Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Systematic Review Article

Cerebrovascular Pathology and Responsiveness to Treatment in Alzheimer’s Disease: A Systematic Review

Author(s): Charlotte Bentham, Matteo De Marco and Annalena Venneri*

Volume 18, Issue 2, 2021

Published on: 14 April, 2021

Page: [103 - 124] Pages: 22

DOI: 10.2174/1567205018666210414121227

Price: $65

Abstract

Introduction: Responsiveness to treatment with cholinesterase inhibitors (ChEIs) is difficult to predict in Alzheimer’s disease (AD). In the current review, vascular burden is considered as a potential moderator of treatment responsiveness. Cerebrovascular burden co-occurs in at least 30% of AD brains, although it is debated if vascular pathology plays a causal or synergistic role in AD pathogenesis. Vascular burden, therefore, could potentially limit response to treatment due to limited brain reserve or foster treatment efficacy as those with vascular pathology may represent a subgroup with comparable clinical expression but less progressed AD neurodegeneration.

Methods: A systematic search of Web of Science, Pubmed, Scopus and EthoS identified 32 papers which met the criteria for inclusion. Association of treatment response and vascular burden across five broad markers are discussed: cerebral hypoperfusion, intima-media thickness, white matter changes, cerebral microbleeds and co-existing diagnosis of cerebrovascular disease.

Results: Analysis of frontal regional cerebral blood flow and intima-media thickness may have predictive ability to distinguish those with AD who may respond optimally to short-term treatment with ChEIs. The impact of white matter changes is less consistent; the majority of studies demonstrates no association with treatment response and those that do implicate changes in executive functioning. There is preliminary evidence that deep cerebral microbleeds limit treatment response in subcortical cognitive domains, but this finding requires replication. The use of diagnosis of co-occurring cerebrovascular disease yields no robust variability in response to ChEIs in AD.

Conclusion: There is limited evidence that markers of cerebral hypoperfusion, intima-media thickness and cerebral microbleeds moderate response to ChEIs. Findings for other markers of vascular burden are less consistent and do not support any moderating effect.

Keywords: Alzheimer's disease, vascular burden, cerebrovascular pathology, cholinesterase inhibitors, treatment response, cognitive therapy.

Next »
[1]
Kalaria RN, Ballard C. Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 1999; 13(3): S115-23.
[http://dx.doi.org/10.1097/00002093-199912003-00017 ] [PMID: 10609690]
[2]
de la Torre JC. Vascular basis of Alzheimer’s pathogenesis. Ann N Y Acad Sci 2002; 977(1): 196-215.
[http://dx.doi.org/10.1111/j.1749-6632.2002.tb04817.x ] [PMID: 12480752]
[3]
Jellinger KA, Attems J. Prevalence and impact of cerebrovascular pathology in Alzheimer’s disease and parkinsonism. Acta Neurol Scand 2006; 114(1): 38-46.
[http://dx.doi.org/10.1111/j.1600-0404.2006.00665.x ] [PMID: 16774626]
[4]
Giannakopoulos P, Gold G, Kövari E, et al. Assessing the cognitive impact of Alzheimer disease pathology and vascular burden in the aging brain: The Geneva experience. Acta Neuropathol 2007; 113(1): 1-12.
[http://dx.doi.org/10.1007/s00401-006-0144-y ] [PMID: 17036244]
[5]
Clerici F, Caracciolo B, Cova I, et al. Does vascular burden contribute to the progression of mild cognitive impairment to dementia? Dement Geriatr Cogn Disord 2012; 34(3-4): 235-43.
[http://dx.doi.org/10.1159/000343776 ] [PMID: 23147614]
[6]
Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 1999; 354(9182): 919-20.
[http://dx.doi.org/10.1016/S0140-6736(99)02355-7 ] [PMID: 10489957]
[7]
Zekry D, Duyckaerts C, Moulias R, et al. Degenerative and vascular lesions of the brain have synergistic effects in dementia of the elderly. Acta Neuropathol 2002; 103(5): 481-7.
[http://dx.doi.org/10.1007/s00401-001-0493-5 ] [PMID: 11935264]
[8]
Lo RY, Jagust WJ. Vascular burden and Alzheimer disease pathologic progression. Neurology 2012; 79(13): 1349-55.
[http://dx.doi.org/10.1212/WNL.0b013e31826c1b9d ] [PMID: 22972646]
[9]
Birks JS. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; 25(1)CD005593
[http://dx.doi.org/10.1002/14651858.CD005593 ] [PMID: 16437532]
[10]
Rodda J, Morgan S, Walker Z. Are cholinesterase inhibitors effective in the management of the behavioral and psychological symptoms of dementia in Alzheimer’s disease? A systematic review of randomized, placebo-controlled trials of donepezil, rivastigmine and galantamine. Int Psychogeriatr 2009; 21(5): 813-24.
[http://dx.doi.org/10.1017/S1041610209990354 ] [PMID: 19538824]
[11]
Venneri A. Imaging treatment effects in Alzheimer’s disease. Magn Reson Imaging 2007; 25(6): 953-68.
[http://dx.doi.org/10.1016/j.mri.2007.02.004 ] [PMID: 17446028]
[12]
Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975; 12(3): 189-98.
[http://dx.doi.org/10.1016/0022-3956(75)90026-6 ] [PMID: 1202204]
[13]
Rosen WG, Mohs RC, Davis KL. A new rating scale for Alzheimer’s disease. Am J Psychiatry 1984; 141(11): 1356-64.
[http://dx.doi.org/10.1176/ajp.141.11.1356 ] [PMID: 6496779]
[14]
Cummings JL, Mega M, Gray K, Rosenberg-Thompson S, Carusi DA, Gornbein J. The Neuropsychiatric Inventory: Comprehensive assessment of psychopathology in dementia. Neurology 1994; 44(12): 2308-14.
[http://dx.doi.org/10.1212/WNL.44.12.2308 ] [PMID: 7991117]
[15]
Connelly PJ, Prentice NP, Fowler KG. Hypertension, white matter change and response to cholinesterase inhibitors in Alzheimer’s disease. Int J Geriatr Psychiatry 2005; 20(7): 623-8.
[http://dx.doi.org/10.1002/gps.1331 ] [PMID: 16021654]
[16]
Welton T, Kent D, Constantinescu CS, Auer DP, Dineen RA. Functionally relevant white matter degradation in multiple sclerosis: A tract-based spatial meta-analysis. Radiology 2015; 275(1): 89-96.
[http://dx.doi.org/10.1148/radiol.14140925 ] [PMID: 25426773]
[17]
Bocti C, Swartz RH, Gao F-Q, Sahlas DJ, Behl P, Black SE. A new visual rating scale to assess strategic white matter hyperintensities within cholinergic pathways in dementia. Stroke 2005; 36(10): 2126-31.
[http://dx.doi.org/10.1161/01.STR.0000183615.07936.b6 ] [PMID: 16179569]
[18]
Wahlund LO, Barkhof F, Fazekas F, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke 2001; 32(6): 1318-22.
[http://dx.doi.org/10.1161/01.STR.32.6.1318 ] [PMID: 11387493]
[19]
Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 1987; 149(2): 351-6.
[http://dx.doi.org/10.2214/ajr.149.2.351 ] [PMID: 3496763]
[20]
Noh Y, Lee Y, Seo SW, et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. J Stroke Cerebrovasc Dis 2014; 23(4): 636-42.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2013.06.002 ] [PMID: 23867045]
[21]
de la Torre JC. Critically attained threshold of cerebral hypoperfusion: The CATCH hypothesis of Alzheimer’s pathogenesis. Neurobiol Aging 2000; 21(2): 331-42.
[http://dx.doi.org/10.1016/S0197-4580(00)00111-1 ] [PMID: 10867218]
[22]
Hanyu H, Shimizu T, Tanaka Y, Takasaki M, Koizumi K, Abe K. Regional cerebral blood flow patterns and response to donepezil treatment in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2003; 15(4): 177-82.
[http://dx.doi.org/10.1159/000068785 ] [PMID: 12626849]
[23]
Riekkinen P Jr, Riekkinen M, Soininen H, Kuikka J, Laakso M, Riekkinen P Sr. Frontal dysfunction blocks the therapeutic effect of THA on attention in Alzheimer’s disease. Neuroreport 1997; 8(8): 1845-9.
[http://dx.doi.org/10.1097/00001756-199705260-00011 ] [PMID: 9223063]
[24]
Kanetaka H, Hanyu H, Hirao K, et al. Prediction of response to donepezil in Alzheimer’s disease: Combined MRI analysis of the substantia innominata and SPECT measurement of cerebral perfusion. Nucl Med Commun 2008; 29(6): 568-73.
[http://dx.doi.org/10.1097/MNM.0b013e3282f5e5f4 ] [PMID: 18458605]
[25]
Sands LP, Katz I, Schneider L. Assessing individual patients for cognitive benefits from acetylcholinesterase inhibitors. Alzheimer Dis Assoc Disord 1999; 13(1): 26-33.
[http://dx.doi.org/10.1097/00002093-199903000-00004 ] [PMID: 10192639]
[26]
Hongo J, Nakaaki S, Shinagawa Y, et al. SPECT-identified neuroanatomical predictor of the cognitive effects of donepezil treatment in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2008; 26(6): 556-66.
[http://dx.doi.org/10.1159/000181148 ] [PMID: 19066429]
[27]
Shimizu S, Hanyu H, Iwamoto T, Koizumi K, Abe K. SPECT follow-up study of cerebral blood flow changes during Donepezil therapy in patients with Alzheimer’s disease. J Neuroimaging 2006; 16(1): 16-23.
[http://dx.doi.org/10.1177/1051228405001468 ] [PMID: 16483272]
[28]
Nobili F, Koulibaly M, Vitali P, et al. Brain perfusion follow-up in Alzheimer’s patients during treatment with acetylcholinesterase inhibitors. J Nucl Med 2002; 43(8): 983-90.
[PMID: 12163621]
[29]
Kimura N, Kumamoto T, Masuda T, Hanaoka T, Okazaki T, Arakawa R. Evaluation of the regional cerebral blood flow changes during long-term donepezil therapy in patients with Alzheimer’s disease using 3DSRT. J Neuroimaging 2012; 22(3): 299-304.
[http://dx.doi.org/10.1111/j.1552-6569.2011.00612.x ] [PMID: 21699607]
[30]
Mega MS, Dinov ID, Lee L, et al. Orbital and dorsolateral frontal perfusion defect associated with behavioral response to cholinesterase inhibitor therapy in Alzheimer’s disease. J Neuropsychiatry Clin Neurosci 2000; 12(2): 209-18.
[http://dx.doi.org/10.1176/jnp.12.2.209 ] [PMID: 11001599]
[31]
Tanaka M, Namiki C, Thuy DHD, et al. Prediction of psychiatric response to donepezil in patients with mild to moderate Alzheimer’s disease. J Neurol Sci 2004; 225(1-2): 135-41.
[http://dx.doi.org/10.1016/j.jns.2004.07.009 ] [PMID: 15465097]
[32]
Venneri A, Shanks MF, Staff RT, et al. Cerebral blood flow and cognitive responses to rivastigmine treatment in Alzheimer’s disease. Neuroreport 2002; 13(1): 83-7.
[http://dx.doi.org/10.1097/00001756-200201210-00020 ] [PMID: 11924899]
[33]
O’Leary DH, Bots ML. Imaging of atherosclerosis: Carotid intima-media thickness. Eur Heart J 2010; 31(14): 1682-9.
[http://dx.doi.org/10.1093/eurheartj/ehq185 ] [PMID: 20542989]
[34]
Modrego PJ, Rios C, Pérez Trullen JM, García-Gómara MJ, Errea JM. Carotid intima-media thickness as a predictor of response to cholinesterase inhibitors in Alzheimer’s disease. CNS Drugs 2009; 23(3): 253-60.
[http://dx.doi.org/10.2165/00023210-200923030-00006 ] [PMID: 19320533]
[35]
Johnston SC, O’Meara ES, Manolio TA, et al. Cognitive impairment and decline are associated with carotid artery disease in patients without clinically evident cerebrovascular disease. Ann Intern Med 2004; 140(4): 237-47.
[http://dx.doi.org/10.7326/0003-4819-140-4-200402170-00005 ] [PMID: 14970146]
[36]
Komulainen P, Kivipelto M, Lakka TA, et al. Carotid intima-media thickness and cognitive function in elderly women: A population-based study. Neuroepidemiology 2007; 28(4): 207-13.
[http://dx.doi.org/10.1159/000108112 ] [PMID: 17851259]
[37]
Aliev G, Smith MA, Seyidov D, et al. The role of oxidative stress in the pathophysiology of cerebrovascular lesions in Alzheimer’s disease. Brain Pathol 2002; 12(1): 21-35.
[http://dx.doi.org/10.1111/j.1750-3639.2002.tb00419.x ] [PMID: 11770899]
[38]
Silvestrini M, Gobbi B, Pasqualetti P, et al. Carotid atherosclerosis and cognitive decline in patients with Alzheimer’s disease. Neurobiol Aging 2009; 30(8): 1177-83.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.008 ] [PMID: 18077061]
[39]
Pantoni L, Simoni M, Pracucci G, Schmidt R, Barkhof F, Inzitari D. Visual rating scales for age-related white matter changes (leukoaraiosis): Can the heterogeneity be reduced? Stroke 2002; 33(12): 2827-33.
[http://dx.doi.org/10.1161/01.STR.0000038424.70926.5E ] [PMID: 12468777]
[40]
Amar K, Wilcock GK, Scot M, Lewis T. The presence of leuko-araiosis in patients with Alzheimer’s disease predicts poor tolerance to tacrine, but does not discriminate responders from non-responders. Age Ageing 1997; 26(1): 25-9.
[http://dx.doi.org/10.1093/ageing/26.1.25 ] [PMID: 12468777]
[41]
Launer LJ, Berger K, Breteler MMB, et al. Regional variability in the prevalence of cerebral white matter lesions: An MRI study in 9 European countries (CASCADE). Neuroepidemiology 2006; 26(1): 23-9.
[http://dx.doi.org/10.1159/000089233 ] [PMID: 16254450]
[42]
Na H-R, Kim S, Choi S-H, et al. Donepezil treatment in Alzheimer’s disease patients with and without cerebrovascular lesions: A preliminary report. Geriatr Gerontol Int 2011; 11(1): 90-7.
[http://dx.doi.org/10.1111/j.1447-0594.2010.00649.x ] [PMID: 20825496]
[43]
Cheng Y-W, Chen T-F, Cheng T-W, et al. Hippocampal atrophy but not white-matter changes predicts the long-term cognitive response to cholinesterase inhibitors in Alzheimer’s disease. Alzheimers Res Ther 2015; 7(1): 72.
[http://dx.doi.org/10.1186/s13195-015-0155-9 ] [PMID: 26592961]
[44]
Devine ME, Fonseca JAS, Walker RWH, Sikdar T, Stevens T, Walker Z. Cerebral white matter changes and rate of progression of dementia during cholinesterase inhibitor treatment: A retrospective cohort study. Int J Geriatr Psychiatry 2007; 22(11): 1120-6.
[http://dx.doi.org/10.1002/gps.1799 ] [PMID: 17457951]
[45]
Behl P, Bocti C, Swartz RH, et al. Strategic subcortical hyperintensities in cholinergic pathways and executive function decline in treated Alzheimer patients. Arch Neurol 2007; 64(2): 266-72.
[http://dx.doi.org/10.1001/archneur.64.2.266 ] [PMID: 17296844]
[46]
Blasko I, Bodner T, Knaus G, et al. Efficacy of donepezil treatment in Alzheimer patients with and without subcortical vascular lesions. Pharmacology 2004; 72(1): 1-5.
[http://dx.doi.org/10.1159/000078625 ] [PMID: 15292648]
[47]
Ng KP, Ng A, Assam P, Heng E, Kandiah N. Role of cognitive enhancer therapy in Alzheimer’s disease with concomitant cerebral white matter disease: Findings from a long-term naturalistic study. Drugs R D 2014; 14(3): 195-203.
[http://dx.doi.org/10.1007/s40268-014-0057-5 ] [PMID: 25063270]
[48]
Park KW, Kim E-J, Han HJ, Shim YS, Kwon JC, Ku BD. Efficacy and tolerability of rivastigmine patch therapy in patients with mild-to-moderate Alzheimer’s dementia associated with minimal and moderate ischemic white matter hyperintensities: A multicenter prospective open-label clinical trial. PLoS One 2017; 12(8)e0182123
[http://dx.doi.org/10.1371/journal.pone.0182123 ] [PMID: 28786987]
[49]
Sachdev P, Wen W. Should we distinguish between periventricular and deep white matter hyperintensities? Stroke 2005; 36(11): 2342-3.
[http://dx.doi.org/10.1161/01.STR.0000185694.52347.6e ] [PMID: 16239634]
[50]
Sachdev PS, Wen W, Christensen H, Jorm AF. White matter hyperintensities are related to physical disability and poor motor function. J Neurol Neurosurg Psychiatry 2005; 76(3): 362-7.
[http://dx.doi.org/10.1136/jnnp.2004.042945 ] [PMID: 15716527]
[51]
Steffens DC, Krishnan KRR, Crump C, Burke GL. Cerebrovascular disease and evolution of depressive symptoms in the cardiovascular health study. Stroke 2002; 33(6): 1636-44.
[http://dx.doi.org/10.1161/01.STR.0000018405.59799.D5 ] [PMID: 12053004]
[52]
Ho B-L, Kao Y-H, Chou M-C, Yang Y-H. Cerebral white matter changes on therapeutic response to rivastigmine in Alzheimer’s disease. J Alzheimers Dis 2016; 54(1): 351-7.
[http://dx.doi.org/10.3233/JAD-160364 ] [PMID: 27567838]
[53]
Hughes CP, Berg L, Danziger WL, Coben LA, Martin RL. A new clinical scale for the staging of dementia. Br J Psychiatry 1982; 140(6): 566-72.
[http://dx.doi.org/10.1192/bjp.140.6.566 ] [PMID: 7104545]
[54]
Fukui T, Taguchi S. Do vascular lesions and related risk factors influence responsiveness to donepezil chloride in patients with Alzheimer’s disease? Dement Geriatr Cogn Disord 2005; 20(1): 15-24.
[http://dx.doi.org/10.1159/000085069 ] [PMID: 15832031]
[55]
Fukui T, Hieda S, Bocti C. Do lesions involving the cortical cholinergic pathways help or hinder efficacy of donepezil in patients with Alzheimer’s disease? Dement Geriatr Cogn Disord 2006; 22(5-6): 421-31.
[http://dx.doi.org/10.1159/000095801 ] [PMID: 16974095]
[56]
Freedman M. Clock drawing: A neuropsychological analysis. USA: Oxford University Press 1994.
[57]
Fukui Y, Hishikawa N, Ichinose J, et al. Different clinical effect of four antidementia drugs for Alzheimer’s disease patients depending on white matter severity. Geriatr Gerontol Int 2017; 17(11): 1991-9.
[http://dx.doi.org/10.1111/ggi.13007 ] [PMID: 28276131]
[58]
Wu M-N, Kao Y-H, Chou P-S, Lin T-C, Kao L-L, Yang Y-H. Location of white matter changes and response to donepezil in patients with Alzheimer’s disease: A retrospective and observational study. Geriatr Gerontol Int 2018; 18(1): 123-9.
[http://dx.doi.org/10.1111/ggi.13153 ] [PMID: 28853195]
[59]
Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 1998; 121(Pt 12): 2249-57.
[http://dx.doi.org/10.1093/brain/121.12.2249 ] [PMID: 9874478]
[60]
Kim H-J, Moon W-J, Han S-H. Differential cholinergic pathway involvement in Alzheimer’s disease and subcortical ischemic vascular dementia. J Alzheimers Dis 2013; 35(1): 129-36.
[http://dx.doi.org/10.3233/JAD-122320 ] [PMID: 23364137]
[61]
Chiu WT, Lee TY, Chan L, et al. Deep cerebral microbleeds are associated with poor cholinesterase inhibitor treatment response in people with Alzheimer disease. Clin Neurol Neurosurg 2020; 195105959
[http://dx.doi.org/10.1016/j.clineuro.2020.105959 ] [PMID: 32480198]
[62]
Auer RN, Sutherland GR. Primary intracerebral hemorrhage: Pathophysiology. Can J Neurol Sci 2005; 32(Suppl. 2): S3-S12.
[PMID: 16450803]
[63]
Kalaria RN. Small vessel disease and Alzheimer’s dementia: Pathological considerations. Cerebrovasc Dis 2002; 13(2): 48-52.
[http://dx.doi.org/10.1159/000049150 ] [PMID: 11901243]
[64]
Park JJ, Choi SH, Kim S, et al. Effect of galantamine on attention in patients with Alzheimer’s disease combined with cerebrovascular disease. Geriatr Gerontol Int 2017; 17(10): 1661-6.
[PMID: 27935239]
[65]
Frölich L, Klinger T, Berger FM. Treatment with donepezil in Alzheimer patients with and without cerebrovascular disease. J Neurol Sci 2002; 203-204: 137-9.
[http://dx.doi.org/10.1016/S0022-510X(02)00275-7 ] [PMID: 12417372]
[66]
Riepe MW, Kohler J, Horn R. Donepezil in Alzheimer’s disease: A clinical observational study evaluating individual treatment response. Curr Med Res Opin 2007; 23(8): 1829-35.
[http://dx.doi.org/10.1185/030079907X210787 ] [PMID: 17599785]
[67]
Rosen WG, Terry RD, Fuld PA, Katzman R, Peck A. Pathological verification of ischemic score in differentiation of dementias. Ann Neurol 1980; 7(5): 486-8.
[http://dx.doi.org/10.1002/ana.410070516 ] [PMID: 7396427]
[68]
Kumar V, Anand R, Messina J, Hartman R, Veach J. An efficacy and safety analysis of Exelon in Alzheimer’s disease patients with concurrent vascular risk factors. Eur J Neurol 2000; 7(2): 159-69.
[http://dx.doi.org/10.1046/j.1468-1331.2000.00046.x ] [PMID: 10809936]
[69]
Farlow MR, Doraiswamy PM, Meng X, Cooke K, Somogyi M. The effect of vascular risk factors on the efficacy of rivastigmine patch and capsule treatment in Alzheimer’s disease. Dement Geriatr Cogn Disord Extra 2011; 1(1): 150-62.
[http://dx.doi.org/10.1159/000328745 ] [PMID: 22163241]
[70]
Poirier J, Delisle MC, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 1995; 92(26): 12260-4.
[http://dx.doi.org/10.1073/pnas.92.26.12260 ] [PMID: 8618881]
[71]
Niculescu AB, Le-Niculescu H, Roseberry K, et al. Blood biomarkers for memory: Toward early detection of risk for Alzheimer disease, pharmacogenomics, and repurposed drugs. Mol Psychiatry 2020; 25(8): 1651-72.
[http://dx.doi.org/10.1038/s41380-019-0602-2 ] [PMID: 31792364]
[72]
Ray B, Maloney B, Sambamurti K, et al. Rivastigmine modifies the α-secretase pathway and potentially early Alzheimer’s disease. Transl Psychiatry 2020; 10(1): 1-17.
[PMID: 32066695]
[73]
De Marco M, Meneghello F, Duzzi D, Rigon J, Pilosio C, Venneri A. Cognitive stimulation of the default-mode network modulates functional connectivity in healthy aging. Brain Res Bull 2016; 121: 26-41.
[http://dx.doi.org/10.1016/j.brainresbull.2015.12.001 ] [PMID: 26688237]
[74]
De Marco M, Meneghello F, Pilosio C, Rigon J, Venneri A. Up-regulation of DMN connectivity in mild cognitive impairment via network-based cognitive training. Curr Alzheimer Res 2018; 15(6): 578-89.
[http://dx.doi.org/10.2174/1567205015666171212103323 ] [PMID: 29231140]
[75]
Mozolic JL, Hayasaka S, Laurienti PJ. A cognitive training intervention increases resting cerebral blood flow in healthy older adults. Front Hum Neurosci 2010; 4: 16.
[http://dx.doi.org/10.3389/neuro.09.016.2010 ] [PMID: 20300200]
[76]
Engvig A, Fjell AM, Westlye LT, et al. Memory training impacts short-term changes in aging white matter: A longitudinal diffusion tensor imaging study. Hum Brain Mapp 2012; 33(10): 2390-406.
[http://dx.doi.org/10.1002/hbm.21370 ] [PMID: 21823209]
[77]
Bentham C, De Marco M, Venneri A. The modulatory effect of cerebrovascular burden in response to cognitive stimulation in healthy ageing and mild cognitive impairment. Neural Plast 2019; 20192305318
[http://dx.doi.org/10.1155/2019/2305318 ] [PMID: 31467519]
[78]
Galasko D, Abramson I, Corey-Bloom J, Thal LJ. Repeated exposure to the Mini-Mental State Examination and the Information-Memory-Concentration Test results in a practice effect in Alzheimer’s disease. Neurology 1993; 43(8): 1559-63.
[http://dx.doi.org/10.1212/WNL.43.8.1559 ] [PMID: 8351011]
[79]
van Straaten ECW, Fazekas F, Rostrup E, et al. Impact of white matter hyperintensities scoring method on correlations with clinical data: The LADIS study. Stroke 2006; 37(3): 836-40.
[http://dx.doi.org/10.1161/01.STR.0000202585.26325.74 ] [PMID: 16439704]
[80]
Radua J, Mataix-Cols D, Phillips ML, et al. A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. Eur Psychiatry 2012; 27(8): 605-11.
[http://dx.doi.org/10.1016/j.eurpsy.2011.04.001 ] [PMID: 21658917]
[81]
Dwan K, Altman DG, Arnaiz JA, et al. Systematic review of the empirical evidence of study publication bias and outcome reporting bias. PLoS One 2008; 3(8)e3081
[http://dx.doi.org/10.1371/journal.pone.0003081 ] [PMID: 18769481]
[82]
Rosenthal R. The file drawer problem and tolerance for null results. Psychol Bull 1979; 86(3): 638-41.
[http://dx.doi.org/10.1037/0033-2909.86.3.638]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy