Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Photothermal Therapy: A New Approach to Eradicate Cancer

Author(s): Somya Ranjan Dash and Chanakya Nath Kundu *

Volume 18, Issue 1, 2022

Published on: 01 March, 2021

Page: [31 - 47] Pages: 17

DOI: 10.2174/1573413717666210301112058

Price: $65

Abstract

The use of hyperthermal temperature to treat solid cancers is known as oncological thermal ablation. Thermal ablation is studied as a therapeutic strategy for most cancers and can be used in the control of local and metastatic diseases in addition to traditional anticancer therapies. PTT (photothermal therapy) is a minimally invasive therapeutic approach with a promising diagnostic and cancer prevention potential. The excitation of photosensitizer materials like inorganic and organic nanomaterials with NIR (near-infrared radiation) showed significantly better results than the traditional mode of cancer treatment. The penetration depth of NIR is significantly higher as compared to the U.V. (ultraviolet) and visible light. Photo-excitation of the nanomaterials with NIR efficiently converts light energy into heat energy and eventually enables the cancer cells to die due to heat shock. The addition of a multimodal approach to the treatment and the prevention of cancer cells thermo-resistant properties in localized and distal tumors involves the combination of photothermal agents and chemotherapy. Cancer cell hyperthermic activation prevents DNA repair, cell survival signaling and eventually induces apoptosis. Simultaneously, the release of antigenic peptides from the dead cancer cells activates the immune cells which kill the localized and metastatic cancer cells, hence enabling long-term immunological memory retention. The present review summarizes PTT's functional properties, NIR penetration ability, DNA repair, cellular signaling, and immune system modulation effect of hyperthermia. The benefits of using different types of nanomaterials in PTT applications are further explored. In addition, the problems associated with the use of nanomaterials in PTT applications are also addressed in this article.

Keywords: Photothermal therapy, hyperthermia, DNA damage, immunity, apoptosis, organic and inorganic nanomaterials.

Graphical Abstract
[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[3]
Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci.,, 2012, 9(3), 193-199.
[http://dx.doi.org/10.7150/ijms.3635] [PMID: 22408567]
[4]
Wang, J.S.; Wang, H.J.; Qian, H.L. Biological effects of radiation on cancer cells. Mil. Med. Res., 2018, 5(1), 20.
[http://dx.doi.org/10.1186/s40779-018-0167-4] [PMID: 29958545]
[5]
Xu, X.; Lu, H.; Lee, R. Near infrared light triggered photo/immuno-therapy toward cancers. Front. Bioeng. Biotechnol., 2020, 8, 488.
[6]
Tsai, S-R.; Hamblin, M.R. Biological effects and medical applications of infrared radiation. J. Photochem. Photobiol. B, 2017, 170, 197-207.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.04.014] [PMID: 28441605]
[7]
Ash, C.; Dubec, M.; Donne, K.; Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med. Sci., 2017, 32(8), 1909-1918.
[http://dx.doi.org/10.1007/s10103-017-2317-4] [PMID: 28900751]
[8]
Zhao, Z.; Fairchild, P.W. Dependence of light transmission through human skin on incident beam diameter at different wave lengths.Laser-Tissue Interaction IX; International Society for Optics and Photonics, 1998, pp. 354-360.
[http://dx.doi.org/10.1117/12.308184]
[9]
Mantso, T.; Goussetis, G.; Franco, R.; Botaitis, S.; Pappa, A.; Panayiotidis, M. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin. Cancer Biol., 2016, 37-38, 96-105.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.004] [PMID: 27025900]
[10]
Dunne, M.; Regenold, M.; Allen, C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv. Drug Deliv. Rev., 2020, 163-164, 98-124.
[http://dx.doi.org/10.1016/j.addr.2020.07.007] [PMID: 32681862]
[11]
Toraya-Brown, S.; Sheen, M.R.; Zhang, P.; Chen, L.; Baird, J.R.; Demidenko, E.; Turk, M.J.; Hoopes, P.J.; Conejo-Garcia, J.R.; Fiering, S. Local hyperthermia treatment of tumors induces CD8(+) T cell-mediated resistance against distal and secondary tumors. Nanomedicine (Lond.), 2014, 10(6), 1273-1285.
[http://dx.doi.org/10.1016/j.nano.2014.01.011] [PMID: 24566274]
[12]
Lan, M.; Zhao, S.; Liu, W.; Lee, C.S.; Zhang, W.; Wang, P. Photosensitizers for photodynamic therapy. Adv. Healthc. Mater., 2019, 8(13)e1900132
[http://dx.doi.org/10.1002/adhm.201900132] [PMID: 31067008]
[13]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[14]
Kochevar, I.E. Singlet oxygen signaling: from intimate to global. Sci. STKE, 2004, 2004(221), pe7.
[PMID: 14983102]
[15]
Sivakumar, S.; van Veggel, F.C.M.; May, P.S. Near-infrared (NIR) to red and green up-conversion emission from silica sol-gel thin films made with La(0.45)Yb(0.50)Er(0.05)F(3) nanoparticles, hetero-looping-enhanced energy transfer (Hetero-LEET): a new up-conversion process. J. Am. Chem. Soc., 2007, 129(3), 620-625.
[http://dx.doi.org/10.1021/ja065378x] [PMID: 17227025]
[16]
Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-based plasmonic nanoparticles for and their use in biosensing. Biosensors (Basel), 2019, 9(2), 78.
[http://dx.doi.org/10.3390/bios9020078] [PMID: 31185689]
[17]
Jain, P.K.; Lee, K.S.; El-Sayed, I.H.; El-Sayed, M.A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B, 2006, 110(14), 7238-7248.
[http://dx.doi.org/10.1021/jp057170o] [PMID: 16599493]
[18]
Huang, X.; El-Sayed, M.A. Plasmonic photo-thermal therapy (PPTT). Alex J Med, 2011, 47, 1-9.
[http://dx.doi.org/10.1016/j.ajme.2011.01.001]
[19]
Melamed, J.R.; Edelstein, R.S.; Day, E.S. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano, 2015, 9(1), 6-11.
[http://dx.doi.org/10.1021/acsnano.5b00021] [PMID: 25590560]
[20]
Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys Appl Phys, 2005, 38, 2543.
[http://dx.doi.org/10.1088/0022-3727/38/15/004]
[21]
Cassano, P.; Tran, A.P.; Katnani, H.; Bleier, B.S.; Hamblin, M.R.; Yuan, Y.; Fang, Q. Selective photobiomodulation for emotion regulation: model-based dosimetry study. Neurophotonics, 2019, 6(1)015004
[http://dx.doi.org/10.1117/1.NPh.6.1.015004] [PMID: 30796882]
[22]
Jagdeo, J.R.; Adams, L.E.; Brody, N.I.; Siegel, D.M. Transcranial red and near infrared light transmission in a cadaveric model. PLoS One, 2012, 7(10)e47460
[http://dx.doi.org/10.1371/journal.pone.0047460] [PMID: 23077622]
[23]
Lapchak, P.A.; Salgado, K.F.; Chao, C.H.; Zivin, J.A. Transcranial near-infrared light therapy improves motor function following embolic strokes in rabbits: an extended therapeutic window study using continuous and pulse frequency delivery modes. Neuroscience, 2007, 148(4), 907-914.
[http://dx.doi.org/10.1016/j.neuroscience.2007.07.002] [PMID: 17693028]
[24]
Curcio, A.; Silva, A.K.A.; Cabana, S.; Espinosa, A.; Baptiste, B.; Menguy, N.; Wilhelm, C.; Abou-Hassan, A. Iron oxide nanoflowers@ CuS hybrids for cancer tri-therapy: Interplay of photothermal therapy, magnetic hyperthermia and photodynamic therapy. Theranostics, 2019, 9(5), 1288-1302.
[http://dx.doi.org/10.7150/thno.30238] [PMID: 30867831]
[25]
Dhaliwal, A.; Zheng, G. Improving accessibility of EPR-insensitive tumor phenotypes using EPR-adaptive strategies: Designing a new perspective in nanomedicine delivery. Theranostics, 2019, 9(26), 8091-8108.
[http://dx.doi.org/10.7150/thno.37204] [PMID: 31754383]
[26]
Kiwerska, K.; Szyfter, K. DNA repair in cancer initiation, progression, and therapy-a double-edged sword. J. Appl. Genet., 2019, 60(3-4), 329-334.
[http://dx.doi.org/10.1007/s13353-019-00516-9] [PMID: 31468363]
[27]
Nair, R.K.; Christie, C.; Ju, D.; Shin, D.; Pomeroy, A.; Berg, K.; Peng, Q.; Hirschberg, H. Enhancing the effects of chemotherapy by combined macrophage-mediated photothermal therapy (PTT) and photochemical internalization (PCI). Lasers Med. Sci., 2018, 33(8), 1747-1755.
[http://dx.doi.org/10.1007/s10103-018-2534-5] [PMID: 29802587]
[28]
Oei, A.L.; Vriend, L.E.; Crezee, J.; Franken, N.A.; Krawczyk, P.M. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat. Oncol., 2015, 10, 165.
[http://dx.doi.org/10.1186/s13014-015-0462-0] [PMID: 26245485]
[29]
Maréchal, A.; Zou, L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb. Perspect. Biol., 2013, 5(9)a012716
[http://dx.doi.org/10.1101/cshperspect.a012716] [PMID: 24003211]
[30]
Blackford, A.N.; Jackson, S.P. ATM, ATR, and DNA-PK: the trinity at the heart of the DNA damage response. Mol. Cell, 2017, 66(6), 801-817.
[http://dx.doi.org/10.1016/j.molcel.2017.05.015] [PMID: 28622525]
[31]
Petrova, N.V.; Velichko, A.K.; Razin, S.V.; Kantidze, O.L. Early S-phase cell hypersensitivity to heat stress. Cell Cycle, 2016, 15(3), 337-344.
[http://dx.doi.org/10.1080/15384101.2015.1127477] [PMID: 26689112]
[32]
Jung, H.J.; Seo, Y.R. Protective effects of thioredoxin-mediated p53 activation in response to mild hyperthermia. Oncol. Rep., 2012, 27(3), 650-656.
[PMID: 22134635]
[33]
Laszlo, A.; Fleischer, I. Heat-induced perturbations of DNA damage signaling pathways are modulated by molecular chaperones. Cancer Res., 2009, 69(5), 2042-2049.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1639] [PMID: 19244134]
[34]
Furusawa, Y.; Iizumi, T.; Fujiwara, Y.; Zhao, Q.L.; Tabuchi, Y.; Nomura, T.; Kondo, T. Inhibition of checkpoint kinase 1 abrogates G2/M checkpoint activation and promotes apoptosis under heat stress. Apoptosis, 2012, 17(1), 102-112.
[http://dx.doi.org/10.1007/s10495-011-0660-7] [PMID: 22080164]
[35]
Tuul, M.; Kitao, H.; Iimori, M.; Matsuoka, K.; Kiyonari, S.; Saeki, H.; Oki, E.; Morita, M.; Maehara, Y. Rad9, Rad17, TopBP1 and claspin play essential roles in heat-induced activation of ATR kinase and heat tolerance. PLoS One, 2013, 8(2)e55361
[http://dx.doi.org/10.1371/journal.pone.0055361] [PMID: 23383325]
[36]
Kantidze, O.L.; Velichko, A.K.; Luzhin, A.V.; Razin, S.V. Heat stress-induced DNA damage. Acta Naturae Англоязычная Версия, 2016, 8(2), 75-78.
[37]
Kumar, N.; Moreno, N.C.; Feltes, B.C.; Menck, C.F.; Houten, B.V. Cooperation and interplay between base and nucleotide excision repair pathways: From DNA lesions to proteins. Genet. Mol. Biol., 2020, 43(1), 1.
[38]
Chatterjee, N.; Walker, G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ. Mol. Mutagen., 2017, 58(5), 235-263.
[http://dx.doi.org/10.1002/em.22087] [PMID: 28485537]
[39]
Grundy, G.J.; Parsons, J.L. Base excision repair and its implications to cancer therapy. Essays Biochem., 2020, 64(5), 831-843.
[40]
Kampinga, H.H.; Dynlacht, J.R.; Dikomey, E. Mechanism of radiosensitization by hyperthermia (> or = 43 degrees C) as derived from studies with DNA repair defective mutant cell lines. Int. J. Hyperthermia, 2004, 20(2), 131-139.
[http://dx.doi.org/10.1080/02656730310001627713] [PMID: 15195507]
[41]
Fang, Q.; Inanc, B.; Schamus, S.; Wang, X.H.; Wei, L.; Brown, A.R.; Svilar, D.; Sugrue, K.F.; Goellner, E.M.; Zeng, X.; Yates, N.A.; Lan, L.; Vens, C.; Sobol, R.W. HSP90 regulates DNA repair via the interaction between XRCC1 and DNA polymerase β. Nat. Commun., 2014, 5, 5513.
[http://dx.doi.org/10.1038/ncomms6513] [PMID: 25423885]
[42]
Fantini, D.; Moritz, E.; Auvré, F.; Amouroux, R.; Campalans, A.; Epe, B.; Bravard, A.; Radicella, J.P. Rapid inactivation and proteasome-mediated degradation of OGG1 contribute to the synergistic effect of hyperthermia on genotoxic treatments. DNA Repair , 2013, 12(3), 227-237.
[http://dx.doi.org/10.1016/j.dnarep.2012.12.006] [PMID: 23332971]
[43]
Schärer, O.D. Nucleotide excision repair in eukaryotes. Cold Spring Harb. Perspect. Biol., 2013, 5(10)a012609
[http://dx.doi.org/10.1101/cshperspect.a012609] [PMID: 24086042]
[44]
Schmidt-Rose, T.; Pollet, D.; Will, K.; Bergemann, J.; Wittern, K.P. Analysis of UV-B-induced DNA damage and its repair in heat-shocked skin cells. J. Photochem. Photobiol. B, 1999, 53(1-3), 144-152.
[http://dx.doi.org/10.1016/S1011-1344(99)00141-4] [PMID: 10672538]
[45]
Nadin, S.B.; Cuello-Carrión, F.D.; Sottile, M.L.; Ciocca, D.R.; Vargas-Roig, L.M. Effects of hyperthermia on Hsp27 (HSPB1), Hsp72 (HSPA1A) and DNA repair proteins hMLH1 and hMSH2 in human colorectal cancer hMLH1-deficient and hMLH1-proficient cell lines. Int. J. Hyperthermia, 2012, 28(3), 191-201.
[http://dx.doi.org/10.3109/02656736.2011.638962] [PMID: 22515340]
[46]
Fu, Q.; Wang, J.; Huang, T. The effect of hyperthermia on the DNA damage response induced by γ-rays, as determined through in situ cell tracking. J. Radiat. Res. , 2018, 59(5), 577-582.
[http://dx.doi.org/10.1093/jrr/rry057] [PMID: 30085098]
[47]
Seno, J.D.; Dynlacht, J.R. Intracellular redistribution and modification of proteins of the Mre11/Rad50/Nbs1 DNA repair complex following irradiation and heat-shock. J. Cell. Physiol., 2004, 199(2), 157-170.
[http://dx.doi.org/10.1002/jcp.10475] [PMID: 15039997]
[48]
Krawczyk, P.M.; Eppink, B.; Essers, J.; Stap, J.; Rodermond, H.; Odijk, H.; Zelensky, A.; van Bree, C.; Stalpers, L.J.; Buist, M.R.; Soullié, T.; Rens, J.; Verhagen, H.J.; O’Connor, M.J.; Franken, N.A.; Ten Hagen, T.L.; Kanaar, R.; Aten, J.A. Mild hyperthermia inhibits homologous recombination, induces BRCA2 degradation, and sensitizes cancer cells to poly (ADP-ribose) polymerase-1 inhibition. Proc. Natl. Acad. Sci. USA, 2011, 108(24), 9851-9856.
[http://dx.doi.org/10.1073/pnas.1101053108] [PMID: 21555554]
[49]
Hegyi, G.; Szigeti, G.P.; Szász, A. Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy. Evid-Based Complement Altern Med ECAM, 2013, 2013672873
[50]
Ahmed, K.; Tabuchi, Y.; Kondo, T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis, 2015, 20(11), 1411-1419.
[http://dx.doi.org/10.1007/s10495-015-1168-3] [PMID: 26354715]
[51]
Roti Roti, J.L. Cellular responses to hyperthermia (40-46 d4egrees C): cell killing and molecular events. Int. J. Hyperthermia, 2008, 24(1), 3-15.
[http://dx.doi.org/10.1080/02656730701769841] [PMID: 18214765]
[52]
Mogk, A.; Bukau, B.; Kampinga, H.H. Cellular handling of protein aggregates by disaggregation machines. Mol. Cell, 2018, 69(2), 214-226.
[http://dx.doi.org/10.1016/j.molcel.2018.01.004] [PMID: 29351843]
[53]
Jin, H.; Zhao, Y.; Yang, J.; Zhang, X.; Ma, S. Hyperthermia enhances the sensitivity of pancreatic cancer SW1990 cells to gemcitabine through ROS/JNK signaling. Oncol. Lett., 2018, 16(5), 6742-6748.
[http://dx.doi.org/10.3892/ol.2018.9455] [PMID: 30405817]
[54]
Park, J.; Baek, S.H. Combination therapy with cinnamaldehyde and hyperthermia induces apoptosis of A549 non-small cell lung carcinoma cells via regulation of reactive oxygen species and mitogen-activated protein kinase family. Int. J. Mol. Sci., 2020, 21(17), 6229.
[55]
Adachi, S.; Kokura, S.; Okayama, T.; Ishikawa, T.; Takagi, T.; Handa, O.; Naito, Y.; Yoshikawa, T. Effect of hyperthermia combined with gemcitabine on apoptotic cell death in cultured human pancreatic cancer cell lines. Int. J. Hyperthermia, 2009, 25(3), 210-219.
[http://dx.doi.org/10.1080/02656730802657036] [PMID: 19437237]
[56]
Bakshandeh-Bath, A.; Stoltz, A.S.; Homann, N.; Wagner, T.; Stölting, S.; Peters, S.O. Preclinical and clinical aspects of carboplatin and gemcitabine combined with whole-body hyperthermia for pancreatic adenocarcinoma. Anticancer Res., 2009, 29(8), 3069-3077.
[PMID: 19661318]
[57]
Mantso, T.; Vasileiadis, S.; Anestopoulos, I.; Voulgaridou, G.P.; Lampri, E.; Botaitis, S.; Kontomanolis, E.N.; Simopoulos, C.; Goussetis, G.; Franco, R.; Chlichlia, K.; Pappa, A.; Panayiotidis, M.I. Hyperthermia induces therapeutic effectiveness and potentiates adjuvant therapy with non-targeted and targeted drugs in an in vitro model of human malignant melanoma. Sci. Rep., 2018, 8(1), 10724.
[http://dx.doi.org/10.1038/s41598-018-29018-0] [PMID: 30013176]
[58]
Jentsch, M.; Snyder, P.; Sheng, C.; Cristiano, E.; Loewer, A. p53 dynamics in single cells are temperature-sensitive. Sci. Rep. 2020, 10(1), 1481.
[http://dx.doi.org/10.1038/s41598-020-58267-1] [PMID: 32001771]
[59]
Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci., 2007, 98(10), 1505-1511.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00546.x] [PMID: 17645777]
[60]
Oei, A.L.; van Leeuwen, C.M.; ten Cate, R.; Rodermond, H.M.; Buist, M.R.; Stalpers, L.J.; Crezee, J.; Kok, H.P.; Medema, J.P.; Franken, N.A. Hyperthermia selectively targets human papillomavirus in cervical tumors via p53-dependent apoptosis. Cancer Res., 2015, 75(23), 5120-5129.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-0816] [PMID: 26573798]
[61]
Flusberg, D.A.; Sorger, P.K. Surviving apoptosis: Life-death signaling in single cells. Trends Cell Biol., 2015, 25(8), 446-458.
[http://dx.doi.org/10.1016/j.tcb.2015.03.003] [PMID: 25920803]
[62]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4)a006098
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[63]
Britten, C.M.; Singh-Jasuja, H.; Flamion, B.; Hoos, A.; Huber, C.; Kallen, K.J.; Khleif, S.N.; Kreiter, S.; Nielsen, M.; Rammensee, H.G.; Sahin, U.; Hinz, T.; Kalinke, U. The regulatory landscape for actively personalized cancer immunotherapies. Nat. Biotechnol., 2013, 31(10), 880-882.
[http://dx.doi.org/10.1038/nbt.2708] [PMID: 24104749]
[64]
Vigneron, N. Human tumor antigens and cancer immunotherapy. BioMed Res. Int., 2015, 2015948501
[http://dx.doi.org/10.1155/2015/948501] [PMID: 26161423]
[65]
Liberek, K.; Lewandowska, A.; Ziętkiewicz, S. Chaperones in control of protein disaggregation. EMBO J., 2008, 27(2), 328-335.
[http://dx.doi.org/10.1038/sj.emboj.7601970] [PMID: 18216875]
[66]
Calderwood, S.K.; Ciocca, D.R. Heat shock proteins: stress proteins with Janus-like properties in cancer. Int. J. Hyperthermia, 2008, 24(1), 31-39.
[http://dx.doi.org/10.1080/02656730701858305] [PMID: 18214767]
[67]
Skitzki, J.J.; Repasky, E.A.; Evans, S.S. Hyperthermia as an immunotherapy strategy for cancer. Curr. Opin. Investig. Drugs Lond Engl,, 2009, 10, 550.
[68]
Todryk, S.M.; Melcher, A.A.; Dalgleish, A.G.; Vile, R.G. Heat shock proteins refine the danger theory. Immunology, 2000, 99(3), 334-337.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00002.x] [PMID: 10712661]
[69]
Srivastava, P. Interaction of heat shock proteins with peptides and antigen presenting cells: Chaperoning of the innate and adaptive immune responses. Annu. Rev. Immunol., 2002, 20, 395-425.
[http://dx.doi.org/10.1146/annurev.immunol.20.100301.064801] [PMID: 11861608]
[70]
Nam, J.; Son, S.; Ochyl, L.J.; Kuai, R.; Schwendeman, A.; Moon, J.J. Chemo-photothermal therapy combination elicits anti-tumor immunity against advanced metastatic cancer. Nat. Commun., 2018, 9(1), 1074.
[http://dx.doi.org/10.1038/s41467-018-03473-9] [PMID: 29540781]
[71]
Chen, Q.; Xu, L.; Liang, C.; Wang, C.; Peng, R.; Liu, Z. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun., 2016, 7, 13193.
[http://dx.doi.org/10.1038/ncomms13193] [PMID: 27767031]
[72]
Hölzel, M.; Bovier, A.; Tüting, T. Plasticity of tumour and immune cells: a source of heterogeneity and a cause for therapy resistance? Nat. Rev. Cancer, 2013, 13(5), 365-376.
[http://dx.doi.org/10.1038/nrc3498] [PMID: 23535846]
[73]
Radogna, F.; Diederich, M. Stress-induced cellular responses in immunogenic cell death: Implications for cancer immunotherapy. Biochem. Pharmacol., 2018, 153, 12-23.
[http://dx.doi.org/10.1016/j.bcp.2018.02.006] [PMID: 29438676]
[74]
Spang, A. The endoplasmic reticulum-the caring mother of the cell. Curr. Opin. Cell Biol., 2018, 53, 92-96.
[http://dx.doi.org/10.1016/j.ceb.2018.06.004] [PMID: 30006039]
[75]
Li, W.; Yang, J.; Luo, L.; Jiang, M.; Qin, B.; Yin, H.; Zhu, C.; Yuan, X.; Zhang, J.; Luo, Z.; Du, Y.; Li, Q.; Lou, Y.; Qiu, Y.; You, J. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun., 2019, 10(1), 3349.
[http://dx.doi.org/10.1038/s41467-019-11269-8] [PMID: 31350406]
[76]
Jia, Y.; Duan, L.; Li, J. Hemoglobin-based nanoarchitectonic assemblies as oxygen carriers. Adv. Mater., 2016, 28(6), 1312-1318.
[http://dx.doi.org/10.1002/adma.201502581] [PMID: 26479864]
[77]
Kumar, A.; Zhang, X.; Liang, X-J. Gold nanoparticles: emerging paradigm for targeted drug delivery system. Biotechnol. Adv., 2013, 31(5), 593-606.
[http://dx.doi.org/10.1016/j.biotechadv.2012.10.002] [PMID: 23111203]
[78]
Riley, R.S.; Day, E.S. Gold nanoparticle-mediated photothermal therapy: applications and opportunities for multimodal cancer treatment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(4)e1449
[http://dx.doi.org/10.1002/wnan.1449] [PMID: 28160445]
[79]
Li, W.; Cao, Z.; Liu, R.; Liu, L.; Li, H.; Li, X.; Chen, Y.; Lu, C.; Liu, Y. AuNPs as an important inorganic nanoparticle applied in drug carrier systems. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 4222-4233.
[http://dx.doi.org/10.1080/21691401.2019.1687501] [PMID: 31713452]
[80]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(PT A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[81]
Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir, 2005, 21(23), 10644-10654.
[http://dx.doi.org/10.1021/la0513712] [PMID: 16262332]
[82]
Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[83]
Dreaden, E.C.; Austin, L.A.; Mackey, M.A.; El-Sayed, M.A. Size matters: Gold nanoparticles in targeted cancer drug delivery. Ther. Deliv., 2012, 3(4), 457-478.
[http://dx.doi.org/10.4155/tde.12.21] [PMID: 22834077]
[84]
Xu, J-K.; Zhang, F-F.; Sun, J-J.; Sheng, J.; Wang, F.; Sun, M. Bio and nanomaterials based on Fe3O4. Molecules, 2014, 19(12), 21506-21528.
[http://dx.doi.org/10.3390/molecules191221506] [PMID: 25532846]
[85]
Shen, L.; Li, B.; Qiao, Y. Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 2018, 11, 324.
[http://dx.doi.org/10.3390/ma11020324]
[86]
Sohail, A.; Ahmad, Z.; Bég, O.A.; Arshad, S.; Sherin, L. A review on hyperthermia via nanoparticle-mediated therapy. Bull. Cancer, 2017, 104(5), 452-461.
[http://dx.doi.org/10.1016/j.bulcan.2017.02.003] [PMID: 28385267]
[87]
Rosensweig, R.E. Heating magnetic fluid with alternating magnetic field. J. Magn. Magn. Mater. 2002, 252, 370-374.
[http://dx.doi.org/10.1016/S0304-8853(02)00706-0]
[88]
Hussein, E.A.; Zagho, M.M.; Nasrallah, G.K.; Elzatahry, A.A. Recent advances in functional nanostructures as cancer photothermal therapy. Int. J. Nanomedicine, 2018, 13, 2897-2906.
[http://dx.doi.org/10.2147/IJN.S161031] [PMID: 29844672]
[89]
Oghabian, M.A.; Farahbakhsh, N.M. Potential use of nanoparticle based contrast agents in MRI: A molecular imaging perspective. J. Biomed. Nanotechnol., 2010, 6(3), 203-213.
[http://dx.doi.org/10.1166/jbn.2010.1119] [PMID: 21179937]
[90]
Estelrich, J.; Escribano, E.; Queralt, J.; Busquets, M.A. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int. J. Mol. Sci., 2015, 16(4), 8070-8101.
[http://dx.doi.org/10.3390/ijms16048070] [PMID: 25867479]
[91]
Edge, D.; Shortt, C.M.; Gobbo, O.L.; Teughels, S.; Prina-Mello, A.; Volkov, Y.; MacEneaney, P.; Radomski, M.W.; Markos, F. Pharmacokinetics and bio-distribution of novel super paramagnetic iron oxide nanoparticles (SPIONs) in the anaesthetized pig. Clin. Exp. Pharmacol. Physiol., 2016, 43(3), 319-326.
[http://dx.doi.org/10.1111/1440-1681.12533] [PMID: 26707795]
[92]
Utreja, P.; Jain, S.; Tiwary, A.K. Novel drug delivery systems for sustained and targeted delivery of anti- cancer drugs: Current status and future prospects. Curr. Drug Deliv., 2010, 7(2), 152-161.
[http://dx.doi.org/10.2174/156720110791011783] [PMID: 20158482]
[93]
Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2(2), 108-113.
[http://dx.doi.org/10.1038/nnano.2006.209] [PMID: 18654229]
[94]
Gannon, C.J.; Cherukuri, P.; Yakobson, B.I.; Cognet, L.; Kanzius, J.S.; Kittrell, C.; Weisman, R.B.; Pasquali, M.; Schmidt, H.K.; Smalley, R.E.; Curley, S.A. Carbon nanotube-enhanced thermal destruction of cancer cells in a noninvasive radiofrequency field. Cancer, 2007, 110(12), 2654-2665.
[http://dx.doi.org/10.1002/cncr.23155] [PMID: 17960610]
[95]
Kam, N.W.S.; O’Connell, M.; Wisdom, J.A.; Dai, H. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11600-11605.
[http://dx.doi.org/10.1073/pnas.0502680102] [PMID: 16087878]
[96]
Shao, N.; Lu, S.; Wickstrom, E. Integrated molecular targeting of IGF1R and HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes. Nanotechnology, 2007, 18 315101
[http://dx.doi.org/10.1088/0957-4484/18/31/315101]
[97]
Kang, B.; Yu, D.; Dai, Y.; Chang, S.; Chen, D.; Ding, Y. Cancer-cell targeting and photoacoustic therapy using carbon nanotubes as “bomb” agents. Small, , 2009, 5(11), 1292-1301.
[http://dx.doi.org/10.1002/smll.200801820] [PMID: 19274646]
[98]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[99]
Pantarotto, D.; Partidos, C.D.; Hoebeke, J.; Brown, F.; Kramer, E.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chem. Biol., 2003, 10(10), 961-966.
[http://dx.doi.org/10.1016/j.chembiol.2003.09.011] [PMID: 14583262]
[100]
Bao, Z.; Liu, X.; Liu, Y. Near-infrared light-responsive inorganic nanomaterials for photothermal therapy. Asian J Pharm Sci, 2016, 11, 349-364.
[http://dx.doi.org/10.1016/j.ajps.2015.11.123]
[101]
Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett., 2010, 10(9), 3318-3323.
[http://dx.doi.org/10.1021/nl100996u] [PMID: 20684528]
[102]
Kuila, T.; Bose, S.; Mishra, A.K. Chemical functionalization of graphene and its applications. Prog. Mater. Sci., 2012, 57, 1061-1105.
[http://dx.doi.org/10.1016/j.pmatsci.2012.03.002]
[103]
Li, J.; Tan, S.; Kooger, R.; Zhang, C.; Zhang, Y. MicroRNAs as novel biological targets for detection and regulation. Chem. Soc. Rev., 2014, 43(2), 506-517.
[http://dx.doi.org/10.1039/C3CS60312A] [PMID: 24161958]
[104]
Day, E.S.; Morton, J.G.; West, J.L. Nanoparticles for thermal cancer therapy. J. Biomech. Eng. 2019, 131(7), 074001.
[http://dx.doi.org/10.1115/1.3156800]
[105]
Cheng, L.; Wang, C.; Feng, L.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev., 2014, 114(21), 10869-10939.
[http://dx.doi.org/10.1021/cr400532z] [PMID: 25260098]
[106]
Ng, K.K.; Zheng, G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem. Rev., 2015, 115(19), 11012-11042.
[http://dx.doi.org/10.1021/acs.chemrev.5b00140] [PMID: 26244706]
[107]
Jung, H.S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J.L.; Kim, J.S. Organic molecule-based photothermal agents: an expanding photothermal therapy universe. Chem. Soc. Rev., 2018, 47(7), 2280-2297.
[http://dx.doi.org/10.1039/C7CS00522A] [PMID: 29528360]
[108]
Zhao, Y.; Shen, Y. Biomedical nanomaterials; John Wiley & Sons: NJ, USA, 2016.
[http://dx.doi.org/10.1002/9783527694396]
[109]
Yoon, H-J.; Lee, H-S.; Lim, J-Y.; Park, J.H. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl. Mater. Interfaces, 2017, 9(7), 5683-5691.
[http://dx.doi.org/10.1021/acsami.6b16801] [PMID: 28152314]
[110]
Zheng, X.; Xing, D.; Zhou, F.; Wu, B.; Chen, W.R. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol. Pharm., 2011, 8(2), 447-456.
[http://dx.doi.org/10.1021/mp100301t] [PMID: 21197955]
[111]
Zheng, M.; Yue, C.; Ma, Y.; Gong, P.; Zhao, P.; Zheng, C.; Sheng, Z.; Zhang, P.; Wang, Z.; Cai, L. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano, 2013, 7(3), 2056-2067.
[http://dx.doi.org/10.1021/nn400334y] [PMID: 23413798]
[112]
Yue, C.; Liu, P.; Zheng, M.; Zhao, P.; Wang, Y.; Ma, Y.; Cai, L. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials, 2013, 34(28), 6853-6861.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.071] [PMID: 23777910]
[113]
Luo, S.; Tan, X.; Fang, S. Mitochondria-targeted small-molecule fluorophores for dual modal cancer phototherapy. Adv. Funct. Mater., 2016, 26, 2826-2835.
[http://dx.doi.org/10.1002/adfm.201600159]
[114]
Mathew, S.; Murakami, T.; Nakatsuji, H.; Okamoto, H.; Morone, N.; Heuser, J.E.; Hashida, M.; Imahori, H. Exclusive photothermal heat generation by a gadolinium bis(naphthalocyanine) complex and inclusion into modified high-density lipoprotein nanocarriers for therapeutic applications. ACS Nano, 2013, 7(10), 8908-8916.
[http://dx.doi.org/10.1021/nn403384k] [PMID: 24053139]
[115]
Grzybowski, M.; Hugues, V.; Blanchard-Desce, M.; Gryko, D.T. Two-photon-induced fluorescence in new π-expanded diketopyrrolopyrroles. Chemistry, 2014, 20(39), 12493-12501.
[http://dx.doi.org/10.1002/chem.201402569] [PMID: 25125043]
[116]
Spence, G.T.; Hartland, G.V.; Smith, B.D. Activated photothermal heating using croconaine dyes. Chem. Sci. , 2013, 4, 4240-4244.
[http://dx.doi.org/10.1039/c3sc51978c]
[117]
Liu, Y.; Ai, K.; Liu, J.; Deng, M.; He, Y.; Lu, L. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater., 2013, 25(9), 1353-1359.
[http://dx.doi.org/10.1002/adma.201204683] [PMID: 23280690]
[118]
Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. Diketopyrrolopyrrole–triphenylamine organic nanoparticles as multifunctional reagents for photoacoustic imaging-guided photodynamic/photothermal synergistic tumor therapy. ACS Nano, 2017, 11(1), 1054-1063.
[http://dx.doi.org/10.1021/acsnano.6b07927] [PMID: 28033465]
[119]
Cai, Y.; Si, W.; Tang, Q. Small-molecule diketopyrrolopyrrole-based therapeutic nanoparticles for photoacoustic imaging-guided photothermal therapy. Nano Res., 2017, 10, 794-801.
[http://dx.doi.org/10.1007/s12274-016-1332-2]
[120]
Liu, H.; Wang, K.; Yang, C.; Huang, S.; Wang, M. Multifunctional polymeric micelles loaded with doxorubicin and poly(dithienyl-diketopyrrolopyrrole) for near-infrared light-controlled chemo-phototherapy of cancer cells. Colloids Surf. B Biointerfaces, 2017, 157, 398-406.
[http://dx.doi.org/10.1016/j.colsurfb.2017.05.080] [PMID: 28624725]
[121]
Ding, Y.; Du, C.; Qian, J.; Dong, C.M. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Lett., 2019, 19(7), 4362-4370.
[http://dx.doi.org/10.1021/acs.nanolett.9b00975] [PMID: 31199153]
[122]
Li, M.; Sun, X.; Zhang, N.; Wang, W.; Yang, Y.; Jia, H.; Liu, W. NIR-activated polydopamine-coated carrier-free “nanobomb” for in situ on-demand drug release. Adv. Sci., 2018, 5(7)1800155
[http://dx.doi.org/10.1002/advs.201800155] [PMID: 30027047]
[123]
Vines, J.B.; Lim, D-J.; Park, H. Contemporary polymer-based nanoparticle systems for photothermal therapy. Polymers , 2018, 10(12), 1357.
[http://dx.doi.org/10.3390/polym10121357] [PMID: 30961282]
[124]
Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E.K.; Park, H.; Suh, J.S.; Lee, K.; Yoo, K.H.; Kim, E.K.; Huh, Y.M.; Haam, S. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. Engl., 2011, 50(2), 441-444.
[http://dx.doi.org/10.1002/anie.201005075] [PMID: 21132823]
[125]
Nguyen, H.T.; Phung, C.D.; Thapa, R.K.; Pham, T.T.; Tran, T.H.; Jeong, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Multifunctional nanoparticles as somatostatin receptor-targeting delivery system of polyaniline and methotrexate for combined chemo-photothermal therapy. Acta Biomater., 2018, 68, 154-167.
[http://dx.doi.org/10.1016/j.actbio.2017.12.033] [PMID: 29292170]
[126]
Opletal, G.; Grochola, G.; Chui, Y.H. Stability and transformations of heated gold nanorods. J. Phys. Chem. C, 2011, 115, 4375-4380.
[http://dx.doi.org/10.1021/jp1074913]
[127]
Tapeinos, C.; Marino, A.; Ciofani, G. Advanced theranostic nanomedicine in oncology. Front. Bioeng. Biotechnol., 2020, 8, 142.
[128]
Chen, H.; Dorrigan, A.; Saad, S.; Hare, D.J.; Cortie, M.B.; Valenzuela, S.M. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One, 2013, 8(2)e58208
[http://dx.doi.org/10.1371/journal.pone.0058208] [PMID: 23469154]
[129]
Alkilany, A.M.; Murphy, C.J. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J. Nanopart. Res., 2010, 12(7), 2313-2333.
[http://dx.doi.org/10.1007/s11051-010-9911-8] [PMID: 21170131]
[130]
Auffan, M.; Rose, J.; Bottero, J-Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol., 2009, 4(10), 634-641.
[http://dx.doi.org/10.1038/nnano.2009.242] [PMID: 19809453]
[131]
Handy, R.D.; Shaw, B.J. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc., 2007, 9, 125-144.
[http://dx.doi.org/10.1080/13698570701306807]
[132]
Aslani, F.; Bagheri, S.; Muhd Julkapli, N.; Juraimi, A.S.; Hashemi, F.S.; Baghdadi, A. Effects of engineered nanomaterials on plants growth: an overview. ScientificWorldJournal, 2014, 2014641759
[http://dx.doi.org/10.1155/2014/641759] [PMID: 25202734]
[133]
Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 2006, 307(1), 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[134]
Mehra, N.K.; Jain, A.K.; Lodhi, N.; Raj, R.; Dubey, V.; Mishra, D.; Nahar, M.; Jain, N.K. Challenges in the use of carbon nanotubes for biomedical applications. Crit. Rev. Ther. Drug Carrier Syst., 2008, 25(2), 169-206.
[135]
Naguib, N.N.; Mueller, Y.M.; Bojczuk, P.M. Effect of carbon nanofibre structure on the binding of antibodies. Nanotechnology, 2005, 16, 567.
[http://dx.doi.org/10.1088/0957-4484/16/4/038]
[136]
Wang, H.; Wang, J.; Deng, X.; Sun, H.; Shi, Z.; Gu, Z.; Liu, Y.; Zhao, Y. Biodistribution of carbon single-wall carbon nanotubes in mice. J. Nanosci. Nanotechnol., 2004, 4(8), 1019-1024.
[http://dx.doi.org/10.1166/jnn.2004.146] [PMID: 15656196]
[137]
Ou, L.; Song, B.; Liang, H.; Liu, J.; Feng, X.; Deng, B.; Sun, T.; Shao, L. Toxicity of graphene-family nanoparticles: A general review of the origins and mechanisms. Part. Fibre Toxicol., 2016, 13(1), 57.
[http://dx.doi.org/10.1186/s12989-016-0168-y] [PMID: 27799056]
[138]
Li, B.; Yang, J.; Huang, Q. Biodistribution and pulmonary toxicity of intratracheally instilled graphene oxide in mice. NPG Asia Mater., 2013, 5, e44-e44.
[http://dx.doi.org/10.1038/am.2013.7]
[139]
Zhang, X.; Yin, J.; Peng, C. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon, 2011, 49, 986-995.
[140]
Yang, K.; Gong, H.; Shi, X.; Wan, J.; Zhang, Y.; Liu, Z. In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials, 2013, 34(11), 2787-2795.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.001] [PMID: 23340196]
[141]
Schinwald, A.; Murphy, F.; Askounis, A.; Koutsos, V.; Sefiane, K.; Donaldson, K.; Campbell, C.J. Minimal oxidation and inflammogenicity of pristine graphene with residence in the lung. Nanotoxicology, 2014, 8(8), 824-832.
[http://dx.doi.org/10.3109/17435390.2013.831502] [PMID: 23924429]
[142]
Spence, G.T.; Lo, S.S.; Ke, C.; Destecroix, H.; Davis, A.P.; Hartland, G.V.; Smith, B.D. Near-infrared croconaine rotaxanes and doped nanoparticles for enhanced aqueous photothermal heating. Chemistry, 2014, 20(39), 12628-12635.
[http://dx.doi.org/10.1002/chem.201403315] [PMID: 25146580]
[143]
Guha, S.; Shaw, S.K.; Spence, G.T.; Roland, F.M.; Smith, B.D. Clean photothermal heating and controlled release from near-infrared dye doped nanoparticles without oxygen photosensitization. Langmuir, 2015, 31(28), 7826-7834.
[http://dx.doi.org/10.1021/acs.langmuir.5b01878] [PMID: 26149326]
[144]
Farokhi, M.; Mottaghitalab, F.; Saeb, M.R.; Thomas, S. Functionalized theranostic nanocarriers with bio-inspired polydopamine for tumor imaging and chemo-photothermal therapy. J. Control. Release, 2019, 309, 203-219.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.036] [PMID: 31362077]
[145]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy