Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

General Research Article

Pretreatment with Gallic Acid Mitigates Cyclophosphamide Induced Inflammation and Oxidative Stress in Mice

Author(s): Saeed Baharmi, Heibatullah Kalantari, Mojtaba Kalantar, Mehdi Goudarzi, Esrafil Mansouri and Hadi Kalantar*

Volume 15, Issue 1, 2022

Published on: 31 May, 2021

Article ID: e310521193731 Pages: 9

DOI: 10.2174/1874467214666210531162741

Price: $65

Abstract

Background: Cyclophosphamide (CP) as an alkylating compound has been widely applied to treat cancer and autoimmune diseases. CP is observed to be nephrotoxic in humans and animals because it produces reactive oxygen species. Gallic Acid (GA), a polyhydroxy phenolic compound, is reported to exhibit antioxidant and anti-inflammatory effects.

Objective: The current research aimed at evaluating the GA effect on CP-related renal toxicity.

Methods: In total, 35 male mice were assigned to 5 groups. Group1: receiving normal saline, group 2: CP group, receiving one CP injection (200 mg/kg; i.p.) on day 6. Groups 3 and 4: GA+CP, GA (10 and 30 mg/kg; p.o.; respectively) received through six consecutive days plus CP on the 6th day 2 hr after the last dose of GA, group 5: received GA (30 mg/kg; p.o.) for six consecutive days. Then on day 7, blood samples were collected for determining Creatinine (Cr), serum kidney injury molecule-1 (KIM-1), Blood Urea Nitrogen (BUN), and Neutrophil Gelatinase-Associated Lipocalin (NGAL) concentrations. Malondialdehyde (MDA), Nitric Oxide (NO) concentration, Catalase (CAT), Superoxide Dismutase (SOD), Glutathione (GSH), Glutathione Peroxidase (GPx) activities, and IL-1β, TNF-α levels were assessed in renal tissue.

Results: CP administration significantly increases KIM-1, NGAL, Cr, BUN, MDA, NO, IL-1β, and TNF-α level. It also decreases GSH concentration, SOD, GPx, and CAT function. Pretreatment with GA prevented these changes. Histopathological assessments approved the GA protective effect.

Conclusion: Our results showed that GA is possibly effective as a protective agent in cyclophosphamide- associated toxicities.

Keywords: Cyclophosphamide, inflammation, oxidative stress, nephrotoxicity, gallic acid, mice

Graphical Abstract
[1]
Shelton, L.M.; Park, B.K.; Copple, I.M. Role of Nrf2 in protection against acute kidney injury. Kidney Int., 2013, 84(6), 1090-1095.
[http://dx.doi.org/10.1038/ki.2013.248] [PMID: 23783243]
[2]
Goldberg, M.A.; Antin, J.H.; Guinan, E.C.; Rappeport, J.M. Cyclophosphamide cardiotoxicity: an analysis of dosing as a risk factor. Blood, 1986, 68(5), 1114-1118.
[http://dx.doi.org/10.1182/blood.V68.5.1114.1114] [PMID: 3533179]
[3]
Perini, P.; Calabrese, M.; Rinaldi, L.; Gallo, P. The safety profile of cyclophosphamide in multiple sclerosis therapy. Expert Opin. Drug Saf., 2007, 6(2), 183-190.
[http://dx.doi.org/10.1517/14740338.6.2.183] [PMID: 17367264]
[4]
Uber, W.E.; Self, S.E.; Van Bakel, A.B.; Pereira, N.L. Acute antibody-mediated rejection following heart transplantation. Am. J. Transplant., 2007, 7(9), 2064-2074.
[http://dx.doi.org/10.1111/j.1600-6143.2007.01900.x] [PMID: 17614978]
[5]
Buerge, I.J.; Buser, H-R.; Poiger, T.; Müller, M.D. Occurrence and fate of the cytostatic drugs cyclophosphamide and ifosfamide in wastewater and surface waters. Environ. Sci. Technol., 2006, 40(23), 7242-7250.
[http://dx.doi.org/10.1021/es0609405] [PMID: 17180973]
[6]
Fraiser, L.H.; Kanekal, S.; Kehrer, J.P. Cyclophosphamide toxicity. Characterising and avoiding the problem. Drugs, 1991, 42(5), 781-795.
[http://dx.doi.org/10.2165/00003495-199142050-00005] [PMID: 1723374]
[7]
Sugumar, E; Kanakasabapathy, I; Abraham, P. Normal plasma creatinine level despite histological evidence of damage and increased oxidative stress in the kidneys of cyclophosphamide treated rats. Clin. Chim. ACTA., 2007, 376(1-2), 244-245.
[http://dx.doi.org/10.1016/j.cca.2006.04.006] [PMID: 16750820]
[8]
Senthilkumar, S.; Devaki, T.; Manohar, B.M.; Babu, M.S. Effect of squalene on cyclophosphamide-induced toxicity. Clin. Chim. Acta, 2006, 364(1-2), 335-342.
[http://dx.doi.org/10.1016/j.cca.2005.07.032] [PMID: 16150433]
[9]
Caglayan, C.; Temel, Y.; Kandemir, F.M.; Yildirim, S.; Kucukler, S. Naringin protects against cyclophosphamide-induced hepatotoxicity and nephrotoxicity through modulation of oxidative stress, inflammation, apoptosis, autophagy, and DNA damage. Environ. Sci. Pollut. Res. Int., 2018, 25(21), 20968-20984.
[http://dx.doi.org/10.1007/s11356-018-2242-5] [PMID: 29766429]
[10]
Adams, J.D.Jr.; Klaidman, L.K. Acrolein-induced oxygen radical formation. Free Radic. Biol. Med., 1993, 15(2), 187-193.
[http://dx.doi.org/10.1016/0891-5849(93)90058-3] [PMID: 8397144]
[11]
Abraham, P.; Rabi, S. Nitrosative stress, protein tyrosine nitration, PARP activation and NAD depletion in the kidneys of rats after single dose of cyclophosphamide. Clin. Exp. Nephrol., 2009, 13(4), 281-287.
[http://dx.doi.org/10.1007/s10157-009-0160-z] [PMID: 19266253]
[12]
Stankiewicz, A.; Skrzydlewska, E. Protection against cyclophosphamide-induced renal oxidative stress by amifostine: the role of antioxidative mechanisms. Toxicol. Mech. Methods, 2003, 13(4), 301-308.
[http://dx.doi.org/10.1080/713857191] [PMID: 20021155]
[13]
Bhattacharya, A.; Lawrence, R.A.; Krishnan, A.; Zaman, K.; Sun, D.; Fernandes, G. Effect of dietary n-3 and n-6 oils with and without food restriction on activity of antioxidant enzymes and lipid peroxidation in livers of cyclophosphamide treated autoimmune-prone NZB/W female mice. J. Am. Coll. Nutr., 2003, 22(5), 388-399.
[http://dx.doi.org/10.1080/07315724.2003.10719322] [PMID: 14559931]
[14]
Patel, J.M. Stimulation of cyclophosphamide-induced pulmonary microsomal lipid peroxidation by oxygen. Toxicology, 1987, 45(1), 79-91.
[http://dx.doi.org/10.1016/0300-483X(87)90116-8] [PMID: 3603576]
[15]
Ma, J.; Luo, X-D.; Protiva, P.; Yang, H.; Ma, C.; Basile, M.J.; Weinstein, I.B.; Kennelly, E.J. Bioactive novel polyphenols from the fruit of Manilkara zapota (Sapodilla). J. Nat. Prod., 2003, 66(7), 983-986.
[http://dx.doi.org/10.1021/np020576x] [PMID: 12880319]
[16]
Singh, J.; Rai, G.; Upadhyay, A.; Kumar, R.; Singh, K. Antloxldant phytochemicals in tomato (Lycopersicon esculentum). Indian J. Agric. Sci., 2004, 74(1), 3-5.
[17]
Saibabu, V; Fatima, Z; Khan, LA; Hameed, S Therapeutic potential of dietary phenolic acids. Adva. Pharmacol. Sci., 2015, 2015, 823539.
[http://dx.doi.org/10.1155/2015/823539] [PMID: 26442119]
[18]
Shahrzad, S.; Bitsch, I. Determination of some pharmacologically active phenolic acids in juices by high-performance liquid chromatography. J. Chromatogr. A, 1996, 741(2), 223-231.
[http://dx.doi.org/10.1016/0021-9673(96)00169-0] [PMID: 8785003]
[19]
Lee, D-S.; Je, J-Y. Gallic acid-grafted-chitosan inhibits foodborne pathogens by a membrane damage mechanism. J. Agric. Food Chem., 2013, 61(26), 6574-6579.
[http://dx.doi.org/10.1021/jf401254g] [PMID: 23635088]
[20]
Daduang, J.; Palasap, A.; Daduang, S.; Boonsiri, P.; Suwannalert, P.; Limpaiboon, T. Gallic acid enhancement of gold nanoparticle anticancer activity in cervical cancer cells. Asian Pac. J. Cancer Prev., 2015, 16(1), 169-174.
[http://dx.doi.org/10.7314/APJCP.2015.16.1.169] [PMID: 25640346]
[21]
Kroes, B.H.; van den Berg, A.J.; Quarles van Ufford, H.C.; van Dijk, H.; Labadie, R.P. Anti-inflammatory activity of gallic acid. Planta Med., 1992, 58(6), 499-504.
[http://dx.doi.org/10.1055/s-2006-961535] [PMID: 1336604]
[22]
Subramanian, V.; Venkatesan, B.; Tumala, A.; Vellaichamy, E. Topical application of Gallic acid suppresses the 7,12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem. Toxicol., 2014, 66, 44-55.
[http://dx.doi.org/10.1016/j.fct.2014.01.017] [PMID: 24444547]
[23]
Priscilla, D.H.; Prince, P.S.M. Cardioprotective effect of gallic acid on cardiac troponin-T, cardiac marker enzymes, lipid peroxidation products and antioxidants in experimentally induced myocardial infarction in Wistar rats. Chem. Biol. Interact., 2009, 179(2-3), 118-124.
[http://dx.doi.org/10.1016/j.cbi.2008.12.012] [PMID: 19146839]
[24]
Rasool, M.K.; Sabina, E.P.; Ramya, S.R.; Preety, P.; Patel, S.; Mandal, N.; Mishra, P.P.; Samuel, J. Hepatoprotective and antioxidant effects of gallic acid in paracetamol-induced liver damage in mice. J. Pharm. Pharmacol., 2010, 62(5), 638-643.
[http://dx.doi.org/10.1211/jpp.62.05.0012] [PMID: 20609067]
[25]
Ban, J.Y.; Nguyen, H.T.T.; Lee, H-J.; Cho, S.O.; Ju, H.S.; Kim, J.Y.; Bae, K.; Song, K.S.; Seong, Y.H. Neuroprotective properties of gallic acid from Sanguisorbae radix on amyloid β protein (25-35)-induced toxicity in cultured rat cortical neurons. Biol. Pharm. Bull., 2008, 31(1), 149-153.
[http://dx.doi.org/10.1248/bpb.31.149] [PMID: 18175960]
[26]
El-Naggar, S.A.; Alm-Eldeen, A.A.; Germoush, M.O.; El-Boray, K.F.; Elgebaly, H.A. Ameliorative effect of propolis against cyclophosphamide-induced toxicity in mice. Pharm. Biol., 2015, 53(2), 235-241.
[http://dx.doi.org/10.3109/13880209.2014.914230] [PMID: 25289525]
[27]
Mard, S.A.; Mojadami, S.; Farbood, Y.; Gharib Naseri, M.K. The anti-inflammatory and anti-apoptotic effects of gallic acid against mucosal inflammation- and erosions-induced by gastric ischemia-reperfusion in rats. Vet. Res. Forum, 2015, 6(4), 305-311.
[PMID: 26973766]
[28]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[29]
Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. Meth. Enzymol., 1978, 52, 302-310.
[http://dx.doi.org/10.1016/S0076-6879(78)52032-6] [PMID: 672633]
[30]
Tracey, W.R.; Linden, J.; Peach, M.J.; Johns, R.A. Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. J. Pharmacol. Exp. Ther., 1990, 252(3), 922-928.
[PMID: 2319475]
[31]
Ellman, G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys., 1959, 82(1), 70-77.
[http://dx.doi.org/10.1016/0003-9861(59)90090-6] [PMID: 13650640]
[32]
Aebi, H. Catalase in vitro. Meth. Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[33]
Mayer, P. Die Caprellidae der Siboga-Expedition: Buchhandlung und druckerei vormals EJ Brill 1903.
[34]
Caglar, K.; Kinalp, C.; Arpaci, F.; Turan, M.; Saglam, K.; Ozturk, B.; Komurcu, S.; Yavuz, I.; Yenicesu, M.; Ozet, A.; Vural, A. Cumulative prior dose of cisplatin as a cause of the nephrotoxicity of high-dose chemotherapy followed by autologous stem-cell transplantation. Nephrol. Dial. Transplant., 2002, 17(11), 1931-1935.
[http://dx.doi.org/10.1093/ndt/17.11.1931] [PMID: 12401849]
[35]
Vaidya, V.S.; Ozer, J.S.; Dieterle, F.; Collings, F.B.; Ramirez, V.; Troth, S.; Muniappa, N.; Thudium, D.; Gerhold, D.; Holder, D.J.; Bobadilla, N.A.; Marrer, E.; Perentes, E.; Cordier, A.; Vonderscher, J.; Maurer, G.; Goering, P.L.; Sistare, F.D.; Bonventre, J.V. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotechnol., 2010, 28(5), 478-485.
[http://dx.doi.org/10.1038/nbt.1623] [PMID: 20458318]
[36]
Guo, L.; Takino, T.; Endo, Y.; Domoto, T.; Sato, H. Shedding of kidney injury molecule-1 by membrane-type 1 matrix metalloproteinase. J. Biochem., 2012, 152(5), 425-432.
[http://dx.doi.org/10.1093/jb/mvs082] [PMID: 22843853]
[37]
Zhao, C.; Ozaeta, P.; Fishpaugh, J.; Rupprecht, K.; Workman, R.; Grenier, F.; Ramsay, C. Structural characterization of glycoprotein NGAL, an early predictive biomarker for acute kidney injury. Carbohydr. Res., 2010, 345(15), 2252-2261.
[http://dx.doi.org/10.1016/j.carres.2010.07.024] [PMID: 20800224]
[38]
Bolignano, D.; Donato, V.; Coppolino, G.; Campo, S.; Buemi, A.; Lacquaniti, A.; Buemi, M. Neutrophil gelatinase-associated lipocalin (NGAL) as a marker of kidney damage. Am. J. Kidney Dis., 2008, 52(3), 595-605.
[http://dx.doi.org/10.1053/j.ajkd.2008.01.020] [PMID: 18725016]
[39]
Paragas, N.; Qiu, A.; Hollmen, M.; Nickolas, T.L.; Devarajan, P.; Barasch, J. NGAL-Siderocalin in kidney disease. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research., 2012, 1823(9), 1451-1458.
[40]
Rehman, M.U.; Tahir, M.; Ali, F.; Qamar, W.; Lateef, A.; Khan, R.; Quaiyoom, A.; Oday-O-Hamiza, ; Sultana, S. Cyclophosphamide-induced nephrotoxicity, genotoxicity, and damage in kidney genomic DNA of Swiss albino mice: the protective effect of Ellagic acid. Mol. Cell. Biochem., 2012, 365(1-2), 119-127.
[http://dx.doi.org/10.1007/s11010-012-1250-x] [PMID: 22286819]
[41]
Dobrek, Ł.; Skowron, B.; Baranowska, A.; Płoszaj, K.; Bądziul, D.; Thor, P. The influence of oxazaphosphorine agents on kidney function in rats. Medicina (Kaunas), 2017, 53(3), 179-189.
[http://dx.doi.org/10.1016/j.medici.2017.05.004] [PMID: 28720209]
[42]
Luo, Q.H.; Chen, M.L.; Sun, F.J.; Chen, Z.L.; Li, M.Y.; Zeng, W.; Gong, L.; Cheng, A.C.; Peng, X.; Fang, J.; Tang, L.; Geng, Y. KIM-1 and NGAL as biomarkers of nephrotoxicity induced by gentamicin in rats. Mol. Cell. Biochem., 2014, 397(1-2), 53-60.
[http://dx.doi.org/10.1007/s11010-014-2171-7] [PMID: 25087119]
[43]
Sladek, N.E. Metabolism of oxazaphosphorines. Pharmacol. Ther., 1988, 37(3), 301-355.
[http://dx.doi.org/10.1016/0163-7258(88)90004-6] [PMID: 3290910]
[44]
Sladek, N.E. Metabolism of cyclophosphamide by rat hepatic microsomes. Cancer Res., 1971, 31(6), 901-908.
[PMID: 4397323]
[45]
Ludeman, S.M. The chemistry of the metabolites of cyclophosphamide. Current pharmaceutical design. Agu, 1999, 5, 627-644.
[46]
Kern, J.C.; Kehrer, J.P. Acrolein-induced cell death: a caspase-influenced decision between apoptosis and oncosis/necrosis. Chem. Biol. Interact., 2002, 139(1), 79-95.
[http://dx.doi.org/10.1016/S0009-2797(01)00295-2] [PMID: 11803030]
[47]
Kim, S-H.; Lee, I-C.; Baek, H-S.; Shin, I-S.; Moon, C.; Bae, C-S.; Kim, S.H.; Kim, J.C.; Kim, H.C. Mechanism for the protective effect of diallyl disulfide against cyclophosphamide acute urotoxicity in rats. Food Chem. Toxicol., 2014, 64, 110-118.
[http://dx.doi.org/10.1016/j.fct.2013.11.023] [PMID: 24291451]
[48]
Sinanoglu, O.; Yener, A.N.; Ekici, S.; Midi, A.; Aksungar, F.B. The protective effects of spirulina in cyclophosphamide induced nephrotoxicity and urotoxicity in rats. Urology, 2012, 80(6), 1392.e1-1392.e6.
[http://dx.doi.org/10.1016/j.urology.2012.06.053] [PMID: 22951000]
[49]
Kostakoglu, U; Mercantepe, T; Yilmaz, HK; Tumkaya, L; Batcik, S; Pinarbas, E. The protective effects of perindopril against acute kidney damage caused by septic shock. Inflammation., 2020, 44(1), 148-159.
[http://dx.doi.org/10.1007/s10753-020-01316-8] [PMID: 3280366]
[50]
Mahmoud, A.M.; Al Dera, H.S. 18β-Glycyrrhetinic acid exerts protective effects against cyclophosphamide-induced hepatotoxicity: potential role of PPARγ and Nrf2 upregulation. Genes Nutr., 2015, 10(6), 41.
[http://dx.doi.org/10.1007/s12263-015-0491-1] [PMID: 26386843]
[51]
Matata, B.M.; Galiñanes, M. Peroxynitrite is an essential component of cytokines production mechanism in human monocytes through modulation of nuclear factor-κ B DNA binding activity. J. Biol. Chem., 2002, 277(3), 2330-2335.
[http://dx.doi.org/10.1074/jbc.M106393200] [PMID: 11706022]
[52]
Alfieri, A.B.; Cubeddu, L.X. Nitric oxide and NK(1)-tachykinin receptors in cyclophosphamide-induced cystitis, in rats. J. Pharmacol. Exp. Ther., 2000, 295(2), 824-829.
[PMID: 11046124]
[53]
Al-Yahya, A.A.; Al-Majed, A.A.; Gado, A.M.; Daba, M.H.; Al-Shabanah, O.A.; Abd-Allah, A.R. Acacia Senegal gum exudate offers protection against cyclophosphamide-induced urinary bladder cytotoxicity. Oxid. Med. Cell. Longev., 2009, 2(4), 207-213.
[http://dx.doi.org/10.4161/oxim.2.4.8878] [PMID: 20716906]
[54]
El-Kholy, A.A.; Elkablawy, M.A.; El-Agamy, D.S. Lutein mitigates cyclophosphamide induced lung and liver injury via NF-κB/MAPK dependent mechanism. Biomed. Pharmacother., 2017, 92, 519-527.
[http://dx.doi.org/10.1016/j.biopha.2017.05.103] [PMID: 28575809]
[55]
Ekinci Akdemir, F.N.; Yildirim, S.; Kandemir, F.M.; Tanyeli, A.; Küçükler, S.; Bahaeddin Dortbudak, M. Protective effects of gallic acid on doxorubicin-induced cardiotoxicity; an experimantal study. Arch. Physiol. Biochem., 2019, 127(3), 258-265.
[http://dx.doi.org/10.1080/13813455.2019.1630652] [PMID: 31240966]
[56]
Dehghani, M.A.; Shakiba Maram, N.; Moghimipour, E.; Khorsandi, L.; Atefi Khah, M.; Mahdavinia, M. Protective effect of gallic acid and gallic acid-loaded Eudragit-RS 100 nanoparticles on cisplatin-induced mitochondrial dysfunction and inflammation in rat kidney. Biochim. Biophys. Acta Mol. Basis Dis., 2020, 1866(12), 165911.
[http://dx.doi.org/10.1016/j.bbadis.2020.165911] [PMID: 32768679]
[57]
Zamudio-Cuevas, Y; Andonegui-Elguera, MA; Aparicio-Juárez, A; Aguillón-Solís, E; Martínez-Flores, K; Ruvalcaba-Paredes, E The enzymatic poly (gallic acid) reduces pro-inflammatory cytokines in vitro, a potential application in inflammatory diseases. Inflammation, 2021, 44(1), 174-1852.
[http://dx.doi.org/10.1007/s10753-020-01319-5] [PMID: 32803665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy