doi.org/10.1007/s00005-015-0362-x] [PMID: 26358867]
[24]
Campa M, Mansouri B, Warren R, Menter A. A review of biologic therapies targeting IL-23 and IL-17 for use in moderate-to-severe plaque psoriasis. Dermatol Ther (Heidelb) 2016; 6(1): 1-12.
[http://dx.doi.org/10.1007/s13555-015-0092-3] [PMID: 26714681]
[25]
Chiu HY, Cheng YP, Tsai TF. T helper type 17 in psoriasis: From basic immunology to clinical practice. Zhonghua Pifuke Yixue Zazhi 2012; 30(4): 136-41.
[http://dx.doi.org/10.1016/j.dsi.2012.08.002]
[26]
Boniface K, Blom B, Liu YJ, de Waal Malefyt R. From interleukin-23 to T-helper 17 cells: Human T-helper cell differentiation revisited. Immunol Rev 2008; 226: 132-46.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00714.x] [PMID: 19161421]
[27]
Tang F, Du Q, Liu YJ. Plasmacytoid dendritic cells in antiviral immunity and autoimmunity. Sci China Life Sci 2010; 53(2): 172-82.
[http://dx.doi.org/10.1007/s11427-010-0045-0] [PMID: 20596824]
[28]
Martinez O, Leung LW, Basler CF. The role of antigen-presenting cells in filoviral hemorrhagic fever: Gaps in current knowledge. Antiviral Res 2012; 93(3): 416-28.
[http://dx.doi.org/10.1016/j.antiviral.2012.01.011] [PMID: 22333482]
[29]
Ganguly D, Chamilos G, Lande R, et al. Self-RNA-antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J Exp Med 2009; 206(9): 1983-94.
[http://dx.doi.org/10.1084/jem.20090480] [PMID: 19703986]
[30]
Mangan PR, Harrington LE, O’Quinn DB, et al. Transforming growth factor-β induces development of the T(H)17 lineage. Nature 2006; 441(7090): 231-4.
[http://dx.doi.org/10.1038/nature04754] [PMID: 16648837]
[31]
Wilson NJ, Boniface K, Chan JR, et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 2007; 8(9): 950-7.
[http://dx.doi.org/10.1038/ni1497] [PMID: 17676044]
[32]
Yang XO, Pappu BP, Nurieva R, et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity 2008; 28(1): 29-39.
[http://dx.doi.org/10.1016/j.immuni.2007.11.016] [PMID: 18164222]
[33]
Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 2006; 126(6): 1121-33.
[http://dx.doi.org/10.1016/j.cell.2006.07.035] [PMID: 16990136]
[34]
Fotiadou C, Lazaridou E, Sotiriou E, Ioannides D. Targeting IL-23 in psoriasis: Current perspectives. Psoriasis (Auckl) 2018; 8: 1-5.
[http://dx.doi.org/10.2147/PTT.S98893] [PMID: 29441315]
[35]
Di Cesare A, Di Meglio P, Nestle FO. The IL-23/Th17 axis in the immunopathogenesis of psoriasis. J Invest Dermatol 2009; 129(6): 1339-50.
[http://dx.doi.org/10.1038/jid.2009.59] [PMID: 19322214]
[36]
Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299(5609): 1057-61.
[http://dx.doi.org/10.1126/science.1079490] [PMID: 12522256]
[37]
Owczarczyk-Saczonek A, Czerwińska J, Placek W. The role of regulatory T cells and anti-inflammatory cytokines in psoriasis. Acta Dermatovenerol Alp Panonica Adriat 2018; 27(1): 17-23.
[http://dx.doi.org/10.15570/actaapa.2018.4] [PMID: 29589640]
[38]
Nedoszytko B, Lange M, Sokołowska-Wojdyło M, et al. The role of regulatory T cells and genes involved in their differentiation in pathogenesis of selected inflammatory and neoplastic skin diseases. Part I: Treg properties and functions. Postepy Dermatol Alergol 2017; 34(4): 285-94.
[http://dx.doi.org/10.5114/ada.2017.69305] [PMID: 28951701]
[39]
Brembilla NC, Senra L, Boehncke W-H. The IL-17 family of cytokines in psoriasis: IL-17A and beyond. Front Immunol 2018; 9: 1682.
[http://dx.doi.org/10.3389/fimmu.2018.01682] [PMID: 30127781]
[40]
Mashiko S, Bouguermouh S, Rubio M, Baba N, Bissonnette R, Sarfati M. Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J Allergy Clin Immunol 2015; 136(2): 351-9.e1.
[http://dx.doi.org/10.1016/j.jaci.2015.01.033] [PMID: 25792465]
[41]
Elloso MM, Gomez-Angelats M, Fourie AM. Targeting the Th17 pathway in psoriasis. J Leukoc Biol 2012; 92(6): 1187-97.
[http://dx.doi.org/10.1189/jlb.0212101] [PMID: 22962689]
[42]
Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis 1999; 5(4): 285-94.
[http://dx.doi.org/10.1097/00054725-199911000-00009] [PMID: 10579123]
[43]
Sokol CL, Luster AD. The chemokine system in innate immunity. Cold Spring Harb Perspect Biol 2015; 7(5): a016303.
[http://dx.doi.org/10.1101/cshperspect.a016303] [PMID: 25635046]
[44]
Diani M, Altomare G, Reali E. T Helper cell subsets in clinical manifestations of psoriasis. J Immunol Res 2016; 2016: 7692024.
[http://dx.doi.org/10.1155/2016/7692024]
[45]
Hawkes JE, Chan TC, Krueger JG. Psoriasis pathogenesis and the development of novel targeted immune therapies. J Allergy Clin Immunol 2017; 140(3): 645-53.
[http://dx.doi.org/10.1016/j.jaci.2017.07.004] [PMID: 28887948]
[46]
Toussirot E. The IL23/Th17 pathway as a therapeutic target in chronic inflammatory diseases. Inflamm Allergy Drug Targets 2012; 11(2): 159-68.
[http://dx.doi.org/10.2174/187152812800392805] [PMID: 22280236]
[47]
MacDonald JK, Nguyen TM, Khanna R, Timmer A. Anti-IL-12/23p40 antibodies for induction of remission in Crohn’s disease. Cochrane Database Syst Rev 2016; 11(11): CD007572. [-CD.].
[http://dx.doi.org/10.1002/14651858.CD007572.pub3] [PMID: 27885650]
[48]
Gandhi M, Alwawi E, Gordon KB. Anti-p40 antibodies ustekinumab and briakinumab: blockade of interleukin-12 and interleukin-23 in the treatment of psoriasis. Semin Cutan Med Surg 2010; 29(1): 48-52.
[http://dx.doi.org/10.1016/j.sder.2010.02.001] [PMID: 20430307]
[49]
Cingoz O. Ustekinumab. MAbs 2009; 1(3): 216-21.
[http://dx.doi.org/10.4161/mabs.1.3.8593] [PMID: 20069753]
[50]
Sandborn WJ, Feagan BG, Fedorak RN, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology 2008; 135(4): 1130-41.
[http://dx.doi.org/10.1053/j.gastro.2008.07.014] [PMID: 18706417]
[51]
Burakoff R, Barish CF, Riff D, et al. A phase 1/2A trial of STA 5326, an oral interleukin-12/23 inhibitor, in patients with active moderate to severe Crohn’s disease. Inflamm Bowel Dis 2006; 12(7): 558-65.
[http://dx.doi.org/10.1097/01.ibd.0000225337.14356.31] [PMID: 16804392]
[52]
Gordon KB, Langley RG, Gottlieb AB, et al. A phase III, randomized, controlled trial of the fully human IL-12/23 mAb briakinumab in moderate-to-severe psoriasis. J Invest Dermatol 2012; 132(2): 304-14.
[http://dx.doi.org/10.1038/jid.2011.304] [PMID: 22011907]
[53]
Leonardi CL, Kimball AB, Papp KA, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet 2008; 371(9625): 1665-74.
[http://dx.doi.org/10.1016/S0140-6736(08)60725-4] [PMID: 18486739]
[54]
Papp KA, Langley RG, Lebwohl M, et al. Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 52-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 2). Lancet 2008; 371(9625): 1675-84.
[http://dx.doi.org/10.1016/S0140-6736(08)60726-6] [PMID: 18486740]
[55]
Boffa MJ, Chalmers RJ. Methotrexate for psoriasis. Clin Exp Dermatol 1996; 21(6): 399-408.
[http://dx.doi.org/10.1111/j.1365-2230.1996.tb00142.x] [PMID: 9167333]
[56]
Czarnecka-Operacz M, Sadowska-Przytocka A. The possibilities and principles of methotrexate treatment of psoriasis - the updated knowledge. Postepy Dermatol Alergol 2014; 31(6): 392-400.
[http://dx.doi.org/10.5114/pdia.2014.47121] [PMID: 25610355]
[57]
Colombo MD, Cassano N, Bellia G, Vena GA. Cyclosporine regimens in plaque psoriasis: an overview with special emphasis on dose, duration, and old and new treatment approaches. ScientificWorldJournal 2013; 2013: 805705.
[http://dx.doi.org/10.1155/2013/805705] [PMID: 23983647]
[58]
Cooper KD, Voorhees JJ, Fisher GJ, Chan LS, Gupta AK, Baadsgaard O. Effects of cyclosporine on immunologic mechanisms in psoriasis. J Am Acad Dermatol 1990; 23(6 Pt 2): 1318-26.
[http://dx.doi.org/10.1016/0190-9622(90)70360-T] [PMID: 2277141]
[59]
Haider AS, Lowes MA, Suárez-Fariñas M, et al. Identification of cellular pathways of “type 1,” Th17 T cells, and TNF- and inducible nitric oxide synthase-producing dendritic cells in autoimmune inflammation through pharmacogenomic study of cyclosporine A in psoriasis. J Immunol 2008; 180(3): 1913-20.
[http://dx.doi.org/10.4049/jimmunol.180.3.1913] [PMID: 18209089]
[60]
Silfvast-Kaiser A, Paek SY, Menter A. Anti-IL17 therapies for psoriasis. Expert Opin Biol Ther 2019; 19(1): 45-54.
[http://dx.doi.org/10.1080/14712598.2019.1555235] [PMID: 30500317]
[61]
Kurzeja M, Rudnicka L, Olszewska M. New interleukin-23 pathway inhibitors in dermatology: Ustekinumab, briakinumab, and secukinumab. Am J Clin Dermatol 2011; 12(2): 113-25.
[http://dx.doi.org/10.2165/11538950-000000000-00000] [PMID: 21348542]
[62]
Kim J, Krueger JG. Highly effective new treatments for psoriasis target the IL-23/Type 17 T cell autoimmune axis. Annu Rev Med 2017; 68: 255-69.
[http://dx.doi.org/10.1146/annurev-med-042915-103905] [PMID: 27686018]
[63]
Tsai YC, Tsai TF. Anti-interleukin and interleukin therapies for psoriasis: Current evidence and clinical usefulness. Ther Adv Musculoskelet Dis 2017; 9(11): 277-94.
[http://dx.doi.org/10.1177/1759720X17735756] [PMID: 29344110]
[64]
Yost J, Gudjonsson JE. The role of TNF inhibitors in psoriasis therapy: new implications for associated comorbidities. F1000 Med Rep 2009; 1: 30.
[http://dx.doi.org/10.3410/M1-30] [PMID: 20948750]
[65]
Huo M, Cui X, Xue J, et al. Anti-inflammatory effects of linalool in RAW 264.7 macrophages and lipopolysaccharide-induced lung injury model. J Surg Res 2013; 180(1): e47-54.
[http://dx.doi.org/10.1016/j.jss.2012.10.050] [PMID: 23228323]
[66]
Ibbotson SH. A perspective on the use of NB-UVB phototherapy vs. PUVA photochemotherapy. Front Med (Lausanne) 2018; 5: 184.
[http://dx.doi.org/10.3389/fmed.2018.00184] [PMID: 30013973]
[67]
Johnson-Huang LM, Suárez-Fariñas M, Sullivan-Whalen M, Gilleaudeau P, Krueger JG, Lowes MA. Effective narrow-band UVB radiation therapy suppresses the IL-23/IL-17 axis in normalized psoriasis plaques. J Invest Dermatol 2010; 130(11): 2654-63.
[http://dx.doi.org/10.1038/jid.2010.166] [PMID: 20555351]
[68]
Singh TP, Schön MP, Wallbrecht K, et al. 8-methoxypsoralen plus ultraviolet A therapy acts via inhibition of the IL-23/Th17 axis and induction of Foxp3+ regulatory T cells involving CTLA4 signaling in a psoriasis-like skin disorder. J Immunol 2010; 184(12): 7257-67.
[http://dx.doi.org/10.4049/jimmunol.0903719] [PMID: 20488788]
[69]
Woo YR, Cho DH, Park HJ. Molecular mechanisms and management of a cutaneous inflammatory disorder: Psoriasis. Int J Mol Sci 2017; 18(12): E2684.
[http://dx.doi.org/10.3390/ijms18122684] [PMID: 29232931]
[70]
Hawkes JE, Yan BY, Chan TC, Krueger JG. Discovery of the IL-23/IL-17 signaling pathway and the treatment of psoriasis. J Immunol 2018; 201(6): 1605-13.
[71]
Chiricozzi A, Saraceno R, Chimenti MS, Guttman-Yassky E, Krueger JG. Role of IL-23 in the pathogenesis of psoriasis: A novel potential therapeutic target? Expert Opin Ther Targets 2014; 18(5): 513-25.
[http://dx.doi.org/10.1517/14728222.2014.889686] [PMID: 24568095]
[72]
Glatt S, Baeten D, Baker T, et al. Dual IL-17A and IL-17F neutralisation by bimekizumab in psoriatic arthritis: Evidence from preclinical experiments and a randomised placebo-controlled clinical trial that IL-17F contributes to human chronic tissue inflammation. Ann Rheum Dis 2018; 77(4): 523-32.
[http://dx.doi.org/10.1136/annrheumdis-2017-212127] [PMID: 29275332]
[73]
Rønholt K, Iversen L. Old and new biological therapies for psoriasis. Int J Mol Sci 2017; 18(11): 2297.
[http://dx.doi.org/10.3390/ijms18112297] [PMID: 29104241]
[74]
Thappa DM, Laxmisha C. Immunomodulators in the treatment of psoriasis. Indian J Dermatol Venereol Leprol 2004; 70(1): 1-9.
[PMID: 17642548]
[75]
Benson JM, Peritt D, Scallon BJ, et al. Discovery and mechanism of ustekinumab: A human monoclonal antibody targeting interleukin-12 and interleukin-23 for treatment of immune-mediated disorders. MAbs 2011; 3(6): 535-45.
[http://dx.doi.org/10.4161/mabs.3.6.17815] [PMID: 22123062]
[76]
Weger W. Current status and new developments in the treatment of psoriasis and psoriatic arthritis with biological agents. Br J Pharmacol 2010; 160(4): 810-20.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00702.x] [PMID: 20590580]
[77]
Nogueira M, Torres T. Guselkumab for the treatment of psoriasis - evidence to date. Drugs Context 2019; 8: 212594.
[http://dx.doi.org/10.7573/dic.212594] [PMID: 31391856]
[78]
Beck KM, Sanchez IM, Yang EJ, Liao W. Profile of tildrakizumab-asmn in the treatment of moderate-to-severe plaque psoriasis: Evidence to date. Psoriasis (Auckl) 2018; 8: 49-58.
[http://dx.doi.org/10.2147/PTT.S146640] [PMID: 30214892]
[79]
Haugh IM, Preston AK, Kivelevitch DN, Menter AM. Risankizumab: An anti-IL-23 antibody for the treatment of psoriasis. Drug Des Devel Ther 2018; 12: 3879-83.
[http://dx.doi.org/10.2147/DDDT.S167149] [PMID: 30518998]
[80]
Foulkes AC, Warren RB. Brodalumab in psoriasis: Evidence to date and clinical potential. Drugs Context 2019; 8: 212570.
[http://dx.doi.org/10.7573/dic.212570] [PMID: 31024633]
[81]
Craig S, Warren RB. Ixekizumab for the treatment of psoriasis: Up-to-date. Expert Opin Biol Ther 2020; 20(6): 549-57.
[http://dx.doi.org/10.1080/14712598.2020.1729736] [PMID: 32050819]
[82]
Tan JK, Aphale A, Malaviya R, Sun Y, Gottlieb AB. Mechanisms of action of etanercept in psoriasis. J Investig Dermatol Symp Proc 2007; 12(1): 38-45.
[http://dx.doi.org/10.1038/sj.jidsymp.5650037] [PMID: 17502868]
[83]
Leman J, Burden A. Treatment of severe psoriasis with infliximab. Ther Clin Risk Manag 2008; 4(6): 1165-76.
[http://dx.doi.org/10.2147/TCRM.S3094] [PMID: 19337424]
[84]
Vena GA, Cassano N. Drug focus: Adalimumab in the treatment of moderate to severe psoriasis. Biologics 2007; 1(2): 93-103.
[PMID: 19707319]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy