Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Nanocrystal Approaches for Poorly Soluble Drugs and their Role in Development of Marketed Formulation

Author(s): Vijay Agarwal, Nitin Kaushik* and Pankaj Kumar Sharma

Volume 11, Issue 4, 2021

Published on: 16 June, 2021

Page: [275 - 294] Pages: 20

DOI: 10.2174/2210303111666210616115543

Price: $65

Abstract

Poor solubility of the drug compounds is a significant problem in the pharmaceutical field; therefore, reducing particle size may be one of the most straightforward and efficient processes for enhancing the solubility of such compounds. Nanocrystal, a new carrier-free colloidal drug delivery system with a particle size ranging from 100 to 1000 nm, is thought as a viable drug delivery strategy to develop poorly soluble drugs.

This review focuses on the nanocrystal approaches and their uses in pharmaceutical applications. Also, various preparation methods of the nanocrystal are briefly described in this review. The paper also describes several factors involved in producing stable drug nanocrystals and provides suggestions for overcoming instability-related issues, like aggregation and Ostwald ripening. Finally, the specific opportunities and challenges that apply to nanocrystal technology are summarized in this paper.

In this paper, we summarize and discuss the unique features of drug nanocrystals, including enhancement of dissolution velocity, adhesiveness to the surface, and saturation solubility. Nowadays, pharmaceutical industries are using different approaches to prepare the nanocrystal, like the bottom-up approach (precipitation), the top-down approach (wet milling, high-pressure homogenization), and some other combinational approaches.

Drug nanocrystals can be administered through different routes. Besides this, the various fabrication methods and characterization methods may be used to develop and scale up the production of drug nanocrystals.

In this review article, the relevance of drug nanocrystals are presented and illustrated according to the research done by different researchers and finally concluded that marketed formulation related to nanocrystal are gradually in progression. However, some related and developed formulations are under clinical trial.

Keywords: Drug nanocrystals, poorly soluble drugs, bioavailability, bottom-up, top-down, combinative process.

Next »
Graphical Abstract
[1]
Gulsun, T.; Gursory, R.N.; Oner, L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. Fabad. J. Pharm. Sci., 2009, 34, 55-65.
[2]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of water-poorly soluble drugs. Asian J Pharm Sci., 2015, 10(1), 13-23.
[http://dx.doi.org/10.1016/j.ajps.2014.08.005]
[3]
Junghanns, J.U.; Müller, R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomedicine, 2008, 3(3), 295-309.
[PMID: 18990939]
[4]
Peltonen, L.; Hirvonen, J. Drug nanocrystals - Versatile option for formulation of poorly soluble materials. Int. J. Pharm., 2018, 537(1-2), 73-83.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.005] [PMID: 29262301]
[5]
Möschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm., 2013, 453(1), 142-156.
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034] [PMID: 23000841]
[6]
Peltonen, L.; Strachan, C. Understanding critical quality attributes for nanocrystals from preparation to delivery. Molecules, 2015, 20(12), 22286-22300.
[http://dx.doi.org/10.3390/molecules201219851] [PMID: 26703528]
[7]
Malamatari, M.; Taylor, K.M.G.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: Production by wet milling and applications. Drug Discov. Today, 2018, 23(3), 534-547.
[http://dx.doi.org/10.1016/j.drudis.2018.01.016] [PMID: 29326082]
[8]
Thorat, A.A.; Dalvi, S.V. Liquid antisolvent precipitation and stabilization of nanoparticles of poorly water soluble drugs in aqueous suspensions: Recent developments and future perspective. Chem. Eng. J., 2012, 181-182, 1-34.
[http://dx.doi.org/10.1016/j.cej.2011.12.044]
[9]
Van Eerdenbrugh, B.; Van den Mooter, G.; Augustijns, P. Top-down production of drug nanocrystals: Nanosuspension stabilization, miniaturization and transformation into solid products. Int. J. Pharm., 2008, 364(1), 64-75.
[http://dx.doi.org/10.1016/j.ijpharm.2008.07.023] [PMID: 18721869]
[10]
Verma, S.; Gokhale, R.; Burgess, D.J. A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int. J. Pharm., 2009, 380(1-2), 216-222. a
[http://dx.doi.org/10.1016/j.ijpharm.2009.07.005] [PMID: 19596059]
[11]
Rasenack, N.; Müller, B.W. Micron-size drug particles: Common and novel micronization techniques. Pharm. Dev. Technol., 2004, 9(1), 1-13.
[http://dx.doi.org/10.1081/PDT-120027417] [PMID: 15000462]
[12]
Zhang, X.; Xia, Q.; Gu, N. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method. Drug Dev. Ind. Pharm., 2006, 32(7), 857-863. b
[http://dx.doi.org/10.1080/03639040500534184] [PMID: 16908423]
[13]
Rogers, T.L.; Gillespie, I.B.; Hitt, J.E.; Fransen, K.L.; Crowl, C.A.; Tucker, C.J.; Kupperblatt, G.B.; Becker, J.N.; Wilson, D.L.; Todd, C.; Broomall, C.F.; Evans, J.C.; Elder, E.J. Development and characterization of a scalable controlled precipitation process to enhance the dissolution of poorly water-soluble drugs. Pharm. Res., 2004, 21(11), 2048-2057.
[http://dx.doi.org/10.1023/B:PHAM.0000048196.61887.e5] [PMID: 15587927]
[14]
Franke, J.; Mersmann, A. The influence of the operational conditions on the precipitation process. Chem. Eng. Sci., 1995, 50(11), 1737-1753.
[http://dx.doi.org/10.1016/0009-2509(95)00028-4]
[15]
Fontana, F.; Figueiredo, P.; Zhang, P.; Hirvonen, J.T.; Liu, D.; Santos, H.A. Production of pure drug nanocrystals and nano co-crystals by confinement methods. Adv. Drug Deliv. Rev., 2018, 131, 3-21.
[http://dx.doi.org/10.1016/j.addr.2018.05.002] [PMID: 29738786]
[16]
Matteucci, M.E.; Hotze, M.A.; Johnston, K.P.; Williams, R.O., III Drug nanoparticles by antisolvent precipitation: Mixing energy versus surfactant stabilization. Langmuir, 2006, 22(21), 8951-8959.
[http://dx.doi.org/10.1021/la061122t] [PMID: 17014140]
[17]
Xia, D.; Quan, P.; Piao, H.; Piao, H.; Sun, S.; Yin, Y.; Cui, F. Preparation of stable nitrendipine nanosuspensions using the precipitation-ultrasonication method for enhancement of dissolution and oral bioavailability. Eur. J. Pharm. Sci., 2010, 40(4), 325-334.
[http://dx.doi.org/10.1016/j.ejps.2010.04.006] [PMID: 20417274]
[18]
Homayouni, A.; Sadeghi, F.; Varshosaz, J.; Garekani, H.A.; Nokhodchi, A. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP. Eur. J. Pharm. Biopharm., 2014, 88(1), 261-274.
[http://dx.doi.org/10.1016/j.ejpb.2014.05.022] [PMID: 24952357]
[19]
Sinswat, P.; Gao, X.; Yacaman, M.J.; Williams, R.O., III; Johnston, K.P. Stabilizer choice for rapid dissolving high potency itraconazole particles formed by evaporative precipitation into aqueous solution. Int. J. Pharm., 2005, 302(1-2), 113-124.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.027] [PMID: 16109466]
[20]
Zhong, J.; Shen, Z.; Yang, Y.; Chen, J. Preparation and characterization of uniform nanosized cephradine by combination of reactive precipitation and liquid anti-solvent precipitation under high gravity environment. Int. J. Pharm., 2005, 301(1-2), 286-293.
[http://dx.doi.org/10.1016/j.ijpharm.2005.06.005] [PMID: 16054788]
[21]
Soliman, K.A.; Ibrahim, H.K.; Ghorab, M.M. Effects of different combinations of nanocrystallization technologies on avanafil nanoparticles: in vitro, in vivo and stability evaluation. Int. J. Pharm., 2017, 517(1-2), 148-156.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.012] [PMID: 27939570]
[22]
Hong, Z.; Jiexin, W.; Zhang, H.; Zhigang, S.; Yun, J.; Jianfeng, C. Facile preparation of danazol nanoparticles by high-gravity anti-solvent precipitation (HGAP) method. Chin. J. Chem. Eng., 2009, 17(2), 318-323.
[http://dx.doi.org/10.1016/S1004-9541(08)60210-4]
[23]
Zhao, X.; Wang, G.; Zhang, B.; Li, H.; Nie, Q.; Zang, C.; Zhao, X. Development of Silymarin nanocrystals lyophilized power applying nanosuspension technology. Zhongguo Zhongyao Zazhi, 2009, 34(12), 1503-1508.
[PMID: 19777833]
[24]
Zhang, J.Y.; Shen, Z.G.; Zhong, J.; Hu, T.T.; Chen, J.F.; Ma, Z.Q.; Yun, J. Preparation of amorphous cefuroxime axetil nanoparticles by controlled nanoprecipitation method without surfactants. Int. J. Pharm., 2006, 323(1-2), 153-160. a
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.048] [PMID: 16828244]
[25]
List, M.; Sucker, H. Pharmaceutical colloidal hydrosols for injection. GB Patent 2200048, 1988.
[26]
Wang, X.; Ponder Steward, C.; Kirwan, J.D. Low molecular weight poly (ethylene glycol) as an environ-mentally benign solvent for pharmaceutical crystallization and precipitation. Cryst. Growth Des., 2005, 5, 85-92.
[http://dx.doi.org/10.1021/cg034208i]
[27]
Dong, Y.; Ng, W.K.; Shen, S.; Kim, S.; Tan, R.B. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int. J. Pharm., 2009, 375(1-2), 84-88. b
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.013] [PMID: 19481693]
[28]
Raghavan, S.L.; Schuessel, K.; Davis, A.; Hadgraft, J. Formation and stabilisation of triclosan colloidal suspensions using supersaturated systems. Int. J. Pharm., 2003, 261(1-2), 153-158.
[http://dx.doi.org/10.1016/S0378-5173(03)00299-0] [PMID: 12878404]
[29]
Douroumis, D.; Fahr, A. Stable carbamazepine colloidal systems using the cosolvent technique. Eur. J. Pharm. Sci., 2007, 30(5), 367-374.
[http://dx.doi.org/10.1016/j.ejps.2006.12.003] [PMID: 17234395]
[30]
Zhu, W.Z.; Wang, J.X.; Shao, L.; Zhang, H.X.; Zhang, Q.X.; Chen, J-F. Liquid antisolvent preparation of amorphous cefuroxime axetil nanoparticles in a tube-in-tube microchannel reactor. Int. J. Pharm., 2010, 395(1-2), 260-265. a
[http://dx.doi.org/10.1016/j.ijpharm.2010.05.018] [PMID: 20493936]
[31]
Kumar, V.; Wang, L.; Riebe, M.; Tung, H.H.; Prud’homme, R.K. Formulation and stability of itraconazole and odanacatib nanoparticles: Governing physical parameters. Mol. Pharm., 2009, 6(4), 1118-1124.
[http://dx.doi.org/10.1021/mp900002t] [PMID: 19366261]
[32]
Li, H.; Wang, J.; Bao, Y.; Guo, Z.; Zhang, M. Rapid sonocrystallization in the salting-out process. J. Cryst. Growth, 2003, 247(1-2), 192-198.
[http://dx.doi.org/10.1016/S0022-0248(02)01941-3]
[33]
Louhi-Kultanen, M.; Karjalainen, M.; Rantanen, J.; Huhtanen, M.; Kallas, J. Crystallization of glycine with ultrasound. Int. J. Pharm., 2006, 320(1-2), 23-29.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.054] [PMID: 16759826]
[34]
Luque de Castro, M.D.; Priego-Capote, F. Ultrasound-assisted crystallization sonocrystallization. Ultrason. Sonochem., 2007, 14(6), 717-724.
[http://dx.doi.org/10.1016/j.ultsonch.2006.12.004] [PMID: 17254828]
[35]
Dhumal, R.S.; Biradar, S.V.; Yamamura, S.; Paradkar, A.R.; York, P. Preparation of amorphous cefuroxime axetil nanoparticles by sonoprecipitation for enhancement of bioavailability. Eur. J. Pharm. Biopharm., 2008, 70(1), 109-115.
[http://dx.doi.org/10.1016/j.ejpb.2008.04.001] [PMID: 18502628]
[36]
Beck, C.; Dalvi, S.; Dave, R. Controlled liquid antisolvent precipitation using a rapid mixing device. Chem. Eng. Sci., 2010, 65, 5669-5675.
[http://dx.doi.org/10.1016/j.ces.2010.04.001]
[37]
Nishida, I. Precipitation of calcium carbonate by ultrasonic irradiation. Ultrason. Sonochem., 2004, 11(6), 423-428.
[http://dx.doi.org/10.1016/j.ultsonch.2003.09.003] [PMID: 15302030]
[38]
Kaerger, J.S.; Price, R. Processing of spherical crystalline particles via a novel solution atomization and crystallization by sonication (SAXS) technique. Pharm. Res., 2004, 21(2), 372-381.
[http://dx.doi.org/10.1023/B:PHAM.0000016252.97296.f1] [PMID: 15032321]
[39]
Agarwal, V.; Bajpai, M. Nanosuspension technology: A strategic approach for poorly soluble drugs. J Nanosci., 2013, 3(1), 72-85.
[40]
Jung, J.; Perrut, M. Particle design using supercritical fluids: Literature and patent survey. J. Supercrit. Fluids, 2001, 20(3), 179-219.
[http://dx.doi.org/10.1016/S0896-8446(01)00064-X]
[41]
Meziani, M.; Pathak, P.; Ya, S. Supercritical fluid technology for nanotechnology in drug delivery. Nanotechnol Drug Delivery, 2009, 69-104.
[http://dx.doi.org/10.1007/978-0-387-77668-2_3]
[42]
Reverchon, E.; Porta, D.; Trolio, A.; Pace, S. Supercritical antisolvent precipitation of micro- and nanoparticles. J. Supercrit. Fluids, 1999, 15, 1-21.
[http://dx.doi.org/10.1016/S0896-8446(98)00129-6]
[43]
Rogers, T.L.; Johnston, K.P.; Williams, R.O., III Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev. Ind. Pharm., 2001, 27(10), 1003-1015.
[http://dx.doi.org/10.1081/DDC-100108363] [PMID: 11794803]
[44]
Yasuji, T.; Takeuchi, H.; Kawashima, Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv. Drug Deliv. Rev., 2008, 60(3), 388-398.
[http://dx.doi.org/10.1016/j.addr.2007.03.025] [PMID: 18068261]
[45]
Krukonis, V. Supercritical fluid nucleation of difficult-to-comminute solids. Annual Meeting AICHE, San Francisco1984.
[46]
Domingo, C.; Berends, E.; Rosmalen, G.M. Precipitation of ultrafine organic crystals from the rapid expansion of supercritical solutions over a capillary and a frit nozzle. J. Supercrit. Fluids, 1997, 10, 39-55.
[http://dx.doi.org/10.1016/S0896-8446(97)00011-9]
[47]
Thakur, R.; Gupta, R. Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process: Formation of griseofulvin nanoparticles. Ind. Eng. Chem. Res., 2005, 44(19), 7380-7387.
[http://dx.doi.org/10.1021/ie050417j]
[48]
Thakur, R.; Gupta, R.B. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process. Int. J. Pharm., 2006, 308(1-2), 190-199. a
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.005] [PMID: 16352406]
[49]
Thakur, R.; Gupta, R. 2006b. Rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process: Formation of 2-aminobenzoic acid nanoparticle. J. Supercrit. Fluids, 2006, 37, 307-315. b
[http://dx.doi.org/10.1016/j.supflu.2005.12.008]
[50]
Sun, Y.; Rollins, H. Preparation of polymer-protected semiconductor nanoparticles through the rapid expansion of supercritical fluid solution. Chem. Phys. Lett., 1988, 288, 585-588.
[http://dx.doi.org/10.1016/S0009-2614(98)00346-7]
[51]
Young, T.J.; Mawson, S.; Johnston, K.P.; Henriksen, I.B.; Pace, G.W.; Mishra, A.K. Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs. Biotechnol. Prog., 2000, 16(3), 402-407.
[http://dx.doi.org/10.1021/bp000032q] [PMID: 10835242]
[52]
Hu, J.; Johnston, K.P.; Williams, R.O., III Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev. Ind. Pharm., 2004, 30(3), 233-245. a
[http://dx.doi.org/10.1081/DDC-120030422] [PMID: 15109023]
[53]
Pathak, P.; Meziani, M.J.; Desai, T.; Foster, C.; Diaz, J.A.; Sun, Y.P. Supercritical fluid processing of drug nanoparticles in stable suspension. J. Nanosci. Nanotechnol., 2007, 7(7), 2542-2545. a
[http://dx.doi.org/10.1166/jnn.2007.449] [PMID: 17663280]
[54]
Pathak, P.; Meziani, M.J.; Desai, T.; Sun, Y.P. Nanosizing drug particles in supercritical fluid processing. J. Am. Chem. Soc., 2004, 126(35), 10842-10843.
[http://dx.doi.org/10.1021/ja046914t] [PMID: 15339159]
[55]
Pathak, P.; Meziani, M.J.; Desai, T.; Sun, Y.P. Formation and stabilization of ibuprofen nanoparticles in supercritical fluid processing. J. Supercrit. Fluids, 2006, 37(3), 279-286.
[http://dx.doi.org/10.1016/j.supflu.2005.09.005]
[56]
Pathak, P.; Prasad, G.L.; Meziani, M.J.; Joudeh, A.A.; Sun, Y.P. Nanosized paclitaxel particles from supercritical carbon dioxide processing and their biological evaluation. Langmuir, 2007, 23(5), 2674-2679. b
[http://dx.doi.org/10.1021/la062739d] [PMID: 17243738]
[57]
Türk, M.; Lietzow, R. Formation and stabilization of submicron particles via rapid expansion processes. J. Supercrit. Fluids, 2008, 45(3), 346-355.
[http://dx.doi.org/10.1016/j.supflu.2008.01.019]
[58]
Varshosaz, J.; Hassanzadeh, F.; Mahmoudzadeh, M.; Sadeghi, A. Preparation of cefuroxime axetil nanoparticles by rapid expansion of supercritical fluid technology. Powder Technol., 2009, 189(1), 97-102.
[http://dx.doi.org/10.1016/j.powtec.2008.06.009]
[59]
Tozuka, Y.; Miyazaki, Y.; Takeuchi, H. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin. Int. J. Pharm., 2010, 386(1-2), 243-248.
[http://dx.doi.org/10.1016/j.ijpharm.2009.10.044] [PMID: 19895877]
[60]
Kim, M.S.; Jin, S.J.; Kim, J.S.; Park, H.J.; Song, H.S.; Neubert, R.H.; Hwang, S.J. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process. Eur. J. Pharm. Biopharm., 2008, 69(2), 454-465.
[http://dx.doi.org/10.1016/j.ejpb.2008.01.007] [PMID: 18359211]
[61]
Reverchon, E.; Della Porta, G. Production of antibiotic micro- and nanoparticles by supercritical antisolvent precipitation. Powder Technol., 1999, 106, 23-29.
[http://dx.doi.org/10.1016/S0032-5910(99)00062-5]
[62]
Zhao, X.; Zu, Y.; Li, Q.; Wang, M.; Zu, B.; Zhang, X.; Jiang, R.; Zu, C. Preparation and characterization of Camptothecin powder micronized by a supercritical antisolvent (SAS) process. J. Supercrit. Fluids, 2010, 51, 412-419. a
[http://dx.doi.org/10.1016/j.supflu.2009.10.004]
[63]
Adami, R.; Reverchon, E.; Jarvenpaa, E.; Huopalahti, R. Supercritical antisolvent micronization of nalmefene HCl on laboratory and pilot scale. Powder Technol., 2008, 182(1), 105-112.
[http://dx.doi.org/10.1016/j.powtec.2007.05.026]
[64]
Tenorio, A.; Gordillo, M.D.; Pereyra, C.; Ossa, E.J. Controlled submicro particle formation of ampicillin by supercritical antisolvent precipitation. J. Supercrit. Fluids, 2007, 40(2), 308-316.
[http://dx.doi.org/10.1016/j.supflu.2006.07.003]
[65]
Muhrer, G.; Mazzotti, M. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent. Biotechnol. Prog., 2003, 19(2), 549-556.
[http://dx.doi.org/10.1021/bp0256317] [PMID: 12675600]
[66]
Thiering, R.; Dehghani, F.; Foster, N. Current issues relating to anti-solvent micronisation techniques and their extension to industrial scales. J. Supercrit. Fluids, 2001, 21, 159-177.
[http://dx.doi.org/10.1016/S0896-8446(01)00090-0]
[67]
Dehghani, F.; Foster, N. Dense gas anti-solvent processes for pharmaceutical formulation. Curr. Opin. Solid State Mater. Sci., 2003, 7, 363-369.
[http://dx.doi.org/10.1016/j.cossms.2003.11.001]
[68]
Foster, N.; Mammucari, R.; Deghani, F.; Barrett, A. Processing pharmaceutical compounds using dense gas technology. Ind. Eng. Chem. Res., 2003, 42(25), 6476-6493.
[http://dx.doi.org/10.1021/ie030219x]
[69]
Nano Spray Dryer B-90. Available from:http://www.buchi.com/Nano-Spray-Dryer-B-90.12378.0 last accessed 19.10.20.
[70]
Hu, J.; Johnston, K.P.; Williams, R.O., III Rapid dissolving high potency danazol powders produced by spray freezing into liquid process. Int. J. Pharm., 2004, 271(1-2), 145-154. c
[http://dx.doi.org/10.1016/j.ijpharm.2003.11.003] [PMID: 15129981]
[71]
Rogers, T.L.; Hu, J.; Yu, Z.; Johnston, K.P.; Williams, R.O., III A novel particle engineering technology: spray-freezing into liquid. Int. J. Pharm., 2002, 242(1-2), 93-100.
[http://dx.doi.org/10.1016/S0378-5173(02)00154-0] [PMID: 12176230]
[72]
Hu, J.; Johnston, K.P.; Williams, R.O., III Spray freezing into liquid (SFL) particle engineering technology to enhance dissolution of poorly water soluble drugs: Organic solvent versus organic/aqueous co-solvent systems. Eur. J. Pharm. Sci., 2003, 20(3), 295-303.
[http://dx.doi.org/10.1016/S0928-0987(03)00203-3] [PMID: 14592695]
[73]
Sosnik, A.; Seremeta, K.P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci., 2015, 223, 40-54.
[http://dx.doi.org/10.1016/j.cis.2015.05.003] [PMID: 26043877]
[74]
de Waard, H.; Hinrichs, W.L.; Frijlink, H.W. A novel bottom-up process to produce drug nanocrystals: Controlled crystallization during freeze-drying. J. Control. Release, 2008, 128(2), 179-183.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.002] [PMID: 18423767]
[75]
de Waard, H.; Grasmeijer, N.; Hinrichs, W.L.; Eissens, A.C.; Pfaffenbach, P.P.; Frijlink, H.W. Preparation of drug nanocrystals by controlled crystallization: Application of a 3-way nozzle to prevent premature crystallization for large scale production. Eur. J. Pharm. Sci., 2009, 38(3), 224-229.
[http://dx.doi.org/10.1016/j.ejps.2009.07.005] [PMID: 19631270]
[76]
Vaughn, J.M.; McConville, J.T.; Crisp, M.T.; Johnston, K.P.; Williams, R.O., III Supersaturation produces high bioavailability of amorphous danazol particles formed by evaporative precipitation into aqueous solution and spray freezing into liquid technologies. Drug Dev. Ind. Pharm., 2006, 32(5), 559-567.
[http://dx.doi.org/10.1080/03639040500529176] [PMID: 16720411]
[77]
Lu, Y.; Li, Y.; Wu, W. Injected nanocrystals for targeted drug delivery. Acta Pharm. Sin. B, 2016, 6(2), 106-113.
[http://dx.doi.org/10.1016/j.apsb.2015.11.005] [PMID: 27006893]
[78]
Moschwitzer, J.; Muller, R.H. Drug nanocrystals-the universal formulation approach for poorly soluble drugs.Nanopart drug deliv syst; Thassu, D.; Deleers, M.; Pathak, Y., Eds.; Informa healthcare: New York,; , 2007, pp. 71-88.
[79]
Liversidge, G.G.; Cundy, K.C.; Bishop, J.F.; Czekai, D.A. Surface modified drug nanoparticles. U.S. Patent 5,145,684, 1992.
[80]
Liversidge, G.G.; Conzentino, P. Drug particle size reduction for decreasing gastric irritancy and enhancing absorption of naproxen in rats. Int. J. Pharm., 1995, 125(2), 309-313.
[http://dx.doi.org/10.1016/0378-5173(95)00148-C]
[81]
Gao, L.; Zhang, D.; Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. Res., 2008, 10, 845-862.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[82]
Merisko-Liversidge, E.; Liversidge, G.G.; Cooper, E.R. Nanosizing: A formulation approach for poorly-water-soluble compounds. Eur. J. Pharm. Sci., 2003, 18(2), 113-120.
[http://dx.doi.org/10.1016/S0928-0987(02)00251-8] [PMID: 12594003]
[83]
Peltonen, L.; Hirvonen, J. Pharmaceutical nanocrystals by nanomilling: critical process parameters, particle fracturing and stabilization methods. J. Pharm. Pharmacol., 2010, 62(11), 1569-1579.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01022.x] [PMID: 21039542]
[84]
Van Eerdenbrugh, B.; Vermant, J.; Martens, J.A.; Froyen, L.; Van Humbeeck, J.; Augustijns, P.; Van den Mooter, G. A screening study of surface stabilization during the production of drug nanocrystals. J. Pharm. Sci., 2009, 98(6), 2091-2103.
[http://dx.doi.org/10.1002/jps.21563] [PMID: 18803265]
[85]
Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: A perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv. Drug Deliv. Rev., 2011, 63(6), 427-440.
[http://dx.doi.org/10.1016/j.addr.2010.12.007] [PMID: 21223990]
[86]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[87]
Niwa, T.; Miura, S.; Danjo, K. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies - Development of particle design method. Int. J. Pharm., 2011, 405(1-2), 218-227.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.013] [PMID: 21167922]
[88]
Wais, U.; Jackson, A.W.; He, T.; Zhang, H. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles. Nanoscale, 2016, 8(4), 1746-1769.
[http://dx.doi.org/10.1039/C5NR07161E] [PMID: 26731460]
[89]
Agarwal, V.; Bajpai, M. Nanosuspension technology for poorly soluble drugs: recent researches, advances and patents. Recent Pat. Nanotechnol., 2015, 9(3), 178-194.
[http://dx.doi.org/10.2174/1872210510999151126112644] [PMID: 27009133]
[90]
Merisko-Liversidge, E.; Sarpotdar, P.; Bruno, J.; Hajj, S.; Wei, L.; Peltier, N.; Rake, J.; Shaw, J.M.; Pugh, S.; Polin, L.; Jones, J.; Corbett, T.; Cooper, E.; Liversidge, G.G. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res., 1996, 13(2), 272-278.
[http://dx.doi.org/10.1023/A:1016051316815] [PMID: 8932448]
[91]
Ali, H.S.M.; York, P.; Ali, A.M.A.; Blagden, N. Hydrocortisone nanosuspensions for ophthalmic delivery: A comparative study between microfluidic nanoprecipitation and wet milling. J. Control. Release, 2011, 149(2), 175-181.
[http://dx.doi.org/10.1016/j.jconrel.2010.10.007] [PMID: 20946923]
[92]
Van Eerdenbrugh, B.; Froyen, L.; Martens, J.A.; Blaton, N.; Augustijns, P.; Brewster, M.; Van den Mooter, G. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze-dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int. J. Pharm., 2007, 338(1-2), 198-206.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.005] [PMID: 17363200]
[93]
Van Eerdenbrugh, B.; Froyen, L.; Van Humbeeck, J.; Martens, J.A.; Augustijns, P.; Van den Mooter, G. Drying of crystalline drug nanosuspensions-the importance of surface hydrophobicity on dissolution behavior upon redispersion. Eur. J. Pharm. Sci., 2008, 35(1-2), 127-135.
[http://dx.doi.org/10.1016/j.ejps.2008.06.009] [PMID: 18644441]
[94]
Beirowski, J.; Inghelbrecht, S.; Arien, A.; Gieseler, H. Freeze-drying of nanosuspensions, 1: Freezing rate versus formulation design as critical factors to preserve the original particle size distribution. J. Pharm. Sci., 2011, 100(5), 1958-1968.
[http://dx.doi.org/10.1002/jps.22425] [PMID: 21374626]
[95]
Jinno, J.; Kamada, N.; Miyake, M.; Yamada, K.; Mukai, T.; Odomi, M.; Toguchi, H.; Liversidge, G.G.; Higaki, K.; Kimura, T. Effect of particle size reduction on dissolution and oral absorption of a poorly water-soluble drug, cilostazol, in beagle dogs. J. Control. Release, 2006, 111(1-2), 56-64.
[http://dx.doi.org/10.1016/j.jconrel.2005.11.013] [PMID: 16410029]
[96]
Nekkanti, V.; Pillai, R.; Venkateshwarlu, V.; Harisudhan, T. Development and characterization of solid oral dosage form incorporating candesartan nanoparticles. Pharm. Dev. Technol., 2009, 14(3), 290-298.
[http://dx.doi.org/10.1080/10837450802585278] [PMID: 19235553]
[97]
Chiang, P.C.; Ran, Y.; Chou, K.J.; Cui, Y.; Wong, H. Investigation of utilization of nanosuspension formulation to enhance exposure of 1,3-dicyclohexylurea in rats: Preparation for PK/PD study via subcutaneous route of nanosuspension drug delivery. Nanoscale Res. Lett., 2011, 6(1), 413.
[http://dx.doi.org/10.1186/1556-276X-6-413] [PMID: 21711942]
[98]
Basa, S.; Muniyappan, T.; Karatgi, P.; Prabhu, R.; Pillai, R. Production and in vitro characterization of solid dosage form incorporating drug nanoparticles. Drug Dev. Ind. Pharm., 2008, 34(11), 1209-1218.
[http://dx.doi.org/10.1080/03639040802005024] [PMID: 18720147]
[99]
SU, Y.; Mesite, S. Production of nanoemulsion adjuvants using high shear fluid processing. BioPharma Asia, 2016, Available from: https://biopharma-asia.com/magazine-articles/production- of-nanoemulsion-adjuvants-using-high-shear-fluid-processing/
[100]
Bushrab, E.N.; Muller, R.H. Nanocrystals of poorly soluble drugs for oral administration. New Drugs, 2003, 5, 20-22.
[101]
Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[102]
Möschwitzer, J.; Achleitner, G.; Pomper, H.; Müller, R.H. Development of an intravenously injectable chemically stable aqueous omeprazole formulation using nanosuspension technology. Eur. J. Pharm. Biopharm., 2004, 58(3), 615-619.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.022] [PMID: 15451536]
[103]
Dumay, E.; Chevalier-Lucia, D.; Picart-Palmade, L.; Benzaria, A.; Gràcia-Julià, A.; Blayo, C. Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends Food Sci. Technol., 2011, 31(1), 13-26.
[http://dx.doi.org/10.1016/j.tifs.2012.03.005]
[104]
Mauludin, R.; Müller, R.H.; Keck, C.M. Kinetic solubility and dissolution velocity of rutin nanocrystals. Eur. J. Pharm. Sci., 2009, 36(4-5), 502-510.
[http://dx.doi.org/10.1016/j.ejps.2008.12.002] [PMID: 19130880]
[105]
Kayser, O.; Olbrich, C.; Yardley, V.; Kiderlen, A.F.; Croft, S.L. Formulation of amphotericin B as nanosuspension for oral administration. Int. J. Pharm., 2003, 254(1), 73-75.
[http://dx.doi.org/10.1016/S0378-5173(02)00686-5] [PMID: 12615413]
[106]
Jacobs, C.; Kayser, O.; Müller, R.H. Production and characterisation of mucoadhesive nanosuspensions for the formulation of bupravaquone. Int. J. Pharm., 2001, 214(1-2), 3-7.
[http://dx.doi.org/10.1016/S0378-5173(00)00622-0] [PMID: 11282227]
[107]
Dolenc, A.; Kristl, J.; Baumgartner, S.; Planinsek, O. Advantages of celecoxib nanosuspension formulation and transformation into tablets. Int. J. Pharm., 2009, 376(1-2), 204-212.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.038] [PMID: 19426794]
[108]
Jacobs, C.; Kayser, O.; Müller, R.H. Nanosuspensions as a new approach for the formulation for the poorly soluble drug tarazepide. Int. J. Pharm., 2000, 196(2), 161-164.
[http://dx.doi.org/10.1016/S0378-5173(99)00412-3] [PMID: 10699709]
[109]
Kobierski, S.; Ofori-Kwakye, K.; Müller, R.H.; Keck, C.M. Resveratrol nanosuspensions for dermal application--production, characterization, and physical stability. Pharmazie, 2009, 64(11), 741-747.
[PMID: 20099519]
[110]
Jacobs, C.; Müller, R.H. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm. Res., 2002, 19(2), 189-194.
[http://dx.doi.org/10.1023/A:1014276917363] [PMID: 11883646]
[111]
Zhang, D.; Tan, T.; Gao, L.; Zhao, W.; Wang, P. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev. Ind. Pharm., 2007, 33(5), 569-575.
[http://dx.doi.org/10.1080/03639040600975147] [PMID: 17520449]
[112]
Peters, K.; Leitzke, S.; Diederichs, J.E.; Borner, K.; Hahn, H.; Müller, R.H.; Ehlers, S. Preparation of a clofazimine nanosuspension for intravenous use and evaluation of its therapeutic efficacy in murine Mycobacterium avium infection. J. Antimicrob. Chemother., 2000, 45(1), 77-83.
[http://dx.doi.org/10.1093/jac/45.1.77] [PMID: 10629016]
[113]
Langguth, P.; Hanafy, A.; Frenzel, D.; Grenier, P.; Nhamias, A.; Ohlig, T.; Vergnault, G.; Spahn-Langguth, H. Nanosuspension formulations for low-soluble drugs: pharmacokinetic evaluation using spironolactone as model compound. Drug Dev. Ind. Pharm., 2005, 31(3), 319-329.
[http://dx.doi.org/10.1081/DDC-52182] [PMID: 15830727]
[114]
Xiong, R.; Lu, W.; Li, J.; Wang, P.; Xu, R.; Chen, T. Preparation and characterization of intravenously injectable nimodipine nanosuspension. Int. J. Pharm., 2008, 350(1-2), 338-343.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.036] [PMID: 17920794]
[115]
Crisp, M.T.; Tucker, C.J.; Rogers, T.L.; Williams, R.O., III; Johnston, K.P. Turbidimetric measurement and prediction of dissolution rates of poorly soluble drug nanocrystals. J. Control. Release, 2007, 117(3), 351-359.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.011] [PMID: 17239469]
[116]
Zhang, Z.; Zhang, X.; Xue, W.; Yangyang, Y.; Xu, D.; Zhao, Y.; Lou, H. Effects of oridonin nanosuspension on cell proliferation and apoptosis of human prostatic carcinoma PC-3 cell line. Int. J. Nanomedicine, 2010, 5, 735-742.
[http://dx.doi.org/10.2147/IJN.S13537] [PMID: 21042419]
[117]
Pardeike, J.; Müller, R.H. Nanosuspensions: A promising formulation for the new phospholipase A2 inhibitor PX-18. Int. J. Pharm., 2010, 391(1-2), 322-329.
[http://dx.doi.org/10.1016/j.ijpharm.2010.03.002] [PMID: 20214969]
[118]
Sinha, B.; Müller, R.H.; Möschwitzer, J.P. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int. J. Pharm., 2013, 453(1), 126-141.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[119]
Kipp, J; Wong, J; Doty, M; Rebbeck., Microprecipitation method for preparing submicron suspensions. US6607784 B2, 2001.
[120]
Rabinow, B.E. Nanosuspensions in drug delivery. Nat. Rev. Drug Discov., 2004, 3(9), 785-796.
[http://dx.doi.org/10.1038/nrd1494] [PMID: 15340388]
[121]
Tuomela, A.; Saarinen, J.; Strachan, C.J.; Hirvonen, J.; Peltonen, L. Production, applications and in vivo fate of drug nanocrystals. J. Drug Deliv. Sci. Technol., 2016, 34, 21-31.
[http://dx.doi.org/10.1016/j.jddst.2016.02.006]
[122]
Harrison, M.R.; Hahn, N.M.; Pili, R.; Oh, W.K.; Hammers, H.; Sweeney, C.; Kim, K.; Perlman, S.; Arnott, J.; Sidor, C.; Wilding, G.; Liu, G. A phase II study of 2-methoxyestradiol (2ME2) NanoCrystal® dispersion (NCD) in patients with taxane-refractory, metastatic castrate-resistant prostate cancer (CRPC). Invest. New Drugs, 2011, 29(6), 1465-1474.
[http://dx.doi.org/10.1007/s10637-010-9455-x] [PMID: 20499131]
[123]
Raghava Srivalli, K.M.; Mishra, B. Drug nanocrystals: A way toward scale-up. Saudi Pharm. J., 2016, 24(4), 386-404.
[http://dx.doi.org/10.1016/j.jsps.2014.04.007] [PMID: 27330370]
[124]
New Biotic. Available from:https://www.newbiotic.com/ Accessed November 19, 2020.
[125]
Bhol, K.C.; Alroy, J.; Schechter, P.J. Anti-inflammatory effect of topical nanocrystalline silver cream on allergic contact dermatitis in a guinea pig model. Clin. Exp. Dermatol., 2004, 29(3), 282-287.
[http://dx.doi.org/10.1111/j.1365-2230.2004.01515.x] [PMID: 15115512]
[126]
Bhol, K.C.; Schechter, P.J. Topical nanocrystalline silver cream inhibits expression of matrix metalloproteinase-9 in animal models of allergic contact dermatitis. Br. J. Dermatol., 2005, 152(6), 1235-42.
[127]
Lyczak, J.; Schechter, P. Nanocrystalline silver inhibits antibiotic-, antiseptic-resistant bacteria. Clin. Pharmacol. Ther., 2005, 77, 60-P60.
[http://dx.doi.org/10.1016/j.clpt.2004.12.119]
[128]
Bhol, K.C.; Schechter, P.J. Topical nanocrystalline silver cream suppresses inflammatory cytokines and induces apoptosis of inflammatory cells in a murine model of allergic contact dermatitis. Br. J. Dermatol., 2005, 152(6), 1235-1242.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06575.x] [PMID: 15948987]
[129]
Ehret, M.J.; Davis, E.; Luttrell, S.E.; Clark, C. Clark caroline. Aripiprazole lauroxil nanocrystal dispersion techonology (aristada initio). Clin. Schizophr. Relat. Psychoses, 2018, 12(2), 92-96.
[http://dx.doi.org/10.3371/CSRP.EHDA071918] [PMID: 30040476]
[130]
Duguet, E.; Vasseur, S.; Mornet, S.; Devoisselle, J.M. Magnetic nanoparticles and their applications in medicine. Nanomedicine (Lond.), 2006, 1(2), 157-168.
[http://dx.doi.org/10.2217/17435889.1.2.157] [PMID: 17716105]
[131]
Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: In-vivo fate, targeting and applications in drug delivery. J. Control. Release, 2014, 183, 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.030] [PMID: 24667572]
[132]
Chaubal, M.V.; Popescu, C. Conversion of nanosuspensions into dry powders by spray drying: A case study. Pharm. Res., 2008, 25(10), 2302-2308.
[http://dx.doi.org/10.1007/s11095-008-9625-0] [PMID: 18509597]
[133]
Sharma, O.P.; Patel, V.; Mehta, T. Nanocrystal for ocular drug delivery: Hope or hype. Drug Deliv. Transl. Res., 2016, 6(4), 399-413.
[http://dx.doi.org/10.1007/s13346-016-0292-0] [PMID: 27165145]
[134]
Kassem, M.A.; Abdel Rahman, A.A.; Ghorab, M.M.; Ahmed, M.B.; Khalil, R.M. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Int. J. Pharm., 2007, 340(1-2), 126-133.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.011] [PMID: 17600645]
[135]
Baba, K.; Nishida, K. Steroid nanocrystals prepared using the nano spray dryer B-90. Pharmaceutics, 2013, 5(1), 107-114.
[http://dx.doi.org/10.3390/pharmaceutics5010107] [PMID: 24300400]
[136]
Makhlof, A.; Miyazaki, Y.; Tozuka, Y.; Takeuchi, H. Cyclodextrins as stabilizers for the preparation of drug nanocrystals by the emulsion solvent diffusion method. Int. J. Pharm., 2008, 357(1-2), 280-285.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.025] [PMID: 18325698]
[137]
Valo, H.; Arola, S.; Laaksonen, P.; Torkkeli, M.; Peltonen, L.; Linder, M.B.; Serimaa, R.; Kuga, S.; Hirvonen, J.; Laaksonen, T. Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci., 2013, 50(1), 69-77.
[http://dx.doi.org/10.1016/j.ejps.2013.02.023] [PMID: 23500041]
[138]
Yang, H.; Teng, F.; Wang, P.; Tian, B.; Lin, X.; Hu, X.; Zhang, L.; Zhang, K.; Zhang, Y.; Tang, X. Investigation of a nanosuspension stabilized by Soluplus® to improve bioavailability. Int. J. Pharm., 2014, 477(1-2), 88-95.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.025] [PMID: 25455766]
[139]
Tuomela, A.; Liu, P.; Puranen, J.; Rönkkö, S.; Laaksonen, T.; Kalesnykas, G.; Oksala, O.; Ilkka, J.; Laru, J.; Järvinen, K.; Hirvonen, J.; Peltonen, L. Brinzolamide nanocrystal formulations for ophthalmic delivery: Reduction of elevated intraocular pressure in vivo. Int. J. Pharm., 2014, 467(1-2), 34-41.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.048] [PMID: 24680962]
[140]
Rachmawati, H.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Development of curcumin nanocrystal: Physical aspects. J. Pharm. Sci., 2013, 102(1), 204-214.
[http://dx.doi.org/10.1002/jps.23335] [PMID: 23047816]
[141]
Lu, Y.; Wang, Z.H.; Li, T.; McNally, H.; Park, K.; Sturek, M. Development and evaluation of transferrin-stabilized paclitaxel nanocrystal formulation. J. Control. Release, 2014, 176, 76-85.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.018] [PMID: 24378441]
[142]
Mahesh, K.V.; Singh, S.K.; Gulati, M. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder Technol., 2014, 256, 436-449.
[http://dx.doi.org/10.1016/j.powtec.2014.02.011]
[143]
George, M.; Ghosh, I. Identifying the correlation between drug/stabilizer properties and critical quality attributes (CQAs) of nanosuspension formulation prepared by wet media milling technology. Eur. J. Pharm. Sci., 2013, 48(1-2), 142-152.
[http://dx.doi.org/10.1016/j.ejps.2012.10.004] [PMID: 23085547]
[144]
Wu, L.; Zhang, J.; Watanabe, W. Physical and chemical stability of drug nanoparticles. Adv. Drug Deliv. Rev., 2011, 63(6), 456-469.
[http://dx.doi.org/10.1016/j.addr.2011.02.001] [PMID: 21315781]
[145]
Agarwal, V.; Bajpai, M. Stability issues related to nanosuspensions: A review. Pharm. Nanotechnol., 2013, 1, 85-92.
[http://dx.doi.org/10.2174/2211738511301020004]
[146]
Liversidge, G.G.; Cundy, K.C. Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int. J. Pharm., 1995, 125(1), 91-97.
[http://dx.doi.org/10.1016/0378-5173(95)00122-Y]
[147]
Li, W.; Yang, Y.; Tian, Y.; Xu, X.; Chen, Y.; Mu, L.; Zhang, Y.; Fang, L. Preparation and in vitro/in vivo evaluation of revaprazan hydrochloride nanosuspension. Int. J. Pharm., 2011, 408(1-2), 157-162.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.059] [PMID: 21295124]
[148]
Kayser, O. A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions: Research and applications. Int. J. Pharm., 2001, 214(1-2), 83-85.
[http://dx.doi.org/10.1016/S0378-5173(00)00640-2] [PMID: 11282242]
[149]
Chavan, R.B.; Thipparaboina, R.; Yadav, B.; Shastri, N.R. Continuous manufacturing of co-crystals: Challenges and prospects. Drug Deliv. Transl. Res., 2018, 8(6), 1726-1739.
[http://dx.doi.org/10.1007/s13346-018-0479-7] [PMID: 29352367]
[150]
Radacsi, N.; Ambrus, R.; Szunyogh, T.; Szabó-Révész, P.; Stankiewicz, A.; Heijden, A.V.; Ter Horst, J.H. Electrospray crystallization for nanosized pharmaceuticals with improved properties. Cryst. Growth Des., 2012, 12(7), 3514-3520.
[http://dx.doi.org/10.1021/cg300285w]
[151]
Paliwal, R.; Babu, R.J.; Palakurthi, S. Nanomedicine scale-up technologies: Feasibilities and challenges. AAPS PharmSciTech, 2014, 15(6), 1527-1534.
[http://dx.doi.org/10.1208/s12249-014-0177-9] [PMID: 25047256]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy