Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Cytotoxicity and Toxicological Studies of Artocarpus altilis Extracts, Inducing Apoptosis and Cell Cycle Arrest via CASPASE-3 and CASPASE-8 Pathways against Human Breast MCF-7 Cells

Author(s): Tara Jalal*, Hatim Abdullah Natto and Ridhwan Abdul Wahab

Volume 25, Issue 6, 2022

Published on: 02 March, 2021

Page: [973 - 985] Pages: 13

DOI: 10.2174/1386207324666210302095557

Price: $65

Abstract

Background: In recent biomedical research, the area of cancer and infectious diseases occupies a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis is considered an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals.

Objective: The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner.

Methods: The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manner by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arreste associated with the DNA fragmentation; various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by RT-qPCR method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels.

Results: Results after cells were treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions triggered the treated cells into CASPASE- 3, intrinsic and extrinsic pathways.

Conclusion: These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.

Keywords: Artocarpus altilis, apoptosis, cell cycle, qPCR, BCL-2, CASPASE-3.

Graphical Abstract
[1]
Motley, T.J. Breadfruit origins, diversity and human facilitated distribution. Available from: http://herbarium. millersville. edu/325
[2]
Jagtap, U.B.; Bapat, V.A. Artocarpus: a review of its traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol., 2010, 129(2), 142-166.
[http://dx.doi.org/10.1016/j.jep.2010.03.031] [PMID: 20380874]
[3]
Reed, J.; Jurgensmeier, J.; Matsuyama, S. Bcl-2 family proteins and mitochondria. Biochimica et Biophysica Acta (BBA)-. Bioenergetics, 1998, 1366(1-2), 127-137.
[http://dx.doi.org/10.1016/S0005-2728(98)00108-X]
[4]
Miyashita, T.; Krajewski, S.; Krajewska, M.; Wang, H.G.; Lin, H.K.; Liebermann, D.A.; Hoffman, B.; Reed, J.C. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994, 9(6), 1799-1805.
[PMID: 8183579]
[5]
Boldin, M.P.; Goncharov, T.M.; Goltsev, Y.V.; Wallach, D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell, 1996, 85(6), 803-815.
[http://dx.doi.org/10.1016/S0092-8674(00)81265-9] [PMID: 8681376]
[6]
Juo, P.; Kuo, C.J.; Yuan, J.; Blenis, J. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol., 1998, 8(18), 1001-1008.
[http://dx.doi.org/10.1016/S0960-9822(07)00420-4] [PMID: 9740801]
[7]
Scaffidi, C.; Fulda, S.; Srinivasan, A.; Friesen, C.; Li, F.; Tomaselli, K.J.; Debatin, K.M.; Krammer, P.H.; Peter, M.E. Two CD95 (APO-1/Fas) signaling pathways. EMBO J., 1998, 17(6), 1675-1687.
[http://dx.doi.org/10.1093/emboj/17.6.1675] [PMID: 9501089]
[8]
Akbar, E.; Yaakob, Z.; Kamarudin, S.K.; Ismail, M.; Salimon, J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. Eur. J. Sci. Res., 2009, 29(3), 396-403.
[9]
Strober, W. Trypan blue exclusion test of cell viability. Current protocols in immunology, 2001. A3-B.
[http://dx.doi.org/10.1002/0471142735.ima03bs21]
[10]
Nijveldt, R.J.; van Nood, E.; van Hoorn, D.E.; Boelens, P.G.; van Norren, K.; van Leeuwen, P.A. Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 2001, 74(4), 418-425.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[11]
Jalal, T.K.; Khan, A.A.Y.F.; Natto, H.A.; Abdull Rasad, M.S.B.; Arifin Kaderi, M.; Mohammad, M.; Abdul Wahab, R. Identification and quantification of quercetin, a major constituent of artocarpus altilis by targeting related genes of apoptosis and cell cycle: In vitro cytotoxic activity against human lung carcinoma cell lines. Nutr. Cancer, 2019, 1-14.
[12]
Yin, M.C.; Lin, C.C.; Wu, H.C.; Tsao, S.M.; Hsu, C.K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J. Agric. Food Chem., 2009, 57(14), 6468-6473.
[http://dx.doi.org/10.1021/jf9004466] [PMID: 19601677]
[13]
Senawong, T.; Khaopha, S.; Misuna, S.; Komaikul, J.; Senawong, G.; Wongphakham, P.; Yunchalard, S. Phenolic acid composition and anticancer activity against human cancer cell lines of the commercially available fermentation products of Houttuynia cordata. Sci. Asia, 2014, 40, 420.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.420]
[14]
Gupta, A.K.; Sadawarti, H.; Verma, A.K. Performance analysis of AODV, DSR & TORA routing protocols. IACSIT Int. J. Eng. Technol., 2010, 2(2), 226.
[15]
Agarwal, C.; Tyagi, A.; Agarwal, R. Gallic acid causes inactivating phosphorylation of cdc25A/cdc25C-cdc2 via ATM-Chk2 activation, leading to cell cycle arrest, and induces apoptosis in human prostate carcinoma DU145 cells. Mol. Cancer Ther., 2006, 5(12), 3294-3302.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0483] [PMID: 17172433]
[16]
Park, H.J.; Kim, M.J.; Ha, E.; Chung, J.H. Apoptotic effect of hesperidin through caspase3 activation in human colon cancer cells, SNU-C4. Phytomedicine, 2008, 15(1-2), 147-151.
[http://dx.doi.org/10.1016/j.phymed.2007.07.061] [PMID: 17897817]
[17]
Roseghini, R.; Falcão, G.M.; Oliveira Costa, J.F.; Clarêncio, J.; Nascimento, I.; Velozo, E.; Schaer, R.; Vale, V.; Costa, S.L. Costa, Mde.F.; Tardy, M.; Meyer, R.; Menezes Freire, S. The flavonoid rutin but not the alkaloid arborinine induces apoptosis in a B-cell hybridoma cell line. Planta Med., 2009, 75(5), 488-493.
[http://dx.doi.org/10.1055/s-0029-1185316] [PMID: 19235127]
[18]
Wadskog, I.; Maldener, C.; Proksch, A.; Madeo, F.; Adler, L. Yeast lacking the SRO7/SOP1-encoded tumor suppressor homologue show increased susceptibility to apoptosis-like cell death on exposure to NaCl stress. Mol. Biol. Cell, 2004, 15(3), 1436-1444.
[http://dx.doi.org/10.1091/mbc.e03-02-0114] [PMID: 14718573]
[19]
Benavente-García, O.; Castillo, J. Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J. Agric. Food Chem., 2008, 56(15), 6185-6205.
[http://dx.doi.org/10.1021/jf8006568] [PMID: 18593176]
[20]
Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature, 2004, 432(7015), 316-323.
[http://dx.doi.org/10.1038/nature03097] [PMID: 15549093]
[21]
Chahar, M.K.; Sharma, N.; Dobhal, M.P.; Joshi, Y.C. Flavonoids: A versatile source of anticancer drugs. Pharmacogn. Rev., 2011, 5(9), 1-12.
[http://dx.doi.org/10.4103/0973-7847.79093] [PMID: 22096313]
[22]
Bartek, J.; Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol., 2001, 13(6), 738-747.
[http://dx.doi.org/10.1016/S0955-0674(00)00280-5] [PMID: 11698191]
[23]
Liu, Y.; Yeh, N.; Zhu, X.H.; Leversha, M.; Cordon-Cardo, C.; Ghossein, R.; Singh, B.; Holland, E.; Koff, A. Somatic cell type specific gene transfer reveals a tumor-promoting function for p21(Waf1/Cip1). EMBO J., 2007, 26(22), 4683-4693.
[http://dx.doi.org/10.1038/sj.emboj.7601886] [PMID: 17948060]
[24]
Kim, J.D.; Liu, L.; Guo, W.; Meydani, M. Chemical structure of flavonols in relation to modulation of angiogenesis and immune-endothelial cell adhesion. J. Nutr. Biochem., 2006, 17(3), 165-176.
[http://dx.doi.org/10.1016/j.jnutbio.2005.06.006] [PMID: 16169200]
[25]
Alao, J.P. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol. Cancer, 2007, 6(1), 24.
[http://dx.doi.org/10.1186/1476-4598-6-24] [PMID: 17407548]
[26]
Øverby, A.; Zhao, C.M.; Chen, D. Plant phytochemicals: potential anticancer agents against gastric cancer. Curr. Opin. Pharmacol., 2014, 19, 6-10.
[http://dx.doi.org/10.1016/j.coph.2014.05.010] [PMID: 24929966]
[27]
Chipuk, J.E.; Bouchier-Hayes, L.; Green, D.R. Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ., 2006, 13(8), 1396-1402.
[http://dx.doi.org/10.1038/sj.cdd.4401963] [PMID: 16710362]
[28]
Wu, B.; Zhang, Q.; Shen, W.; Zhu, J. Anti-proliferative and chemosensitizing effects of luteolin on human gastric cancer AGS cell line. Mol. Cell. Biochem., 2008, 313(1-2), 125-132.
[http://dx.doi.org/10.1007/s11010-008-9749-x] [PMID: 18398671]
[29]
Wang, P.; Zhang, K.; Zhang, Q.; Mei, J.; Chen, C.J.; Feng, Z.Z.; Yu, D.H. Effects of quercetin on the apoptosis of the human gastric carcinoma cells. Toxicol. In Vitro, 2012, 26(2), 221-228.
[http://dx.doi.org/10.1016/j.tiv.2011.11.015] [PMID: 22222411]
[30]
Seo, H.S.; Ku, J.M.; Choi, H.S.; Choi, Y.K.; Woo, J.K.; Kim, M.; Kim, I.; Na, C.H.; Hur, H.; Jang, B.H.; Shin, Y.C.; Ko, S.G. Quercetin induces caspase-dependent extrinsic apoptosis through inhibition of signal transducer and activator of transcription 3 signaling in HER2-overexpressing BT-474 breast cancer cells. Oncol. Rep., 2016, 36(1), 31-42.
[http://dx.doi.org/10.3892/or.2016.4786] [PMID: 27175602]
[31]
Kang, M.H.; Reynolds, C.P. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin. Cancer Res., 2009, 15(4), 1126-1132.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0144] [PMID: 19228717]
[32]
Liu, R.M.; Li, Y.B.; Zhong, J.J. Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro. Eur. J. Pharmacol., 2012, 681(1-3), 23-33.
[http://dx.doi.org/10.1016/j.ejphar.2012.02.007] [PMID: 22366428]
[33]
Alenzi, F.Q. Links between apoptosis, proliferation and the cell cycle. Br. J. Biomed. Sci., 2004, 61(2), 99-102.
[http://dx.doi.org/10.1080/09674845.2004.11732652] [PMID: 15250676]
[34]
Priego, S.; Feddi, F.; Ferrer, P.; Mena, S.; Benlloch, M.; Ortega, A.; Carretero, J.; Obrador, E.; Asensi, M.; Estrela, J.M. Natural polyphenols facilitate elimination of HT-29 colorectal cancer xenografts by chemoradiotherapy: a Bcl-2- and superoxide dismutase 2-dependent mechanism. Mol. Cancer Ther., 2008, 7(10), 3330-3342.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0363] [PMID: 18852136]
[35]
Aggarwal, B.B.; Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol., 2006, 71(10), 1397-1421.
[http://dx.doi.org/10.1016/j.bcp.2006.02.009] [PMID: 16563357]
[36]
Petros, A.M.; Olejniczak, E.T.; Fesik, S.W. Structural biology of the Bcl-2 family of proteins. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research, 2004, 1644(2), 83-94.
[37]
Hu, W.; Lee, S.K.; Jung, M.J.; Heo, S.I.; Hur, J.H.; Wang, M.H. Induction of cell cycle arrest and apoptosis by the ethyl acetate fraction of Kalopanax pictus leaves in human colon cancer cells. Bioresour. Technol., 2010, 101(23), 9366-9372.
[http://dx.doi.org/10.1016/j.biortech.2010.06.091] [PMID: 20659794]
[38]
Evans, J.; Chitnis, M.M.; Talbot, D.C. Principles of chemotherapy and drug development. Treatment of Cancer, Price, P.; Sikora, K.; Illidge, I., Eds.; Hodder Arnold, 2008, pp. 75-111.
[39]
O‟Prey, J.; Brown, J.; Fleming, J.; Harrison, J. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem. Pharmacol., 2003, 66(11), 2075-2088.
[40]
Son, Y.O.; Lee, K.Y.; Kook, S.H.; Lee, J.C.; Kim, J.G.; Jeon, Y.M.; Jang, Y.S. Selective effects of quercetin on the cell growth and antioxidant defense system in normal versus transformed mouse hepatic cell lines. Eur. J. Pharmacol., 2004, 502(3), 195-204.
[http://dx.doi.org/10.1016/j.ejphar.2004.09.012] [PMID: 15476745]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy