Generic placeholder image

Current Chinese Chemistry

Editor-in-Chief

ISSN (Print): 2666-0016
ISSN (Online): 2666-0008

Research Article

Discovery of Potential Inhibitors of the Receptor-binding Domain (RBD) of Pandemic Disease-causing SARS-CoV-2 Spike Glycoprotein from Triphala Through Molecular Docking

Author(s): Sharuk L. Khan*, Falak A. Siddiqui, Mohd Sayeed Shaikh, Nitin V. Nema and Aijaz A. Shaikh

Volume 2, Issue 1, 2022

Published on: 22 March, 2021

Article ID: e220321192390 Pages: 11

DOI: 10.2174/2666001601666210322121802

Abstract

Background: COVID-19 (SARS-CoV-2 infection) has affected almost every region of the world. Presently, there is no defined line of treatment available for it. Triphala is already proven to have a safe biological window, which is well known for its antioxidant and immunomodulatory properties.

Objective: The present work has been carried out to study Triphala's effectiveness in the treatment of COVID-19.

Methods: The Receptor-binding domain (RBD) of SARS-CoV-2 Spike Glycoprotein is responsible for the invasion into the host cell, which leads to further infection. The molecular docking (MD) was performed to explore the binding affinities (kcal/mol) of Triphala's chemical constituents and compared them with the existing drugs under investigation for the treatment of COVID-19 epidemiology.

Results: Chebulinic acid binding affinity -8.5 kcal/mol with the formation of 10 hydrogen bonds. Almost all the major chemical constituents have formed two or more hydrogen bonds with RBD of SARS-CoV-2 Spike Glycoprotein.

Conclusion: The present study showed that Triphala might perform vital roles in the treatment of COVID-19 and expand its usefulness to physicians to treat this illness. There is a need to complete the in-vitro, in-vivo biological testing of Triphala on SARS-CoV-2 disease to create more quality data. The binding mode of Chebulinic acid in the allosteric cavity allows a better understanding of RBD of SARS-CoV-2 Spike Glycoprotein target and provides insight for the design of new inhibitors. Triphala is already proven to have a safe biological window, which indicates that we can skip the pre-clinical trials. Apart from this, Triphala is well known for its antioxidant properties, which ultimately improve the immunity of the COVID-19 patient.

Keywords: COVID-19, Receptor-binding domain (RBD), triphala, SARS-CoV-2 spike glycoprotein, chebulinic acid, molecular docking.

Graphical Abstract
[1]
Wu, D.; Wu, T.; Liu, Q.; Yang, Z. The SARS-CoV-2 outbreak: What we know. Int. J. Infect. Dis., 2020, 94, 44-48.
[http://dx.doi.org/10.1016/j.ijid.2020.03.004] [PMID: 32171952]
[2]
Wang, L.; Wang, Y.; Ye, D.; Liu, Q. Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int. J. Antimicrob. Agents, 2020, 55(6), 105948.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105948] [PMID: 32201353]
[3]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[4]
Dhand, R.; Li, J. Coughs and Sneezes: Their role in transmission of respiratory viral infections, including SARS-CoV-2. Am. J. Respir. Crit. Care Med., 2020, 202(5), 651-659.
[http://dx.doi.org/10.1164/rccm.202004-1263PP] [PMID: 32543913]
[5]
Singhal, T. A Review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr., 2020, 87(4), 281-286.
[http://dx.doi.org/10.1007/s12098-020-03263-6] [PMID: 32166607]
[6]
Kumar, D. Corona Virus: A Review of COVID-19. Eurasian J. Med. Oncol., 2020, 4(1), 8-25.
[http://dx.doi.org/10.14744/ejmo.2020.51418]
[7]
Zu, Z.Y.; Jiang, M.D.; Xu, P.P.; Chen, W.; Ni, Q.Q.; Lu, G.M.; Zhang, L.J. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 2020, 296(2), E15-E25.
[http://dx.doi.org/10.1148/radiol.2020200490] [PMID: 32083985]
[8]
Maginnis, M.S. Virus-Receptor Interactions: The Key to cellular invasion. J. Mol. Biol., 2018, 430(17), 2590-2611.
[http://dx.doi.org/10.1016/j.jmb.2018.06.024] [PMID: 29924965]
[9]
Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.M.E.; van der Voort, P.H.J.; Mulder, D.J.; van Goor, H. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J. Pathol., 2020, 251(3), 228-248.
[http://dx.doi.org/10.1002/path.5471] [PMID: 32418199]
[10]
Rothan, H.A.; Byrareddy, S.N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J. Autoimmun., 2020, 109, 102433.
[http://dx.doi.org/10.1016/j.jaut.2020.102433] [PMID: 32113704]
[11]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[12]
Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S.D.; Kousoulas, K.G. The anti-HIV drug nelfinavir mesylate (Viracept) is a potent inhibitor of cell fusion caused by the SARSCoV-2 spike (S) glycoprotein warranting further evaluation as an antiviral against COVID-19 infections. J. Med. Virol., 2020, 92(10), 2087-2095.
[http://dx.doi.org/10.1002/jmv.25985] [PMID: 32374457]
[13]
Ravishankar, B.; Shukla, V.J. Indian systems of medicine: a brief profile. Afr. J. Tradit. Complement. Altern. Med., 2007, 4(3), 319-337.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31226] [PMID: 20161896]
[14]
Pandey, M.M.; Rastogi, S.; Rawat, A.K.S. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Alternat. Med., 2013, 2013, 376327.
[http://dx.doi.org/10.1155/2013/376327] [PMID: 23864888]
[15]
Tazeen, A.; Deeba, F.; Alam, A.; Ali, R.; Ishrat, R.; Ahmed, A.; Ali, S. Virtual screening of potential therapeutic inhibitors against spike, helicase and polymerase of SARS-CoV-2 (COVID-19). Coronaviruses, 2020, 1(1), 1-22.
[http://dx.doi.org/10.2174/2666796701999200826114306]
[16]
González-paz, L.A.; Lossada, C.A.; Moncayo, L.S.; Romero, F.; Vera-villalobos, J.; Pérez, A.E.; San-blas, E.; Alvarado, Y.J. Molecular docking and molecular dynamic study of two viral proteins associated with SARS-CoV-2 with ivermectin; Preprints, 2020.
[http://dx.doi.org/10.20944/preprints202004.0334.v1]
[17]
Costanzo, M.; De Giglio, M.A.R.; Roviello, G.N. SARS-CoV-2: Recent reports on antiviral therapies based on lopinavir/ritonavir, darunavir/umifenovir, hydroxychloroquine, remdesivir, favipiravir and other drugs for the treatment of the new coronavirus. Curr. Med. Chem., 2020, 27(27), 4536-4541.
[http://dx.doi.org/10.2174/0929867327666200416131117] [PMID: 32297571]
[18]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; You, T.; Liu, X.X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.X.; Guddat, L.W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure-based drug design, virtual screening and high-throughput screening rapidly identify antiviral leads targeting COVID-19. bioRxiv, 2020.
[http://dx.doi.org/10.1101/2020.02.26.964882]
[19]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[20]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[21]
Singh, A.K.; Singh, A.; Shaikh, A.; Singh, R.; Misra, A. Chloroquine and hydroxychloroquine in the treatment of COVID-19 with or without diabetes: A systematic search and a narrative review with a special reference to India and other developing countries. Diabetes Metab. Syndr., 2020, 14(3), 241-246.
[http://dx.doi.org/10.1016/j.dsx.2020.03.011] [PMID: 32247211]
[22]
Ng, O.W.; Tan, Y.J. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development. Hum. Vaccin. Immunother., 2017, 13(1), 186-189.
[http://dx.doi.org/10.1080/21645515.2016.1228500] [PMID: 27644155]
[23]
Weichung, J. Shih, Chen Yao, T. X. Data monitoring for the chinese clinical trials of remdesivir in treating patients with COVID-19 during the pandemic crisis. Ther. Innov. Regul. Sci., 2020, 1-20.
[http://dx.doi.org/10.1007/s43441-020-00159-7]
[24]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[25]
Lengauer, T.; Rarey, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol., 1996, 6(3), 402-406.
[http://dx.doi.org/10.1016/S0959-440X(96)80061-3] [PMID: 8804827]
[26]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr Comput Aided Drug Des, 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[27]
Morris, G.M.; Lim-Wilby, M. Molecular docking. Methods Mol. Biol., 2008, 443, 365-382.
[http://dx.doi.org/10.1007/978-1-59745-177-2_19] [PMID: 18446297]
[28]
Peterson, C.T.; Denniston, K.; Chopra, D. Therapeutic uses of triphala in ayurvedic medicine. J. Altern. Complement. Med., 2017, 23(8), 607-614.
[http://dx.doi.org/10.1089/acm.2017.0083] [PMID: 28696777]
[29]
Tarasiuk, A.; Mosińska, P.; Fichna, J. Triphala: current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin. Med., 2018, 13(1), 39.
[http://dx.doi.org/10.1186/s13020-018-0197-6] [PMID: 30034512]
[30]
Borra, S.K.; Gurumurthy, P.; Mahendra, J. Antioxidant and free radical scavenging activity of curcumin determined by using different in vitro and ex vivo models. J. Med. Plants Res., 2013, 7(36), 2680-2690.
[http://dx.doi.org/10.5897/JMPR2013.5094]
[31]
Rasool, M.; Sabina, E.P. Antiinflammatory effect of the Indian Ayurvedic herbal formulation Triphala on adjuvant-induced arthritis in mice. Phytother. Res., 2007, 21(9), 889-894.
[http://dx.doi.org/10.1002/ptr.2183] [PMID: 17533629]
[32]
Reddy, T.C.; Aparoy, P.; Babu, N.K.; Kumar, K.A.; Kalangi, S.K.; Reddanna, P. Kinetics and docking studies of a COX-2 inhibitor isolated from Terminalia bellerica fruits. Protein Pept. Lett., 2010, 17(10), 1251-1257.
[http://dx.doi.org/10.2174/092986610792231537] [PMID: 20441561]
[33]
M.R., Analgesic Antipyretic and Ulcerogenic Effects of Indian Ayurvedic Herbal Formulation Triphala. Res. J. Med. Plant, 2007, 1(2), 54-59.
[http://dx.doi.org/10.3923/rjmp.2007.54.59]
[34]
Gupta, S.K.; Kalaiselvan, V.; Srivastava, S.; Agrawal, S.S.; Saxena, R. Evaluation of anticataract potential of Triphala in selenite-induced cataract: In vitro and in vivo studies. J. Ayurveda Integr. Med., 2010, 1(4), 280-286.
[http://dx.doi.org/10.4103/0975-9476.74425] [PMID: 21731375]
[35]
Baliga, M.S.; Meera, S.; Mathai, B.; Rai, M.P.; Pawar, V.; Palatty, P.L. Scientific validation of the ethnomedicinal properties of the Ayurvedic drug Triphala: a review. Chin. J. Integr. Med., 2012, 18(12), 946-954.
[http://dx.doi.org/10.1007/s11655-012-1299-x] [PMID: 23239004]
[36]
Chandran, U.; Mehendale, N.; Tillu, G.; Patwardhan, B. Network pharmacology of ayurveda formulation Triphala with special reference to anti-cancer property. Comb. Chem. High Throughput Screen., 2015, 18(9), 846-854.
[http://dx.doi.org/10.2174/1386207318666151019093606] [PMID: 26477351]
[37]
Shivakumar, A. Paramashivaiah, S.; Anjaneya, R.S. J. H. and S. R. Pharmacognostic evaluation of triphala herbs and establishment of chemical stability of Triphala Caplets. Int. J. Pharm. Sci. Res., 2016, 7(1), 244-251.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.7(1).244-51]
[38]
Pavani, P.; Rohini, P.; Khasim, S.M.; Bhagyasree, P. Phytochemical investigation and comparative evaluation of various market samples of Triphala powder from India with references to their free scavenging and anti-diabetic activity: An In Vitro Approach. In: Medicinal Plants; Biodiversity, Sustainable Utilization and Conservation, 2020; pp. 597-608.
[http://dx.doi.org/10.1007/978-981-15-1636-8_36]
[39]
Birla, N.; Das, P.K. Phytochemical and anticarcinogenic evaluation of Triphala powder extract, against melanoma cell line induced skin cancer in rats. Pharm. Biol. Eval., 2016, 3(3), 366-370.
[40]
Itankar, P.; Nagulwar, D.B.; Bhatlawande, B. Physical, phytochemical and chromatographic evaluation of triphala guggul tablets. Int. J. Pharm. Phytopharm. Res., 2015, 4(6), 306-309.
[41]
Ashokkumar, D. Pharmacognostical investigations on triphala churnam. Anc. Sci. Life, 2007, 26(3), 40-44.
[PMID: 22557240]
[42]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[43]
Miyata, T. Discovery studio modeling environment. Ensemble, 2015, 17(2), 98-104.
[44]
Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, 114(25), 10024-10035.
[http://dx.doi.org/10.1021/ja00051a040]
[45]
Loganathan, S.K.; Schleicher, K.; Malik, A.; Quevedo, R.; Langille, E.; Teng, K.; Oh, R.H.; Rathod, B.; Tsai, R.; Samavarchi-Tehrani, P.; Pugh, T.J.; Gingras, A.C.; Schramek, D. Rare driver mutations in head and neck squamous cell carcinomas converge on NOTCH signaling. Science, 2020, 367(6483), 1264-1269.
[http://dx.doi.org/10.1126/science.aax0902] [PMID: 32165588]
[46]
Khan, S.L.; Siddiqui, F.A.; Jain, S.P.; Sonwane, G.M. Discovery of potential inhibitors of SARS-CoV-2 (COVID-19) main protease (mpro) from nigella sativa (black seed) by molecular docking study. Coronaviruses, 2021, 2(3), 384-402.
[http://dx.doi.org/10.2174/2666796701999200921094103]
[47]
Pruijssers, A.J.; George, A.S.; Schäfer, A.; Leist, S.R.; Gralinksi, L.E.; Dinnon, K.H., III; Yount, B.L.; Agostini, M.L.; Stevens, L.J.; Chappell, J.D.; Lu, X.; Hughes, T.M.; Gully, K.; Martinez, D.R.; Brown, A.J.; Graham, R.L.; Perry, J.K.; Du Pont, V.; Pitts, J.; Ma, B.; Babusis, D.; Murakami, E.; Feng, J.Y.; Bilello, J.P.; Porter, D.P.; Cihlar, T.; Baric, R.S.; Denison, M.R.; Sheahan, T.P. Remdesivir inhibits SARS-CoV-2 in human lung cells and chimeric SARS-CoV expressing the SARS-CoV-2 RNA polymerase in mice. Cell Rep., 2020, 32(3), 107940.
[http://dx.doi.org/10.1016/j.celrep.2020.107940] [PMID: 32668216]
[48]
Fantini, J.; Di Scala, C.; Chahinian, H.; Yahi, N. Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 Infection. Int. J. Antimicrob. Agents, 2020, 55(5), 105960.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105960]
[49]
Kaptein, S.J.F.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; Ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.; Barthelemy, K.; Maas, E.; De Keyzer, C.; Bervoets, L.; Rymenants, J.; Van Buyten, T.; Zhang, X.; Abdelnabi, R.; Pang, J.; Williams, R.; Thibaut, H.J.; Dallmeier, K.; Boudewijns, R.; Wouters, J.; Augustijns, P.; Verougstraete, N.; Cawthorne, C.; Breuer, J.; Solas, C.; Weynand, B.; Annaert, P.; Spriet, I.; Vande Velde, G.; Neyts, J.; Rocha-Pereira, J.; Delang, L. Favipiravir at high doses has potent antiviral activity in SARS-CoV-2-infected hamsters, whereas hydroxychloroquine lacks activity. Proc. Natl. Acad. Sci. USA, 2020, 117(43), 26955-26965.
[http://dx.doi.org/10.1073/pnas.2014441117] [PMID: 33037151]
[50]
Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; Tamamura, H.; Fujii, N.; Yamamoto, N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun., 2004, 318(3), 719-725.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083] [PMID: 15144898]
[51]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of Lopinavir-Ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[52]
Gupta, P.C. Biological and pharmacological properties of Terminalia Chebula Retz. (Haritaki)- An Overview. Int. J. Pharm. Pharm. Sci., 2012, 62-68.
[53]
Bhatnagar, S.; Rani, A.; Kumari, R. Therapeutic potential of triphala against human diseases. Int. J. Pharm. Sci. Rev. Res., 2015, 31(2), 5-13.
[54]
Kesharwani, A.; Polachira, S.K.; Nair, R.; Agarwal, A.; Mishra, N.N.; Gupta, S.K. Anti-HSV-2 activity of Terminalia chebula Retz extract and its constituents, chebulagic and chebulinic acids. BMC Complement. Altern. Med., 2017, 17(1), 110.
[http://dx.doi.org/10.1186/s12906-017-1620-8] [PMID: 28196487]
[55]
Biradar, Y.S.; Singh, R.; Sharma, K.; Dhalwal, K.; Bodhankar, S.L.; Khandelwal, K.R. Evaluation of anti-diarrhoeal property and acute toxicity of Triphala Mashi, an Ayurvedic formulation. J. Herb. Pharmacother., 2007, 7(3-4), 203-212.
[http://dx.doi.org/10.1080/15228940802152869] [PMID: 18928142]
[56]
Phetkate, P.; Kummalue, T.; Rinthong, P. orn; Kietinun, S.; Sriyakul, K. Study of the safety of oral Triphala aqueous extract on healthy volunteers. J. Integr. Med., 2020, 18(1), 35-40.
[http://dx.doi.org/10.1016/j.joim.2019.10.002] [PMID: 31680053]

© 2024 Bentham Science Publishers | Privacy Policy