Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Systematic Review Article

Neurological Associations of SARS-CoV-2 Infection: A Systematic Review

Author(s): Amaan Javed*

Volume 21, Issue 3, 2022

Published on: 22 December, 2021

Page: [246 - 258] Pages: 13

DOI: 10.2174/1871527320666210216121211

Price: $65

Abstract

Background: The current ongoing COVID-19 pandemic has compelled us to scrutinize major outbreaks in the past two decades, Severe Acute Respiratory Syndrome (SARS), in 2002, and Middle East Respiratory Syndrome (MERS), in 2012. We aimed to assess the associated neurological manifestations with SARS CoV-2 infection.

Methods: In this systematic review, a search was carried out by key-electronic databases, controlled vocabulary, and indexing of trials to evaluate the available pertinent studies which included both medical subject headings (MeSH) and advanced electronic databases comprising PubMed, Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL). Peer-reviewed studies published in English and Spanish were considered, which reported data on the neurological associations of individuals with suspected or laboratory-confirmed SARS-CoV-2 infection. Outcomes were nervous signs or symptoms, symptom severity, and diagnoses.

Results: Our search identified 45 relevant studies, with 21 case reports, 3 case series, 9 observational studies, 1 retrospective study, 9 retrospective reviews, and 2 prospective reviews. This systematic review revealed that most commonly reported neuronal presentations involved headache, nausea, vomiting and muscular symptoms like fibromyalgia. Anosmia and ageusia, defects in clarity or sharpness of vision (error in visual acuity), and pain may occur in parallel. Notable afflictions in the form of anxiety, anger, confusion, post-traumatic stress symptoms, and post-intensive care syndrome were observed in individuals who were kept in quarantine and those with long-stay admissions in healthcare settings. SARS CoV-2 infection may result in cognitive impairment. Patients with more severe infection exhibited uncommon manifestations, such as acute cerebrovascular diseases (intracerebral haemorrhage, stroke), rhabdomyolysis, encephalopathy, and Guillain-Barré syndrome.

Conclusion: SARS-CoV-2 patients experience neuronal presentations varying with the progression of the infection. Healthcare professionals should be acquainted with the divergent neurological symptoms to curb misdiagnosis and limit long-term sequelae. Health-care planners and policymakers must prepare for this eventuality, while the ongoing studies increase our knowledge base on acute and chronic neurological associations of this pathogen.

Keywords: SARS-CoV-2, Coronavirus, COVID-19, neurological sequelae, neuroinflammatory mechanism, CNS, PNS.

Graphical Abstract
[1]
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls Publishing, 2020. Accessed: Jun. 23, 2020. [Online]. 2020. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32150360
[2]
Rothan H A, Byrareddy S N. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun 2020; 109
[http://dx.doi.org/10.1016/j.jaut.2020.102433]
[3]
Liu S L. New virus in China requires international control effort. Nature 2020; 577(7791): 472.
[http://dx.doi.org/10.1038/d41586-020-00135-z]
[4]
World Map | CDC. Available from: https://www.cdc.gov/coronavirus/2019-ncov/global-covid-19/world-map.html (accessed Jun. 21, 2020).
[5]
Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of hospitalized patients with SARS-CoV-2 infection: A single arm meta-analysis. J Med Virol 2020; 92(6): 612-7.
[http://dx.doi.org/10.1002/jmv.25735] [PMID: 32108351]
[6]
Martins-Filho PR, Tavares CSS, Santos VS. Factors associated with mortality in patients with COVID-19. A quantitative evidence synthesis of clinical and laboratory data. Eur J Intern Med 2020; 76: 97.
[http://dx.doi.org/10.1016/j.ejim.2020.04.043]
[7]
Yan CH, Faraji F, Prajapati DP, Boone CE, DeConde AS. Association of chemosensory dysfunction and COVID-19 in patients presenting with influenza-like symptoms. International Forum of Allergy & Rhinology. 10(7): 806-13.
[http://dx.doi.org/10.1002/alr.22579]
[8]
Matías-Guiu J, Gomez-Pinedo U, Montero-Escribano P, Gomez-Iglesias P, Porta-Etessam J, Matias-Guiu JA. Should we expect neurological symptoms in the SARS-CoV-2 epidemic? Neurologia 2020; 35(3): 170-5.
[http://dx.doi.org/10.1016/j.nrleng.2020.03.002] [PMID: 32299636]
[9]
Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme JF Jr. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005; 171(4): 340-7.
[http://dx.doi.org/10.1164/rccm.200406-763OC] [PMID: 15542793]
[10]
Whittaker A, Anson M, Harky A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol Scand 2020; 142(1): 14-22.
[http://dx.doi.org/10.1111/ane.13266] [PMID: 32412088]
[11]
Gronseth CJ, Gloss D, Merillat S, Dittman J, Armstrong MJ. OCEBM Levels of Evidence - CEBM In: on behalf of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology 2017 Clinical Practice Guideline Process Manual. 2017 ed.. Minneapolis, MN: The American Academy of Neurology 2017.
[12]
Bersano A, Pantoni L. On being a neurologist in Italy at the time of the COVID-19 outbreak. Neurology 2020; 94(21): 905-6.
[http://dx.doi.org/10.1212/WNL.0000000000009508]
[13]
de Seze J, Lebrun-Frenay C. Covid-19, the pandemic war: Implication for neurologists. Rev Neurol (Paris) 2020; 176(4): 223-4.
[http://dx.doi.org/10.1016/j.neurol.2020.03.002] [PMID: 32303331]
[14]
Paniz-Mondolfi A, Bryce C, Grimes Z, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol 2020; 92(7): 699-702.
[http://dx.doi.org/10.1002/jmv.25915] [PMID: 32314810]
[15]
St-Jean JR, Jacomy H, Desforges M, Vabret A, Freymuth F, Talbot PJ. Human respiratory coronavirus OC43: genetic stability and neuroinvasion. J Virol 2004; 78(16): 8824-34.
[http://dx.doi.org/10.1128/JVI.78.16.8824-8834.2004] [PMID: 15280490]
[16]
van Riel D, Verdijk R, Kuiken T. The olfactory nerve: A shortcut for influenza and other viral diseases into the central nervous system. J Pathol 2015; 235(2): 277-87.
[http://dx.doi.org/10.1002/path.4461] [PMID: 25294743]
[17]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011]
[18]
Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: protective role in women and children. Front Pediatr 2020; 8: 206.
[http://dx.doi.org/10.3389/fped.2020.00206] [PMID: 32391299]
[19]
Kalinke U, Bechmann I, Detje CN. Host strategies against virus entry via the olfactory system. Virulence 2011; 2(4): 367-70.
[http://dx.doi.org/10.4161/viru.2.4.16138] [PMID: 21758005]
[20]
Berth SH, Leopold PL, Morfini GN. Virus-induced neuronal dysfunction and degeneration. Front Biosci 2009; 14(14): 5239-59.
[http://dx.doi.org/10.2741/3595] [PMID: 19482613]
[21]
Berger JR. COVID-19 and the nervous system. J NeuroVirol 2020; 26(2): 143-8.
[http://dx.doi.org/10.1007/s13365-020-00840-5]
[22]
Raoult D, Zumla A, Locatelli F, Ippolito G, Kroemer G. Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress 2020; 4(4): 66-75.
[http://dx.doi.org/10.15698/cst2020.04.216] [PMID: 32292881]
[23]
Matsuda K, Park CH, Sunden Y, et al. The vagus nerve is one route of transneural invasion for intranasally inoculated influenza a virus in mice. Vet Pathol 2004; 41(2): 101-7.
[http://dx.doi.org/10.1354/vp.41-2-101] [PMID: 15017022]
[24]
Li Z, He W, Lan Y, et al. The evidence of porcine hemagglutinating encephalomyelitis virus induced nonsuppurative encephalitis as the cause of death in piglets. PeerJ 2016; 4(9): e2443.
[http://dx.doi.org/10.7717/peerj.2443] [PMID: 27672502]
[25]
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virol 2020; 92(6): 552-5.
[http://dx.doi.org/10.1002/jmv.25728] [PMID: 32104915]
[26]
Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA 2020; 117(20): 10970-5.
[http://dx.doi.org/10.1073/pnas.2005615117] [PMID: 32350134]
[27]
Wu Y, Xu X, Chen Z, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain Behav Immun 2020; 87: 18-22.
[http://dx.doi.org/10.1016/j.bbi.2020.03.031] [PMID: 32240762]
[28]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5]
[29]
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. American J Pathol 2007; 170(4): 1136-47.
[http://dx.doi.org/10.2353/ajpath.2007.061088]
[30]
Abdelnour L, Eltahir Abdalla M, Babiker S. COVID 19 infection presenting as motor peripheral neuropathy. J Formosan Med Assoc 2020; 119(6): 1119-20.
[http://dx.doi.org/10.1016/j.jfma.2020.04.024]
[31]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[32]
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. Int J Infect Dis 2020; 94: 55-8.
[http://dx.doi.org/10.1016/j.ijid.2020.03.062] [PMID: 32251791]
[33]
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: Imaging Features. Radiology 2020; 296(2): E119-20.
[http://dx.doi.org/10.1148/radiol.2020201187] [PMID: 32228363]
[34]
Chen Z, et al. Efficacy of hydroxychloroquine in patients with COVID-19: results of a randomized clinical trial medRxiv 2020.
[http://dx.doi.org/10.1101/2020.03.22.20040758]
[35]
Gutiérrez-Ortiz C, et al. Miller fisher syndrome and polyneuritis cranialis in COVID-19. Neurology 2020; 95(5): e601-5.
[http://dx.doi.org/10.1212/WNL.0000000000009619]
[36]
Klironomos S, Tzortzakakis A, Kits A, et al. Nervous system involvement in coronavirus disease 2019: results from a retrospective consecutive neuroimaging cohort. Radiology 2020; 297(3): E324-34.
[http://dx.doi.org/10.1148/radiol.2020202791] [PMID: 32729812]
[37]
Durrant D M, Ghosh S, Klein R S. The Olfactory Bulb: An Immunosensory Effector Organ during Neurotropic Viral Infections. ACS Chemical Neuroscience 2016; 7(4): 464-9.
[http://dx.doi.org/10.1021/acschemneuro.6b00043]
[38]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[39]
Bauer C, Hautefort C, Herman P, Manley GT, Lyon DM, Hopkins C. Smell and taste dysfunction in patients with COVID-19. Lancet Infect Dis 2020; 20(9): 1015-6.
[http://dx.doi.org/10.1016/S1473-3099(20)30293-0]
[40]
Chung TWH, Snidhar S, Zhang AJ, et al. Olfactory dysfunction in coronavirus disease 2019 patients: observational cohort study and systematic review. Open Forum Infect Dis 2020; 7(6): ofaa199.
[http://dx.doi.org/10.1093/ofid/ofaa199] [PMID: 32548209]
[41]
Eliezer M, Hautefort C, Hamel A-L, et al. Sudden and complete olfactory loss of function as a possible symptom of COVID-19. JAMA Otolaryngol Head Neck Surg 2020; 146(7): 674-5.
[http://dx.doi.org/10.1001/jamaoto.2020.0832] [PMID: 32267483]
[42]
Wang WK, Chen SY, Liu IJ, et al. Detection of SARS-associated coronavirus in throat wash and saliva in early diagnosis. Emerg Infect Dis 2004; 10(7): 1213-9.
[http://dx.doi.org/10.3201/eid1007.031113] [PMID: 15324540]
[43]
McAbee GN, Brosgol Y, Pavlakis S, Agha R, Gaffoor M. Encephalitis Associated with COVID-19 Infection in an 11-Year-Old Child. Pediatr Neurol 2020; 109(Apr): 94.
[http://dx.doi.org/10.1016/j.pediatrneurol.2020.04.013] [PMID: 32586676]
[44]
Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020; 71(16): 2027-34.
[http://dx.doi.org/10.1093/cid/ciaa344] [PMID: 32221519]
[45]
Carignan A, Valiquette L, Grenier C, et al. Anosmia and dysgeusia associated with SARS-CoV-2 infection: An age-matched case-control study. CMAJ 2020; 192(26): E702-7.
[http://dx.doi.org/10.1503/cmaj.200869] [PMID: 32461325]
[46]
Bostancıklıoğlu M. Temporal correlation between neurological and gastrointestinal symptoms of SARS-CoV-2. Inflamm Bowel Dis 2020; 26(8): e89-91.
[http://dx.doi.org/10.1093/ibd/izaa131] [PMID: 32440692]
[47]
Oxley TJ, Mocco J, Majidi S, et al. Large-Vessel Stroke as a Presenting Feature of Covid-19 in the Young. N Engl J Med 2020; 382(20): e60.
[http://dx.doi.org/10.1056/NEJMc2009787] [PMID: 32343504]
[48]
Avula A, Nalleballe K, Narula N, et al. COVID-19 presenting as stroke. Brain Behav Immun 2020; 87: 115-9.
[http://dx.doi.org/10.1016/j.bbi.2020.04.077] [PMID: 32360439]
[49]
Lau KK, Yu WC, Chu CM, Lau ST, Sheng B, Yuen KY. Possible central nervous system infection by SARS coronavirus. Emerg Infect Dis 2004; 10(2): 342-4.
[http://dx.doi.org/10.3201/eid1002.030638] [PMID: 15030709]
[50]
Lin Q, Zhao S, Gao D, et al. A conceptual model for the coronavirus disease 2019 (COVID-19) outbreak in Wuhan, China with individual reaction and governmental action. Int J Infect Dis 2020; 93: 211-6.
[http://dx.doi.org/10.1016/j.ijid.2020.02.058] [PMID: 32145465]
[51]
Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): Encephalopathy. Cureus 2020; 12(3): e7352.
[http://dx.doi.org/10.7759/cureus.7352] [PMID: 32328364]
[52]
Willison H J, Jacobs B C, van Doorn P A. Guillain-Barré syndrome. The Lancet 2016; 388(10045): 717-27.
[http://dx.doi.org/10.1016/S0140-6736(16)00339-1]
[53]
Dalakas M C. Guillain-Barré syndrome: The first documented COVID-19-triggered autoimmune neurologic disease: More to come with myositis in the offing. Neurology(R) neuroimmunology & neuroinflammation 2020; 7(5)
[http://dx.doi.org/10.1212/NXI.0000000000000781]
[54]
Toscano G, Palmerini F, Ravaglia S, et al. Guillain-Barré syndrome associated with SARS-CoV-2. N Engl J Med 2020; 382(26): 2574-6.
[http://dx.doi.org/10.1056/NEJMc2009191] [PMID: 32302082]
[55]
Camdessanche J P, Morel J, Pozzetto B, Paul S, Tholance Y, Botelho-Nevers E. COVID-19 may induce Guillain–Barré syndrome. Revue Neurologique 2020; 176(6): 516-8.
[http://dx.doi.org/10.1016/j.neurol.2020.04.003]
[56]
Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: A case report. J Clin Neurosci 2020; 76: 233-5.
[http://dx.doi.org/10.1016/j.jocn.2020.04.062] [PMID: 32312628]
[57]
Dimachkie MM, Barohn RJ. Guillain-Barré syndrome and variants. NIH Public Access 2013; 31(2): 491-510.
[http://dx.doi.org/10.1016/j.ncl.2013.01.005] [PMID: 23642721]
[58]
Leonhard SE, Mandarakas MR, Gondim FAA, et al. Diagnosis and management of Guillain-Barré syndrome in ten steps. Nat Rev Neurol 2019; 15(11): 671-83.
[http://dx.doi.org/10.1038/s41582-019-0250-9] [PMID: 31541214]
[59]
Kapfhammer HP, Rothenhäusler HB, Krauseneck T, Stoll C, Schelling G. Posttraumatic stress disorder and health-related quality of life in long-term survivors of acute respiratory distress syndrome. Am J Psychiatry 2004; 161(1): 45-52.
[http://dx.doi.org/10.1176/appi.ajp.161.1.45] [PMID: 14702249]
[60]
Jacomy H, Fragoso G, Almazan G, Mushynski WE, Talbot PJ. Human coronavirus OC43 infection induces chronic encephalitis leading to disabilities in BALB/C mice. Virology 2006; 349(2): 335-46.
[http://dx.doi.org/10.1016/j.virol.2006.01.049] [PMID: 16527322]
[61]
Adhikari NKJ, McAndrews MP, Tansey CM, et al. Self-reported symptoms of depression and memory dysfunction in survivors of ARDS. Chest 2009; 135(3): 678-87.
[http://dx.doi.org/10.1378/chest.08-0974] [PMID: 19265087]
[62]
Pandharipande PP, Girard TD, Jackson JC, et al. Long-term cognitive impairment after critical illness. N Engl J Med 2013; 369(14): 1306-16.
[http://dx.doi.org/10.1056/NEJMoa1301372] [PMID: 24088092]
[63]
Lamy M, Fallat RJ, Koeniger E, et al. Pathologic features and mechanisms of hypoxemia in adult respiratory distress syndrome. Am Rev Respir Dis 1976; 114(2): 267-84.
[http://dx.doi.org/10.1164/arrd.1976.114.2.267] [PMID: 788563]
[64]
Tremblay P-B, Macari DMT, Martel D, du Souich P, Barja-Fidalgo C, Marleau S. Hypoxemia modifies circulating and exudate neutrophil number and functional responses in carrageenin-induced pleurisy in the rat. J Leukoc Biol 2000; 67(6): 785-92.
[http://dx.doi.org/10.1002/jlb.67.6.785] [PMID: 10857850]
[65]
Sarkar M, Niranjan N, Banyal P K. Mechanisms of hypoxemia. Lung India 2017; 34(1): 47-60.
[http://dx.doi.org/10.4103/0970-2113.197116]
[66]
Herridge M S, et al. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. Inten Care Med 2016; 42(5): 725-38.
[http://dx.doi.org/10.1007/s00134-016-4321-8]
[67]
Unroe M, Kahn JM, Carson SS, et al. One-year trajectories of care and resource utilization for recipients of prolonged mechanical ventilation: A cohort study. Ann Intern Med 2010; 153(3): 167-75.
[http://dx.doi.org/10.7326/0003-4819-153-3-201008030-00007] [PMID: 20679561]
[68]
Rawal G, Yadav S, Kumar R. Post-intensive care syndrome: An overview. J Transl Int Med 2017; 5(2): 90-2.
[http://dx.doi.org/10.1515/jtim-2016-0016] [PMID: 28721340]
[69]
Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol 2003; 77(16): 8801-11.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[70]
de Groot RJ, Luytjes W, Horzinek MC, van der Zeijst BAM, Spaan WJM, Lenstra JA. Evidence for a coiled-coil structure in the spike proteins of coronaviruses. J Mol Biol 1987; 196(4): 963-6.
[http://dx.doi.org/10.1016/0022-2836(87)90422-0] [PMID: 3681988]
[71]
DeDiego ML, Alvarez E, Almazán F, et al. A severe acute respiratory syndrome coronavirus that lacks the E gene is attenuated in vitro and in vivo. J Virol 2007; 81(4): 1701-13.
[http://dx.doi.org/10.1128/JVI.01467-06] [PMID: 17108030]
[72]
He F, Deng Y, Li W. Coronavirus disease 2019: What we know? J Med Virol 2020; 92(7)
[http://dx.doi.org/10.1002/jmv.25766]
[73]
Mori I, Nishiyama Y, Yokochi T, Kimura Y. Olfactory transmission of neurotropic viruses. J Neurovirol 2005; 11(2): 129-37.
[http://dx.doi.org/10.1080/13550280590922793] [PMID: 16036791]
[74]
Jin Y H, et al. A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Military Med Res 2020; 7(1): 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6]
[75]
Fukuda M, Yoshida T, Moroki M, et al. Influenza A with hemorrhagic shock and encephalopathy syndrome in an adult: A case report. Medicine (Baltimore) 2019; 98(14): e15012.
[http://dx.doi.org/10.1097/MD.0000000000015012] [PMID: 30946330]
[76]
Desforges M, Le Coupanec A, Stodola JK, Meessen-Pinard M, Talbot PJ. Human coronaviruses: Viral and cellular factors involved in neuroinvasiveness and neuropathogenesis. Virus Research. Elsevier 2014; 194: pp. 145-58.
[http://dx.doi.org/10.1016/j.virusres.2014.09.011]
[77]
Umscheid CA, Margolis DJ, Grossman CE. Key concepts of clinical trials: A narrative review. NIH Public Access 2011; 123(5): 194-204.
[http://dx.doi.org/10.3810/pgm.2011.09.2475] [PMID: 21904102]
[78]
Wang W, et al. Detection of SARS-CoV-2 in different types of clinical specimens. JAMA - J American Med Assoc 2020; 323(18): 1843-4.
[http://dx.doi.org/10.1001/jama.2020.3786]
[79]
McCray PB Jr, Pewe L, Wohlford-Lenane C, et al. Lethal infection of K18-hACE2 mice infected with severe acute respiratory syndrome coronavirus. J Virol 2007; 81(2): 813-21.
[http://dx.doi.org/10.1128/JVI.02012-06] [PMID: 17079315]
[80]
Guan WJ, Ni ZY, Hu Y, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med 2020; 382(18): 1708-20.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[81]
Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res 2020; 191: 9-14.
[http://dx.doi.org/10.1016/j.thromres.2020.04.024] [PMID: 32353746]
[82]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[83]
Yang J, Zheng Y, Gou X, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int J Infect Dis 2020; 94: 91-5.
[http://dx.doi.org/10.1016/j.ijid.2020.03.017] [PMID: 32173574]
[84]
Vellingiri B, Jayaramayya K, Iyer M, et al. COVID-19: A promising cure for the global panic. Sci Total Environ 2020; 725: 138277.
[http://dx.doi.org/10.1016/j.scitotenv.2020.138277] [PMID: 32278175]
[85]
Wang Y, Zhang D, Du G, et al. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020; 395(10236): 1569-78.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[86]
Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[87]
Asadi-Pooya A A, Simani L. Central nervous system manifestations of COVID-19: A systematic review. J Neurol Sci 2020; 413: 116832.
[http://dx.doi.org/10.1016/j.jns.2020.116832] [PMID: 32299017]
[88]
Chen G, Wu D, Guo W, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest 2020; 130(5): 2620-9.
[http://dx.doi.org/10.1172/JCI137244] [PMID: 32217835]
[89]
Sun D, Li H, Lu XX, et al. Clinical features of severe pediatric patients with coronavirus disease 2019 in Wuhan: A single center’s observational study. World J Pediatr 2020; 16(3): 251-9.
[http://dx.doi.org/10.1007/s12519-020-00354-4] [PMID: 32193831]
[90]
Ng Kee Kwong KC, Mehta PR, Shukla G, Mehta AR. COVID-19, SARS and MERS: A neurological perspective. J Clin Neurosci 2020; 77: 13-6.
[http://dx.doi.org/10.1016/j.jocn.2020.04.124] [PMID: 32417124]
[91]
Wang HY, Li XL, Yan ZR, Sun XP, Han J, Zhang BW. Potential neurological symptoms of COVID-19. Ther Adv Neurol Disord 2020; 13: 1756286420917830.
[http://dx.doi.org/10.1177/1756286420917830] [PMID: 32284735]
[92]
DosSantos MF, Devalle S, Aran V, et al. Neuromechanisms of SARS-CoV-2: A Review. Front Neuroanat 2020; 14: 37.
[http://dx.doi.org/10.3389/fnana.2020.00037] [PMID: 32612515]
[93]
Nguyen T, Duong Bang D, Wolff A. 2019 Novel coronavirus disease (COVID-19): Paving the road for rapid detection and point-of-care diagnostics. Micromachines (Basel) 2020; 11(3): 1-7.
[http://dx.doi.org/10.3390/mi11030306] [PMID: 32183357]
[94]
Alberti P, Beretta S, Piatti M, et al. Guillain-Barré syndrome related to COVID-19 infection. Neurol Neuroimmunol Neuroinflamm 2020; 7(4): e741.
[http://dx.doi.org/10.1212/NXI.0000000000000741] [PMID: 32350026]
[95]
Coen M, Jeanson G, Almeida LAC, et al. Guillain-Barré syndrome as a complication of SARS-CoV-2 infection. Brain Behav Immun 2020; 87: 111-2.
[http://dx.doi.org/10.1016/j.bbi.2020.04.074] [PMID: 32360440]
[96]
Sharifi-Razavi A, Karimi N, Rouhani N. COVID-19 and intracerebral haemorrhage: causative or coincidental? New Microbes New Infect 2020; 35: 100669.
[http://dx.doi.org/10.1016/j.nmni.2020.100669] [PMID: 32322398]
[97]
Dugue R, et al. Neurologic manifestations in an infant with COVID-19. Neurology 2020; 94(24)
[http://dx.doi.org/10.1212/WNL.0000000000009653]
[98]
Cheng VCC, Lau SKP, Woo PCY, Yuen KY. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin Microbiol Rev 2007; 20(4): 660-94. [ASM].
[http://dx.doi.org/10.1128/CMR.00023-07] [PMID: 17934078]
[99]
Zhang R, Li Y, Zhang AL, Wang Y, Molina MJ. Identifying airborne transmission as the dominant route for the spread of COVID-19 Proceedings of the National Academy of Sciences. 17(26): 14857-63.
[http://dx.doi.org/10.1073/pnas.2009637117]
[100]
SEIMC. Reflexiones de SEIMC sobre el uso de la detección de antígenos y anticuerpos para diagnóstico de COVID-19.Cold Spring Harbor Laboratory Press 2020.
[http://dx.doi.org/10.1101/2020.03.02.20030189]
[101]
Kaya Y, Kara S, Akinci C, Kocaman AS. Transient cortical blindness in COVID-19 pneumonia; a PRES-like syndrome: Case report. J Neurol Sci 2020; 413
[http://dx.doi.org/10.1016/j.jns.2020.116858]
[102]
Dhanwate A. Brainstem death: A comprehensive review in Indian perspective. Indian J Crit Care Med 2014; 18(9): 596-605.
[http://dx.doi.org/10.4103/0972-5229.140151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy