Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Two Promising Anti-Cancer Compounds, 2-Hydroxycinnaldehyde and 2- Benzoyloxycinnamaldehyde: Where do we stand?

Author(s): Haroon Iqbal*, Farid Menaa*, Naveed Ullah Khan*, Anam Razzaq, Zaheer Ullah Khan, Kifayat Ullah, Robia Kamal, Muhammad Sohail, Gobika Thiripuranathar, Bushra Uzair, Nosheen Fatima Rana, Barkat Ali Khan and Bouzid Menaa

Volume 25, Issue 5, 2022

Published on: 16 February, 2021

Page: [808 - 818] Pages: 11

DOI: 10.2174/1386207324666210216094428

Price: $65

Abstract

Natural bioactive compounds with anti-carcinogenic activity are gaining tremendous interest in the field of oncology. Cinnamon, an aromatic condiment commonly used in tropical regions, appeared incredibly promising as an adjuvant for cancer therapy. Indeed, its whole or active parts (e.g., bark, leaf) exhibited significant anti-carcinogenic activity, which is mainly due to two cinnamaldehyde derivatives, namely 2-hydroxycinnaldehyde (HCA) and 2- benzoyloxycinnamaldehyde (BCA). In addition to their anti-cancer activity, HCA and BCA exert immunomodulatory, anti-platelets, and anti-inflammatory activities. The highly reactive α,ßunsaturated carbonyl pharmacophore, called Michael acceptor, contributes to their therapeutic effects. The molecular mechanisms underlying their anti-tumoral and anti-metastatic effects are miscellaneous, strongly suggesting that these compounds are multi-targeting compounds. Nevertheless, unravelling the exact molecular mechanisms of HCA and BCA remains a challenging matter which is necessary for optimal controlled-drug targeting delivery, safety, and efficiency. Eventually, their poor pharmacological properties (e.g., systemic bioavailability and solubility) represent a limitation and depend both on their administration route (e.g., per os, intravenously) and the nature of the formulation (e.g., free, smart nano-).

This concise review focused on the potential of HCA and BCA as adjuvants in cancer. We describe their medicinal effects as well as provide an update about their molecular mechanisms reported either in-vitro, ex-vivo, or in animal models.

Keywords: Cinnamon, 2-Hydroxycinnaldehyde, 2-benzoyloxycinnamaldehyde, anti-cancer adjuvant therapeutics, phytochemicals, translational medicine, IARC.

Graphical Abstract
[1]
Sadeghi, S.; Davoodvandi, A.; Pourhanifeh, M.H.; Sharifi, N. ArefNezhad, R.; Sahebnasagh, R.; Moghadam, S.A.; Sahebkar, A.; Mirzaei, H. Anti-cancer effects of cinnamon: Insights into its apoptosis effects. Eur. J. Med. Chem., 2019, 178, 131-140.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.067] [PMID: 31195168]
[2]
Lee, K.W.; Bode, A.M.; Dong, Z. Molecular targets of phytochemicals for cancer prevention. Nat. Rev. Cancer, 2011, 11(3), 211-218.
[http://dx.doi.org/10.1038/nrc3017] [PMID: 21326325]
[3]
Wijesekera, R.O. Historical overview of the cinnamon industry. CRC Crit. Rev. Food Sci. Nutr., 1978, 10(1), 1-30.
[http://dx.doi.org/10.1080/10408397809527243] [PMID: 363362]
[4]
Chen, P.Y.; Yu, J.W.; Lu, F.L.; Lin, M.C.; Cheng, H.F. Differentiating parts of Cinnamomum cassia using LC-qTOF-MS in conjunction with principal component analysis. Biomed. Chromatogr., 2016, 30(9), 1449-1457.
[http://dx.doi.org/10.1002/bmc.3703] [PMID: 26873449]
[5]
Kwon, B-M.; Cho, Y-K.; Lee, S-H.; Nam, J-Y.; Bok, S-H.; Chun, S.K.; Kim, J-A.; Lee, I-R. 2¢-Hydroxycinnamaldehyde from stem bark of Cinnamomum cassia. Planta Med., 1996, 62(2), 183-184.
[http://dx.doi.org/10.1055/s-2006-957851] [PMID: 17252435]
[6]
Larasati, Y.A.; Meiyanto, E. Revealing the potency of cinnamon as an anti-cancer and chemopreventive agent. Indonesian J. Cancer Chemo., 2018, 9, 47-62.
[http://dx.doi.org/10.14499/indonesianjcanchemoprev9iss1pp47-62]
[7]
Hwang, H.; Jeon, H.; Ock, J.; Hong, S.H.; Han, Y-M.; Kwon, B-M.; Lee, W-H.; Lee, M-S.; Suk, K. 2¢-Hydroxycinnamaldehyde targets low-density lipoprotein receptor-related protein-1 to inhibit lipopolysaccharide-induced microglial activation. J. Neuroimmunol., 2011, 230(1-2), 52-64.
[http://dx.doi.org/10.1016/j.jneuroim.2010.08.021] [PMID: 20933287]
[8]
Lee, K.; Park, S-K.; Kwon, B-M.; Kim, K.; Yu, H.E.; Ryu, J.; Oh, S.J.; Lee, K.S.; Kang, J.S.; Lee, C.W.; Kwon, M.G.; Kim, H.M. Transport and metabolism of the antitumour drug candidate 2¢-benzoyloxycinnamaldehyde in Caco-2 cells. Xenobiotica, 2009, 39(12), 881-888.
[http://dx.doi.org/10.3109/00498250903216000] [PMID: 19925380]
[9]
Chew, E-H.; Nagle, A.A.; Zhang, Y.; Scarmagnani, S.; Palaniappan, P.; Bradshaw, T.D.; Holmgren, A.; Westwell, A.D. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic. Biol. Med., 2010, 48(1), 98-111.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.10.028] [PMID: 19837157]
[10]
Chen, B-J.; Fu, C-S.; Li, G-H.; Wang, X-N.; Lou, H-X.; Ren, D-M.; Shen, T. Cinnamaldehyde analogues as potential therapeutic agents. Mini Rev. Med. Chem., 2017, 17(1), 33-43.
[http://dx.doi.org/10.2174/1389557516666160121120744] [PMID: 26791737]
[11]
Gan, F.F.; Chua, Y.S.; Scarmagnani, S.; Palaniappan, P.; Franks, M.; Poobalasingam, T.; Bradshaw, T.D.; Westwell, A.D.; Hagen, T. Structure-activity analysis of 2¢-modified cinnamaldehyde analogues as potential anticancer agents. Biochem. Biophys. Res. Commun., 2009, 387(4), 741-747.
[http://dx.doi.org/10.1016/j.bbrc.2009.07.104] [PMID: 19635456]
[12]
Choi, J.; Lee, K-T.; Ka, H.; Jung, W-T.; Jung, H-J.; Park, H-J. Constituents of the essential oil of the Cinnamomum cassia stem bark and the biological properties. Arch. Pharm. Res., 2001, 24(5), 418-423.
[http://dx.doi.org/10.1007/BF02975187] [PMID: 11693543]
[13]
Kiridena, W.; Miller, K.; Poole, C. Identification of 2-hydroxycinnamaldehyde in the cinnamons of commerce, JPC. J. Planar Chromatogr. Mod. TLC, 1995, 8, 177-183.
[14]
Kwon, J-Y.; Hong, S-H.; Park, S-D.; Ahn, S-G.; Yoon, J-H.; Kwon, B-M.; Kim, S-A. 2¢-Benzoyloxycinnamaldehyde inhibits nitric oxide production in lipopolysaccharide-stimulated RAW 264.7 cells via regulation of AP-1 pathway. Eur. J. Pharmacol., 2012, 696(1-3), 179-186.
[http://dx.doi.org/10.1016/j.ejphar.2012.09.027] [PMID: 23036374]
[15]
Lee, M.A.; Park, H.J.; Chung, H-J.; Kim, W.K.; Lee, S.K. Antitumor activity of 2-hydroxycinnamaldehyde for human colon cancer cells through suppression of β-catenin signaling. J. Nat. Prod., 2013, 76(7), 1278-1284.
[http://dx.doi.org/10.1021/np400216m] [PMID: 23855266]
[16]
Han, D.C.; Lee, M-Y.; Shin, K.D.; Jeon, S.B.; Kim, J.M.; Son, K-H.; Kim, H-C.; Kim, H-M.; Kwon, B-M. 2¢-benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J. Biol. Chem., 2004, 279(8), 6911-6920.
[http://dx.doi.org/10.1074/jbc.M309708200] [PMID: 14660655]
[17]
Ismail, I.A.; Kang, H.S.; Lee, H-J.; Chang, H.; Yun, J.; Lee, C.W.; Kim, N.H.; Kim, H.S.; Yook, J.I.; Hong, S-H.; Kwon, B.M. 2-Hydroxycinnamaldehyde inhibits the epithelial-mesenchymal transition in breast cancer cells. Breast Cancer Res. Treat., 2013, 137(3), 697-708.
[http://dx.doi.org/10.1007/s10549-012-2388-7] [PMID: 23283523]
[18]
Jin, Y-H.; Kim, S-A. 2-Methoxycinnamaldehyde inhibits the TNF-α-induced proliferation and migration of human aortic smooth muscle cells. Int. J. Mol. Med., 2017, 39(1), 191-198.
[http://dx.doi.org/10.3892/ijmm.2016.2818] [PMID: 27922672]
[19]
Leem, J.Y.; Jeong, I.J.; Park, K.T.; Park, H.Y. Isolation of p-hydroxycinnamaldehyde as an antibacterial substance from the saw fly, Acantholyda parki S. FEBS Lett., 1999, 442(1), 53-56.
[http://dx.doi.org/10.1016/S0014-5793(98)01614-7] [PMID: 9923603]
[20]
Kang, H.S.; Kim, J.; Lee, H-J.; Kwon, B-M.; Lee, D-K.; Hong, S-H. LRP1-dependent pepsin clearance induced by 2¢-hydroxycinnamaldehyde attenuates breast cancer cell invasion. Int. J. Biochem. Cell Biol., 2014, 53, 15-23.
[http://dx.doi.org/10.1016/j.biocel.2014.04.021] [PMID: 24796846]
[21]
Kim, S-Y.; Lee, K-J.; Shin, Y-H.; Lee, C-H. Physicochemical properties of 2¢-benzoyloxycinnamaldehyde. Int. J. Pharm., 2004, 287(1-2), 21-26.
[http://dx.doi.org/10.1016/j.ijpharm.2004.08.011] [PMID: 15541908]
[22]
Lee, K.; Kwon, B-M.; Kim, K.; Ryu, J.; Oh, S.J.; Lee, K.S.; Kwon, M-G.; Park, S-K.; Kang, J.S.; Lee, C.W.; Kim, H.M. Plasma pharmacokinetics and metabolism of the antitumour drug candidate 2¢-benzoyloxycinnamaldehyde in rats. Xenobiotica, 2009, 39(3), 255-265.
[http://dx.doi.org/10.1080/00498250802650069] [PMID: 19280524]
[23]
Menaa, F. When pharma meets nano or the emerging era of nanopharmaceuticals. Pharm. Anal. Acta, 2013, 4, 223.
[http://dx.doi.org/10.4172/2153-2435.1000223]
[24]
Kamel, K.M.; Khalil, I.A.; Rateb, M.E.; Elgendy, H.; Elhawary, S. Chitosan-coated cinnamon/oregano-loaded solid lipid nanoparticles to augment 5-fluorouracil cytotoxicity for colorectal cancer: extract standardization, nanoparticle optimization, and cytotoxicity evaluation. J. Agric. Food Chem., 2017, 65(36), 7966-7981.
[http://dx.doi.org/10.1021/acs.jafc.7b03093] [PMID: 28813148]
[25]
Jeong, H-W.; Han, D.C.; Son, K-H.; Han, M.Y.; Lim, J-S.; Ha, J-H.; Lee, C.W.; Kim, H.M.; Kim, H-C.; Kwon, B-M. Antitumor effect of the cinnamaldehyde derivative CB403 through the arrest of cell cycle progression in the G2/M phase. Biochem. Pharmacol., 2003, 65(8), 1343-1350.
[http://dx.doi.org/10.1016/S0006-2952(03)00038-8] [PMID: 12694875]
[26]
Lee, C.W.; Hong, D.H.; Han, S.B.; Park, S.H.; Kim, H.K.; Kwon, B-M.; Kim, H.M. Inhibition of human tumor growth by 2¢-hydroxy- and 2¢-benzoyloxycinnamaldehydes. Planta Med., 1999, 65(3), 263-266.
[http://dx.doi.org/10.1055/s-2006-960772] [PMID: 10232076]
[27]
Moon, E-Y.; Lee, M-R.; Wang, A-G.; Lee, J-H.; Kim, H-C.; Kim, H-M.; Kim, J-M.; Kwon, B-M.; Yu, D-Y. Delayed occurrence of H-ras12V-induced hepatocellular carcinoma with long-term treatment with cinnamaldehydes. Eur. J. Pharmacol., 2006, 530(3), 270-275.
[http://dx.doi.org/10.1016/j.ejphar.2005.11.053] [PMID: 16405947]
[28]
Han, Y-M.; Shin, D-S.; Lee, Y-J.; Ismail, I.A.; Hong, S-H.; Han, D.C.; Kwon, B-M. 2-Hydroxycurcuminoid induces apoptosis of human tumor cells through the reactive oxygen species-mitochondria pathway. Bioorg. Med. Chem. Lett., 2011, 21(2), 747-751.
[http://dx.doi.org/10.1016/j.bmcl.2010.11.114] [PMID: 21183341]
[29]
Fribley, A.; Zeng, Q.; Wang, C-Y. Proteasome inhibitor PS-341 induces apoptosis through induction of endoplasmic reticulum stress-reactive oxygen species in head and neck squamous cell carcinoma cells. Mol. Cell. Biol., 2004, 24(22), 9695-9704.
[http://dx.doi.org/10.1128/MCB.24.22.9695-9704.2004] [PMID: 15509775]
[30]
Kim, S-A.; Sung, Y-K.; Kwon, B-M.; Yoon, J-H.; Lee, H.; Ahn, S-G.; Hong, S-H. 2¢-Hydroxycinnamaldehyde shows antitumor activity against oral cancer in vitro and in vivo in a rat tumor model. Anticancer Res., 2010, 30(2), 489-494.
[PMID: 20332459]
[31]
Hong, S.H.; Kim, J.; Kim, J-M.; Lee, S-Y.; Shin, D-S.; Son, K-H.; Han, D.C.; Sung, Y.K.; Kwon, B-M. Apoptosis induction of 2¢-hydroxycinnamaldehyde as a proteasome inhibitor is associated with ER stress and mitochondrial perturbation in cancer cells. Biochem. Pharmacol., 2007, 74(4), 557-565.
[http://dx.doi.org/10.1016/j.bcp.2007.05.016] [PMID: 17606223]
[32]
Jaganathan, S.K.; Vellayappan, M.V.; Narasimhan, G.; Supriyanto, E.; Octorina Dewi, D.E.; Narayanan, A.L.T.; Balaji, A.; Subramanian, A.P.; Yusof, M. Chemopreventive effect of apple and berry fruits against colon cancer. World J. Gastroenterol., 2014, 20(45), 17029-17036.
[http://dx.doi.org/10.3748/wjg.v20.i45.17029] [PMID: 25493015]
[33]
Tamas, K.; Walenkamp, A.M.; de Vries, E.G.; van Vugt, M.A.; Beets-Tan, R.G.; van Etten, B.; de Groot, D.J.; Hospers, G.A. Rectal and colon cancer: Not just a different anatomic site. Cancer Treat. Rev., 2015, 41(8), 671-679.
[http://dx.doi.org/10.1016/j.ctrv.2015.06.007] [PMID: 26145760]
[34]
Brault, L.; Gasser, C.; Bracher, F.; Huber, K.; Knapp, S.; Schwaller, J. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. haematologica, 2010, 95, 1004-1015.
[35]
Kim, J-E.; Son, J.E.; Jeong, H.; Joon Kim, D.; Seo, S.K.; Lee, E.; Lim, T.G.; Kim, J.R.; Chen, H.; Bode, A.M.; Lee, K.W.; Dong, Z. A novel cinnamon-related natural product with Pim-1 inhibitory activity inhibits leukemia and skin cancer. Cancer Res., 2015, 75(13), 2716-2728.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3655] [PMID: 25948588]
[36]
Weirauch, U.; Beckmann, N.; Thomas, M.; Grünweller, A.; Huber, K.; Bracher, F.; Hartmann, R.K.; Aigner, A. Functional role and therapeutic potential of the pim-1 kinase in colon carcinoma. Neoplasia, 2013, 15(7), 783-794.
[http://dx.doi.org/10.1593/neo.13172] [PMID: 23814490]
[37]
Pierce, A.C.; Jacobs, M.; Stuver-Moody, C. Docking study yields four novel inhibitors of the protooncogene Pim-1 kinase. J. Med. Chem., 2008, 51(6), 1972-1975.
[http://dx.doi.org/10.1021/jm701248t] [PMID: 18290603]
[38]
Elliott, P.J.; Ross, J.S. The proteasome: a new target for novel drug therapies. Am. J. Clin. Pathol., 2001, 116(5), 637-646.
[http://dx.doi.org/10.1309/44HW-5YCJ-FLLP-3R56] [PMID: 11710679]
[39]
Lu, J.; Zhang, K.; Nam, S.; Anderson, R.A.; Jove, R.; Wen, W. Novel angiogenesis inhibitory activity in cinnamon extract blocks VEGFR2 kinase and downstream signaling. Carcinogenesis, 2010, 31(3), 481-488.
[http://dx.doi.org/10.1093/carcin/bgp292] [PMID: 19969552]
[40]
Ismail, I.A.; Kang, H.S.; Lee, H-J.; Kwon, B-M.; Hong, S-H. 2¢-Benzoyloxycinnamaldehyde-mediated DJ-1 upregulation protects MCF-7 cells from mitochondrial damage. Biol. Pharm. Bull., 2012, 35(6), 895-902.
[http://dx.doi.org/10.1248/bpb.35.895] [PMID: 22687481]
[41]
Vasseur, S.; Afzal, S.; Tardivel-Lacombe, J.; Park, D.S.; Iovanna, J.L.; Mak, T.W. DJ-1/PARK7 is an important mediator of hypoxia-induced cellular responses. Proc. Natl. Acad. Sci. USA, 2009, 106(4), 1111-1116.
[http://dx.doi.org/10.1073/pnas.0812745106] [PMID: 19144925]
[42]
Wani, K.D.; Kadu, B.S.; Mansara, P.; Gupta, P.; Deore, A.V.; Chikate, R.C.; Poddar, P.; Dhole, S.D.; Kaul-Ghanekar, R. Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PLoS One, 2014, 9(9)e107315
[http://dx.doi.org/10.1371/journal.pone.0107315] [PMID: 25268975]
[43]
Cho, S-Y.; Lee, H-J.; Lee, H-J.; Jung, D-B.; Kim, H.; Sohn, E.J.; Kim, B.; Jung, J.H.; Kwon, B-M.; Kim, S-H. Activation of AMP-activated protein kinase and extracelluar signal-regulated kinase mediates CB-PIC-induced apoptosis in hypoxic SW620 colorectal cancer cells. Evid. Based Complement. Alternat. Med., 2013, 2013974313
[http://dx.doi.org/10.1155/2013/974313] [PMID: 23589723]
[44]
Yun, M.; Lee, D.; Park, M.N.; Kim, E.O.; Sohn, E.J.; Kwon, B.M.; Kim, S.H. Cinnamaldehyde derivative (CB-PIC) sensitizes chemo-resistant cancer cells to drug-induced apoptosis via suppression of MDR1 and its upstream STAT3 and AKT signalling. Cell. Physiol. Biochem., 2015, 35(5), 1821-1830.
[http://dx.doi.org/10.1159/000373993] [PMID: 25833196]
[45]
Brožič, P.; Golob, B.; Gomboc, N.; Rižner, T.L.; Gobec, S. Cinnamic acids as new inhibitors of 17β-hydroxysteroid dehydrogenase type 5 (AKR1C3). Mol. Cell. Endocrinol., 2006, 248(1-2), 233-235.
[http://dx.doi.org/10.1016/j.mce.2005.10.020] [PMID: 16337332]
[46]
Brožič, P.; Kocbek, P.; Sova, M.; Kristl, J.; Martens, S.; Adamski, J.; Gobec, S.; Lanisnik Rizner, T. Flavonoids and cinnamic acid derivatives as inhibitors of 17β-hydroxysteroid dehydrogenase type 1. Mol. Cell. Endocrinol., 2009, 301(1-2), 229-234.
[http://dx.doi.org/10.1016/j.mce.2008.09.004] [PMID: 18835421]
[47]
Huang, R.P.; Fan, Y.; de Belle, I.; Niemeyer, C.; Gottardis, M.M.; Mercola, D.; Adamson, E.D. Decreased Egr-1 expression in human, mouse and rat mammary cells and tissues correlates with tumor formation. Int. J. Cancer, 1997, 72(1), 102-109.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19970703)72:1<102:AID-IJC15>3.0.CO;2-L] [PMID: 9212230]
[48]
Levin, W.J.; Press, M.F.; Gaynor, R.B.; Sukhatme, V.P.; Boone, T.C.; Reissmann, P.T.; Figlin, R.A.; Holmes, E.C.; Souza, L.M.; Slamon, D.J. Expression patterns of immediate early transcription factors in human non-small cell lung cancer. Oncogene, 1995, 11(7), 1261-1269.
[PMID: 7478546]
[49]
Liu, C.; Rangnekar, V.M.; Adamson, E.; Mercola, D. Suppression of growth and transformation and induction of apoptosis by EGR-1. Cancer Gene Ther., 1998, 5(1), 3-28.
[PMID: 9476963]
[50]
Gitenay, D.; Baron, V.T. Is EGR1 a potential target for prostate cancer therapy? Future Oncol., 2009, 5(7), 993-1003.
[http://dx.doi.org/10.2217/fon.09.67] [PMID: 19792968]
[51]
Ahn, S-G.; Jin, Y-H.; Yoon, J-H.; Kim, S-A. The anticancer mechanism of 2¢-hydroxycinnamaldehyde in human head and neck cancer cells. Int. J. Oncol., 2015, 47(5), 1793-1800.
[http://dx.doi.org/10.3892/ijo.2015.3152] [PMID: 26352194]
[52]
Cowen, R.L.; Williams, K.J.; Chinje, E.C.; Jaffar, M.; Sheppard, F.C.; Telfer, B.A.; Wind, N.S.; Stratford, I.J. Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: reversing tumor radioresistance and effecting cure. Cancer Res., 2004, 64(4), 1396-1402.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-2698] [PMID: 14973055]
[53]
Vaupel, P.; Schlenger, K.; Knoop, C.; Höckel, M. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res., 1991, 51(12), 3316-3322.
[PMID: 2040005]
[54]
Kwon, B-M.; Lee, S-H.; Cho, Y-K.; Bok, S-H.; So, S-H.; Youn, M-R.; Chang, S-I. Synthesis and biological activity of cinnamaldehydes as angiogenesis inhibitors. Bioorg. Med. Chem. Lett., 1997, 7, 2473-2476.
[http://dx.doi.org/10.1016/S0960-894X(97)10008-7]
[55]
Koppikar, S.J.; Choudhari, A.S.; Suryavanshi, S.A.; Kumari, S.; Chattopadhyay, S.; Kaul-Ghanekar, R. Aqueous cinnamon extract (ACE-c) from the bark of Cinnamomum cassia causes apoptosis in human cervical cancer cell line (SiHa) through loss of mitochondrial membrane potential. BMC Cancer, 2010, 10, 210.
[http://dx.doi.org/10.1186/1471-2407-10-210] [PMID: 20482751]
[56]
Zhao, H.; Xie, Y.; Yang, Q.; Cao, Y.; Tu, H.; Cao, W.; Wang, S. Pharmacokinetic study of cinnamaldehyde in rats by GC-MS after oral and intravenous administration. J. Pharm. Biomed. Anal., 2014, 89, 150-157.
[http://dx.doi.org/10.1016/j.jpba.2013.10.044] [PMID: 24291110]
[57]
Bae, W-Y.; Choi, J-S.; Kim, J-E.; Jeong, J-W. Cinnamic aldehyde suppresses hypoxia-induced angiogenesis via inhibition of hypoxia-inducible factor-1α expression during tumor progression. Biochem. Pharmacol., 2015, 98(1), 41-50.
[http://dx.doi.org/10.1016/j.bcp.2015.08.095] [PMID: 26297910]
[58]
Dedieu, S.; Langlois, B.; Devy, J.; Sid, B.; Henriet, P.; Sartelet, H.; Bellon, G.; Emonard, H.; Martiny, L. LRP-1 silencing prevents malignant cell invasion despite increased pericellular proteolytic activities. Mol. Cell. Biol., 2008, 28(9), 2980-2995.
[http://dx.doi.org/10.1128/MCB.02238-07] [PMID: 18316405]
[59]
Song, H.; Li, Y.; Lee, J.; Schwartz, A.L.; Bu, G. Low-density lipoprotein receptor-related protein 1 promotes cancer cell migration and invasion by inducing the expression of matrix metalloproteinases 2 and 9. Cancer Res., 2009, 69(3), 879-886.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3379] [PMID: 19176371]
[60]
Colakoglu, T.; Yildirim, S.; Kayaselcuk, F.; Nursal, T.Z.; Ezer, A.; Noyan, T.; Karakayali, H.; Haberal, M. Clinicopathological significance of PTEN loss and the phosphoinositide 3-kinase/Akt pathway in sporadic colorectal neoplasms: is PTEN loss predictor of local recurrence? Am. J. Surg., 2008, 195(6), 719-725.
[http://dx.doi.org/10.1016/j.amjsurg.2007.05.061] [PMID: 18440486]
[61]
Langlois, M-J.; Bergeron, S.; Bernatchez, G.; Boudreau, F.; Saucier, C.; Perreault, N.; Carrier, J.C.; Rivard, N. The PTEN phosphatase controls intestinal epithelial cell polarity and barrier function: role in colorectal cancer progression. PLoS One, 2010, 5(12)e15742
[http://dx.doi.org/10.1371/journal.pone.0015742] [PMID: 21203412]
[62]
Kim, J.; Kang, H.S.; Lee, Y-J.; Lee, H-J.; Yun, J.; Shin, J.H.; Lee, C.W.; Kwon, B-M.; Hong, S-H. EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett., 2014, 349(1), 35-44.
[http://dx.doi.org/10.1016/j.canlet.2014.03.025] [PMID: 24704156]
[63]
Chen, Y-C.; Shen, S-C.; Chen, L-G.; Lee, T.J.; Yang, L-L. Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biochem. Pharmacol., 2001, 61(11), 1417-1427.
[http://dx.doi.org/10.1016/S0006-2952(01)00594-9] [PMID: 11331078]
[64]
Tunçtan, B.; Uludag, O.; Altug, S.; Abacioglu, N. Effects of nitric oxide synthase inhibition in lipopolysaccharide-induced sepsis in mice. Pharmacol. Res., 1998, 38(5), 405-411.
[http://dx.doi.org/10.1006/phrs.1998.0381] [PMID: 9806822]
[65]
Liu, R.H.; Hotchkiss, J.H. Potential genotoxicity of chronically elevated nitric oxide: a review. Mutat. Res., 1995, 339(2), 73-89.
[http://dx.doi.org/10.1016/0165-1110(95)90004-7] [PMID: 7791803]
[66]
Rockey, D.C.; Chung, J.J.; McKee, C.M.; Noble, P.W. Stimulation of inducible nitric oxide synthase in rat liver by hyaluronan fragments. Hepatology, 1998, 27(1), 86-92.
[http://dx.doi.org/10.1002/hep.510270115] [PMID: 9425922]
[67]
Nunokawa, Y.; Ishida, N.; Tanaka, S. Cloning of inducible nitric oxide synthase in rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun., 1993, 191(1), 89-94.
[http://dx.doi.org/10.1006/bbrc.1993.1188] [PMID: 7680561]
[68]
Lyons, C.R.; Orloff, G.J.; Cunningham, J.M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J. Biol. Chem., 1992, 267(9), 6370-6374.
[http://dx.doi.org/10.1016/S0021-9258(18)42704-4] [PMID: 1372907]
[69]
Galea, E.; Feinstein, D.L.; Reis, D.J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc. Natl. Acad. Sci. USA, 1992, 89(22), 10945-10949.
[http://dx.doi.org/10.1073/pnas.89.22.10945] [PMID: 1279698]
[70]
Lee, S.H.; Lee, S.Y.; Son, D.J.; Lee, H.; Yoo, H.S.; Song, S.; Oh, K.W.; Han, D.C.; Kwon, B.M.; Hong, J.T. Inhibitory effect of 2¢-hydroxycinnamaldehyde on nitric oxide production through inhibition of NF-κ B activation in RAW 264.7 cells. Biochem. Pharmacol., 2005, 69(5), 791-799.
[http://dx.doi.org/10.1016/j.bcp.2004.11.013] [PMID: 15710356]
[71]
Karin, M. NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1: a000141, NF-kappaB is activated by pro-inflammatory cytokines IL-17 and TNFs from activated macrophages and lymphocytes. Downstream genes of NF-kappaB promote cancer cell proliferation and survival, 2009.
[72]
Koh, W.S.; Yoon, S.Y.; Kwon, B-M.; Jeong, T.C.; Nam, K.S.; Han, M.Y. Cinnamaldehyde inhibits lymphocyte proliferation and modulates T-cell differentiation. Int. J. Immunopharmacol., 1998, 20(11), 643-660.
[http://dx.doi.org/10.1016/S0192-0561(98)00064-2] [PMID: 9848396]
[73]
Boucharaba, A.; Guillet, B.; Menaa, F.; Hneino, M.; van Wijnen, A.J.; Clézardin, P.; Peyruchaud, O. Bioactive lipids lysophosphatidic acid and sphingosine 1-phosphate mediate breast cancer cell biological functions through distinct mechanisms. Oncol. Res., 2009, 18(4), 173-184.
[http://dx.doi.org/10.3727/096504009790217399] [PMID: 20112503]
[74]
Jackson, S.P. The growing complexity of platelet aggregation. Blood, 2007, 109(12), 5087-5095.
[http://dx.doi.org/10.1182/blood-2006-12-027698] [PMID: 17311994]
[75]
Hawiger, J. Formation and regulation of platelet and fibrin hemostatic plug. Hum. Pathol., 1987, 18(2), 111-122.
[http://dx.doi.org/10.1016/S0046-8177(87)80330-1] [PMID: 3804319]
[76]
Kim, S.Y.; Koo, Y.K.; Koo, J.Y.; Ngoc, T.M.; Kang, S.S.; Bae, K.; Kim, Y.S.; Yun-Choi, H.S. Platelet anti-aggregation activities of compounds from Cinnamomum cassia. J. Med. Food, 2010, 13(5), 1069-1074.
[http://dx.doi.org/10.1089/jmf.2009.1365] [PMID: 20828311]
[77]
Schmidt, T.J. Helenanolide-type sesquiterpene lactones--III. Rates and stereochemistry in the reaction of helenalin and related helenanolides with sulfhydryl containing biomolecules. Bioorg. Med. Chem., 1997, 5(4), 645-653.
[http://dx.doi.org/10.1016/S0968-0896(97)00003-5] [PMID: 9158862]
[78]
Picman, A.K.; Rodriguez, E.; Towers, G.H. Formation of adducts of parthenin and related sesquiterpene lactones with cysteine and glutathione. Chem. Biol. Interact., 1979, 28(1), 83-89.
[http://dx.doi.org/10.1016/0009-2797(79)90116-9] [PMID: 498366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy