Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Review Article

Head and Neck Cancer Treatments through Chemotherapy to Magnetic Systems: Perspectives and Challenges

Author(s): Nathali R.B. de Lima, Fernando G. de Souza Junior*, Valérie G. Roullin, Kaushik Pal and Nathalia D. da Silva

Volume 15, Issue 1, 2022

Published on: 28 January, 2021

Page: [2 - 20] Pages: 19

DOI: 10.2174/1874471014999210128183231

Price: $65

Abstract

Background: Cancer is one of the diseases causing society’s fears as a stigma of death and pain. Head and Neck Squamous Cell Carcinoma (HNSCC) is a group of malignant neoplasms of different locations in this region of the human body. It is one of the leading causes of morbidity and mortality in Brazil, because these malignant neoplasias, in most cases, are diagnosed in late phases. Surgical excision, chemotherapy and radiotherapy encompass the forefront of antineoplastic therapy; however, the numerous side effects associated with these therapeutic modalities are well known. Some treatments present enough potential to help or replace conventional treatments, such as Magnetic Hyperthermia and Photodynamic Therapy. Such approaches require the development of new materials at the nanoscale, able to carry out the loading of their active components while presenting characteristics of biocompatibility mandatory for biomedical applications.

Objective: This work aims to make a bibliographical review of HNSCC treatments. Recent techniques proven effective in other types of cancer were highlighted and raised discussion and reflections on current methods and possibilities of enhancing the treatment of HNSCC.

Methods: The study was based on bibliometric research between the years 2008 and 2019 using the following keywords: Cancer, Head and Neck Cancer, Chemotherapy, Radiotherapy, Photodynamic Therapy, and Hyperthermia.

Results: A total of 5.151.725 articles were found, 3.712.670 about cancer, 175.470 on Head and Neck Cancer, 398.736 on Radiotherapy, 760.497 on Chemotherapy, 53.830 on Hyperthermia, and 50.522 on Photodynamic Therapy.

Conclusion: The analysis shows that there is still much room for expanding research, especially for alternative therapies since most of the studies still focus on conventional treatments and on the quest to overcome their side effects. The scientific community needs to keep looking for more effective therapies generating fewer side effects for the patient. Currently, the so-called alternative therapies are being used in combination with the conventional ones, but the association of these new therapies shows great potential, in other types of cancer, to improve the treatment efficacy.

Keywords: Head and neck neoplasm, antineoplastic agents, hyperthermia, photochemotherapy, complementary therapies, carcinoma.

Graphical Abstract
[1]
WHO | World Health Statistics 2017: Monitoring health for the SDGs 2017. Available from: https://www.who.int/gho/publications/world_health_statistics/2017/en/
[2]
Argirion, I.; Zarins, K.R.; Defever, K.; Suwanrungruang, K.; Chang, J.T.; Pongnikorn, D.; Chitapanarux, I.; Sriplung, H.; Vatanasapt, P. Temporal Changes in Head and Neck Cancer Incidence in Thailand Suggest Changing Oropharyngeal Epidemiology in the Region. J Glob Oncol, 2019, 5, 1-11.
[http://dx.doi.org/10.1200/JGO.18.00219] [PMID: 30860955]
[3]
Maraqa, L.; Lansdown, M. Study design and statistics in the epidemiology of breast cancer. Br. J. Cancer, 2006, 95(9), 1301.
[http://dx.doi.org/10.1038/sj.bjc.6603370] [PMID: 17024126]
[4]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[5]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[7]
DeSantis, C.E.; Siegel, R.L.; Sauer, A.G.; Miller, K.D.; Fedewa, S.A.; Alcaraz, K.I.; Jemal, A. Cancer statistics for African Americans, 2016: Progress and opportunities in reducing racial disparities. CA Cancer J. Clin., 2016, 66(4), 290-308.
[http://dx.doi.org/10.3322/caac.21340] [PMID: 26910411]
[8]
Owosho, A.A.; Velez, M., III; Tyburski, A.; Hofheins, J.; Wiley, R.; Stansbury, T.; Gbadamosi, S.O.; Ryder, J.S. Epidemiological trends of oropharyngeal and oral cavity squamous cell carcinomas in Northern New England, 2000-2013. Cancer Causes Control, 2019, 30(3), 291-299.
[http://dx.doi.org/10.1007/s10552-019-1136-2] [PMID: 30729358]
[9]
Ando, N.; Iizuka, T.; Ide, H.; Ishida, K.; Shinoda, M.; Nishimaki, T.; Takiyama, W.; Watanabe, H.; Isono, K.; Aoyama, N.; Makuuchi, H.; Tanaka, O.; Yamana, H.; Ikeuchi, S.; Kabuto, T.; Nagai, K.; Shimada, Y.; Kinjo, Y.; Fukuda, H. Surgery plus chemotherapy compared with surgery alone for localized squamous cell carcinoma of the thoracic esophagus: a Japan Clinical Oncology Group Study--JCOG9204. J. Clin. Oncol., 2003, 21(24), 4592-4596.
[http://dx.doi.org/10.1200/JCO.2003.12.095] [PMID: 14673047]
[10]
Choi, N.; Park, S.I.; Kim, H.; Sohn, I.; Jeong, H-S. The impact of unplanned reoperations in head and neck cancer surgery on survival. Oral Oncol., 2018, 83, 38-45.
[http://dx.doi.org/10.1016/j.oraloncology.2018.06.004] [PMID: 30098777]
[11]
Sullivan, C.B.; Al-Qurayshi, Z.; Pagedar, N.A. Analysis of patients who decline treatment for squamous cell carcinoma of the head and neck: National perspective. Head Neck, 2020, 42(4), 698-707.
[http://dx.doi.org/10.1002/hed.26040] [PMID: 31895475]
[12]
Bosset, J.F.; Gignoux, M.; Triboulet, J.P.; Tiret, E.; Mantion, G.; Elias, D.; Lozach, P.; Ollier, J.C.; Pavy, J.J.; Mercier, M.; Sahmoud, T. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N. Engl. J. Med., 1997, 337(3), 161-167.
[http://dx.doi.org/10.1056/NEJM199707173370304] [PMID: 9219702]
[13]
Yang, Y-W.; Luo, W-H. Cellular biodistribution of polymeric nanoparticles in the immune system. J. Control. Release, 2016, 227, 82-93.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.011] [PMID: 26873334]
[14]
Pastorino, S.; Riondato, M.; Uccelli, L.; Giovacchini, G.; Giovannini, E.; Duce, V.; Ciarmiello, A. Toward the Discovery and Development of PSMA Targeted Inhibitors for Nuclear Medicine Applications. Curr. Radiopharm., 2020, 13(1), 63-79.
[http://dx.doi.org/10.2174/1874471012666190729151540] [PMID: 31362683]
[15]
Signore, G.; Albano, D.; Giovanella, L.; Bertagna, F.; Treglia, G. Evidence-Based Data About Prevalence and Risk of Malignancy of Thyroid Incidentalomas Detected by Different PET Radiopharmaceuticals. Curr. Radiopharm., 2020, 13(2), 89-93.
[http://dx.doi.org/10.2174/1874471012666191212115732] [PMID: 31830891]
[16]
Adkins, D.; Ley, J.; Oppelt, P.; Gay, H.A.; Daly, M.; Paniello, R.C.; Jackson, R.; Pipkorn, P.; Rich, J.; Zevallos, J.; Trinkaus, K.; Thorstad, W. Impact on Health-Related Quality of Life of Induction Chemotherapy Compared With Concurrent Cisplatin and Radiation Therapy in Patients With Head and Neck Cancer. Clin. Oncol. (R. Coll. Radiol.), 2019, 31(9), e123-e131.
[http://dx.doi.org/10.1016/j.clon.2019.05.007] [PMID: 31147146]
[17]
Bourhis, J.; Sire, C.; Graff, P.; Grégoire, V.; Maingon, P.; Calais, G.; Gery, B.; Martin, L.; Alfonsi, M.; Desprez, P.; Pignon, T.; Bardet, E.; Rives, M.; Geoffrois, L.; Daly-Schveitzer, N.; Sen, S.; Tuchais, C.; Dupuis, O.; Guerif, S.; Lapeyre, M.; Favrel, V.; Hamoir, M.; Lusinchi, A.; Temam, S.; Pinna, A.; Tao, Y.G.; Blanchard, P.; Aupérin, A. Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02): an open-label phase 3 randomised trial. Lancet Oncol., 2012, 13(2), 145-153.
[http://dx.doi.org/10.1016/S1470-2045(11)70346-1] [PMID: 22261362]
[18]
Walcott-Sapp, S.; Johnson, N.; Garreau, J. Use of integrative services is associated with maintenance of work schedule during and after cancer treatment. Am. J. Surg., 2018, 215(5), 892-897.
[http://dx.doi.org/10.1016/j.amjsurg.2018.02.009] [PMID: 29471964]
[19]
Sobin, LK.; Gospodarovich, MK.; Vittekind, K TNM: klassifikatsiia zlokachestvennykh opukholei = TNM classification of malignant tumours; , 2011.
[20]
Kleihues, P.; Sobin, L.H. World Health Organization classification of tumors. Cancer, 2000, 88(12), 2887.
[http://dx.doi.org/10.1002/1097-0142(20000615)88:12<2887::AID-CNCR32>3.0.CO;2-F] [PMID: 10870076]
[21]
Di Girolamo, C.; Walters, S.; Gildea, C.; Benitez Majano, S.; Rachet, B.; Morris, M. Can we assess Cancer Waiting Time targets with cancer survival? A population-based study of individually linked data from the National Cancer Waiting Times monitoring dataset in England, 2009-2013. PLoS One, 2018, 13(8), e0201288.
[http://dx.doi.org/10.1371/journal.pone.0201288] [PMID: 30133466]
[22]
Forrest, L.F.; Adams, J.; White, M.; Rubin, G. Factors associated with timeliness of post-primary care referral, diagnosis and treatment for lung cancer: population-based, data-linkage study. Br. J. Cancer, 2014, 111(9), 1843-1851.
[http://dx.doi.org/10.1038/bjc.2014.472] [PMID: 25203519]
[23]
Sánchez, J.A.; Handal, M.G.; Vílchez Rodriguez, J.F.; Mejía, S.I.; Pagoaga, A.P. Time Intervals From Onset of Clinical Manifestations to Treatment in Patients With Cancer at Hospital General San Felipe, Tegucigalpa, Honduras. J. Glob. Oncol., 2019, 5, 1-7.
[http://dx.doi.org/10.1200/JGO.19.00107] [PMID: 31162986]
[24]
Chone, C.T. Changing paradigms in treatment of larynx cancer✩✩Please cite this article as: Chone CT. Changing paradigms in treatment of larynx cancer. Braz J Otorhinolaryngol. 2014;80:96-7. Rev. Bras. Otorrinolaringol. (Engl. Ed.), 2014, 80, 96-97.
[http://dx.doi.org/10.5935/1808-8694.20140021]
[25]
Bedenne, L.; Michel, P.; Bouché, O.; Milan, C.; Mariette, C.; Conroy, T.; Pezet, D.; Roullet, B.; Seitz, J-F.; Herr, J-P.; Paillot, B.; Arveux, P.; Bonnetain, F.; Binquet, C. Chemoradiation followed by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD 9102. J. Clin. Oncol., 2007, 25(10), 1160-1168.
[http://dx.doi.org/10.1200/JCO.2005.04.7118] [PMID: 17401004]
[26]
Stahl, M.; Stuschke, M.; Lehmann, N.; Meyer, H-J.; Walz, M.K.; Seeber, S.; Klump, B.; Budach, W.; Teichmann, R.; Schmitt, M.; Schmitt, G.; Franke, C.; Wilke, H. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J. Clin. Oncol., 2005, 23(10), 2310-2317.
[http://dx.doi.org/10.1200/JCO.2005.00.034] [PMID: 15800321]
[27]
Lopes, M.A.; Arriagada, W.A.G.; Ramos, L.M.A.; Vargas, P.A.; Coletta, R.D.; Bingle, L. Salivary SPLUNC2A and SPLUNC1 Expression is Modified by Head and Neck Cancer Radiotherapy and Can be Associated with Collateral Effects. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2015, 119, e122.
[http://dx.doi.org/10.1016/j.oooo.2014.07.086]
[28]
Abed, S.; Khoury, C.; Morand, J.J. Radiodermatitis. EMC - Dermatol, 2016, 50, 1-9.
[29]
Carranza Romero, C. Dermatosis por agentes físicos. Med - Programa Form Médica Contin Acreditado, 2018, 12, 2784-2794.
[30]
Hernández Aragüés, I.; Pulido Pérez, A.; Suárez Fernández, R. Dermatosis inflamatorias asociadas a radioterapia. Actas Dermosifiliogr., 2017, 108(3), 209-220.
[http://dx.doi.org/10.1016/j.ad.2016.09.011] [PMID: 28010872]
[31]
Doornaert, P.; Dahele, M.; Verbakel, W.F.A.R.; Bohoudi, O.; Slotman, B.J.; Langendijk, J.A. The effect of induction chemotherapy on tumor volume and organ-at-risk doses in patients with locally advanced oropharyngeal cancer. Radiother. Oncol., 2013, 109(2), 269-274.
[http://dx.doi.org/10.1016/j.radonc.2013.07.016] [PMID: 24252276]
[32]
de Bree, R.; Wolf, G.T.; de Keizer, B.; Nixon, I.J.; Hartl, D.M.; Forastiere, A.A.; Haigentz, M., Jr; Rinaldo, A.; Rodrigo, J.P.; Saba, N.F.; Suárez, C.; Vermorken, J.B.; Ferlito, A. Response assessment after induction chemotherapy for head and neck squamous cell carcinoma: From physical examination to modern imaging techniques and beyond. Head Neck, 2017, 39(11), 2329-2349.
[http://dx.doi.org/10.1002/hed.24883] [PMID: 28815841]
[33]
Guerder, C.; Padovani, L.; Farnault, B.; Peretti, F.; Mercier, C.; Bagarry, D.; Muracciole, X.; Giovanni, A.; Zanaret, M. Cowen, D Head and Neck Cancer: Impact of Induction Chemotherapy on Target Volume Definition. Fuel Energy Abstr., 2009, •••, 75.
[34]
Dobruch, J.; Daneshmand, S.; Fisch, M.; Lotan, Y.; Noon, A.P.; Resnick, M.J.; Shariat, S.F.; Zlotta, A.R.; Boorjian, S.A. Gender and Bladder Cancer: A Collaborative Review of Etiology, Biology, and Outcomes. Eur. Urol., 2016, 69(2), 300-310.
[http://dx.doi.org/10.1016/j.eururo.2015.08.037] [PMID: 26346676]
[35]
Bluethmann, S.M.; Mariotto, A.B.; Rowland, J.H. Anticipating the “Silver Tsunami”: Prevalence Trajectories and Comorbidity Burden among Older Cancer Survivors in the United States. Cancer Epidemiol. Biomarkers Prev., 2016, 25(7), 1029-1036.
[http://dx.doi.org/10.1158/1055-9965.EPI-16-0133] [PMID: 27371756]
[36]
Spring, B.; Stump, T.; Penedo, F.; Pfammatter, A.F.; Robinson, J.K. Toward a health-promoting system for cancer survivors: Patient and provider multiple behavior change. Health Psychol Off J Div Health Psychol Am Psychol Assoc, 2019, 38(9), 840-850.
[http://dx.doi.org/10.1037/hea0000760] [PMID: 31436465]
[37]
Silveira, A.; Gonçalves, J.; Sequeira, T.; Ribeiro, C.; Lopes, C.; Monteiro, E.; Pimentel, F.L. Oncologia de Cabeça e Pescoço: enquadramento epidemiológico e clínico na avaliação da Qualidade de Vida Relacionada com a Saúde. Rev. Bras. Epidemiol., 2012, 15(1), 38-48.
[http://dx.doi.org/10.1590/S1415-790X2012000100004] [PMID: 22450491]
[38]
Ishii, H.; Tanaka, S.; Masuyama, K. Therapeutic strategy for cancer immunotherapy in head and neck cancer. Adv Cell Mol Otolaryngol, 2015, 3, 27690.
[http://dx.doi.org/10.3402/acmo.v3.27690]
[39]
Lathief, S.; Pothuloori, A.; Liu, X.; Chaidarun, S. Advances and practical use of the molecular markers for thyroid cancer. Adv Cell Mol Otolaryngol, 2016, 4, 33948.
[http://dx.doi.org/10.3402/acmo.v4.33948]
[40]
Colevas, AD New Diseases and New Treatments—Head and Neck Cancer Updates. Hematol. Oncol. Clin. North Am., 2015, 29, xiii-xiv.
[http://dx.doi.org/10.1016/j.hoc.2015.08.004]
[41]
Colevas, A.D.; Yom, S.S.; Pfister, D.G.; Spencer, S.; Adelstein, D.; Adkins, D.; Brizel, D.M.; Burtness, B.; Busse, P.M.; Caudell, J.J.; Cmelak, A.J.; Eisele, D.W.; Fenton, M.; Foote, R.L.; Gilbert, J.; Gillison, M.L.; Haddad, R.I.; Hicks, W.L.; Hitchcock, Y.J.; Jimeno, A.; Leizman, D.; Maghami, E.; Mell, L.K.; Mittal, B.B.; Pinto, H.A.; Ridge, J.A.; Rocco, J.; Rodriguez, C.P.; Shah, J.P.; Weber, R.S.; Witek, M.; Worden, F.; Zhen, W.; Burns, J.L.; Darlow, S.D. NCCN Guidelines Insights: Head and Neck Cancers, Version 1.2018. J. Natl. Compr. Canc. Netw., 2018, 16(5), 479-490.
[http://dx.doi.org/10.6004/jnccn.2018.0026] [PMID: 29752322]
[42]
Colevas, AD Head and Neck Cancer. Hematol. Oncol. Clin. North Am., 2015, 29, i.
[http://dx.doi.org/10.1016/S0889-8588(15)00161-6]
[43]
Ghittoni, R.; Accardi, R.; Chiocca, S.; Tommasino, M. Role of human papillomaviruses in carcinogenesis. Ecancermedicalscience, 2015, 9, 526.
[http://dx.doi.org/10.3332/ecancer.2015.526] [PMID: 25987895]
[44]
Vigneswaran, N.; Williams, M.D. Epidemiologic trends in head and neck cancer and aids in diagnosis. Oral Maxillofac. Surg. Clin. North Am., 2014, 26(2), 123-141.
[http://dx.doi.org/10.1016/j.coms.2014.01.001] [PMID: 24794262]
[45]
Nouraei, S.A.R.; Xie, C.; Hudosvky, A.; Middleton, S.E.; Mace, A.D.; Clarke, P.M. Development and validation of a health informatics algorithm for identifying major head and neck cancer surgery amidst Hospital Episode Statistics data. Clin. Otolaryngol., 2013, 38(2), 186-188.
[http://dx.doi.org/10.1111/coa.12092] [PMID: 23577889]
[46]
Okamoto, M.; Takahashi, H.; Yao, K.; Nakayama, M.E.; Nagai, H. Yoneda, S Head and Neck Malignancy Statistics at Kitasato University. Acta Otolaryngol., 2002, 122, 6-10.
[http://dx.doi.org/10.1080/000164802760057482]
[47]
Mattfeldt, T.; Fleischer, F. Characterization of squamous cell carcinomas of the head and neck using methods of spatial statistics. J. Microsc., 2014, 256(1), 46-60.
[http://dx.doi.org/10.1111/jmi.12157] [PMID: 25142175]
[48]
Choi, J.H.; Chung, W.J.; Bae, S.H.; Song, D.S.; Song, M.J.; Kim, Y.S.; Yim, H.J.; Jung, Y.K.; Suh, S.J.; Park, J.Y.; Kim, D.Y.; Kim, S.U.; Cho, S.B. Randomized, prospective, comparative study on the effects and safety of sorafenib vs. hepatic arterial infusion chemotherapy in patients with advanced hepatocellular carcinoma with portal vein tumor thrombosis. Cancer Chemother. Pharmacol., 2018, 82(3), 469-478.
[http://dx.doi.org/10.1007/s00280-018-3638-0] [PMID: 29982870]
[49]
Perdomo, S.; Anantharaman, D.; Foll, M.; Abedi-Ardekani, B.; Durand, G.; Reis Rosa, L.A.; Holmila, R.; Le Calvez-Kelm, F.; Tajara, E.H.; Wünsch-Filho, V.; Levi, J.E.; Vilensky, M.; Polesel, J.; Holcatova, I.; Simonato, L.; Canova, C.; Lagiou, P.; McKay, J.D.; Brennan, P. Genomic analysis of head and neck cancer cases from two high incidence regions. PLoS One, 2018, 13(1), e0191701.
[http://dx.doi.org/10.1371/journal.pone.0191701] [PMID: 29377909]
[50]
Boscolo-Rizzo, P.; Zorzi, M.; Del Mistro, A.; Da Mosto, M.C.; Tirelli, G.; Buzzoni, C.; Rugge, M.; Polesel, J.; Guzzinati, S. The evolution of the epidemiological landscape of head and neck cancer in Italy: Is there evidence for an increase in the incidence of potentially HPV-related carcinomas? PLoS One, 2018, 13(2), e0192621.
[http://dx.doi.org/10.1371/journal.pone.0192621] [PMID: 29415020]
[51]
Mirzaei, M.; Hosseini, S-A.; Ghoncheh, M.; Soheilipour, F.; Soltani, S.; Soheilipour, F.; Salehiniya, H. Epidemiology and Trend of Head and Neck Cancers in Iran. Glob. J. Health Sci., 2015, 8(1), 189-193.
[http://dx.doi.org/10.5539/gjhs.v8n1p189] [PMID: 26234980]
[52]
Marziliano, A.; Teckie, S.; Diefenbach, M.A. Alcohol-related head and neck cancer: Summary of the literature. Head Neck, 2020, 42(4), 732-738.
[http://dx.doi.org/10.1002/hed.26023] [PMID: 31777131]
[53]
Ferreira Antunes, J.L.; Toporcov, T.N.; Biazevic, M.G.H.; Boing, A.F.; Scully, C.; Petti, S. Joint and independent effects of alcohol drinking and tobacco smoking on oral cancer: a large case-control study. PLoS One, 2013, 8(7), e68132.
[http://dx.doi.org/10.1371/journal.pone.0068132] [PMID: 23874521]
[54]
Menvielle, G.; Fayossé, A.; Radoï, L.; Guida, F.; Sanchez, M.; Carton, M.; Cyr, D.; Schmaus, A.; Cénée, S.; Fevotte, J.; Delafosse, P.; Stücker, I.; Luce, D. The joint effect of asbestos exposure, tobacco smoking and alcohol drinking on laryngeal cancer risk: evidence from the French population-based case-control study, ICARE. Occup. Environ. Med., 2016, 73(1), 28-33.
[http://dx.doi.org/10.1136/oemed-2015-102954] [PMID: 26403532]
[55]
Rothman, K.; Keller, A. The effect of joint exposure to alcohol and tobacco on risk of cancer of the mouth and pharynx. J. Chronic Dis., 1972, 25(12), 711-716.
[http://dx.doi.org/10.1016/0021-9681(72)90006-9] [PMID: 4648515]
[56]
Wang, G-Q.; Abnet, C.C.; Shen, Q.; Lewin, K.J.; Sun, X-D.; Roth, M.J.; Qiao, Y-L.; Mark, S.D.; Dong, Z-W.; Taylor, P.R.; Dawsey, S.M. Histological precursors of oesophageal squamous cell carcinoma: results from a 13 year prospective follow up study in a high risk population. Gut, 2005, 54(2), 187-192.
[http://dx.doi.org/10.1136/gut.2004.046631] [PMID: 15647178]
[57]
Shin, J.M.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Metabolomics of Head and Neck Cancer: A Mini-Review. Front. Physiol., 2016, 7, 526.
[http://dx.doi.org/10.3389/fphys.2016.00526] [PMID: 27877135]
[58]
Cousins, N.; MacAulay, F.; Lang, H.; MacGillivray, S.; Wells, M. A systematic review of interventions for eating and drinking problems following treatment for head and neck cancer suggests a need to look beyond swallowing and trismus. Oral Oncol., 2013, 49(5), 387-400.
[http://dx.doi.org/10.1016/j.oraloncology.2012.12.002] [PMID: 23291294]
[59]
Saito, H.; Yoshizawa, H.; Yoshimori, K.; Katakami, N.; Katsumata, N.; Kawahara, M.; Eguchi, K. Efficacy and safety of single-dose fosaprepitant in the prevention of chemotherapy-induced nausea and vomiting in patients receiving high-dose cisplatin: a multicentre, randomised, double-blind, placebo-controlled phase 3 trial. Ann. Oncol., 2013, 24(4), 1067-1073.
[http://dx.doi.org/10.1093/annonc/mds541] [PMID: 23117073]
[60]
De Vito, R.; Lee, Y.C.A.; Parpinel, M.; Serraino, D.; Olshan, A.F.; Zevallos, J.P.; Levi, F.; Zhang, Z.F.; Morgenstern, H.; Garavello, W.; Kelsey, K.; McClean, M.; Schantz, S.; Yu, G.P.; Boffetta, P.; Chuang, S.C.; Hashibe, M.; La Vecchia, C.; Parmigiani, G.; Edefonti, V. Shared and study-specific dietary patterns and head and neck cancer risk in an international consortium. Epidemiology, 2019, 30(1), 93-102.
[http://dx.doi.org/10.1097/EDE.0000000000000902] [PMID: 30063539]
[61]
Matovina, C.; Birkeland, A.C.; Zick, S.; Shuman, A.G. Integrative medicine in head and neck cancer. Otolaryngol--Head Neck Surg Off J Am Acad Otolaryngol-. Head Neck Surg., 2017, 156, 228-237.
[http://dx.doi.org/10.1177/0194599816671885]
[62]
Zeng, X-T.; Luo, W.; Huang, W.; Wang, Q.; Guo, Y.; Leng, W-D. Tooth loss and head and neck cancer: a meta-analysis of observational studies. PLoS One, 2013, 8(11), e79074.
[http://dx.doi.org/10.1371/journal.pone.0079074] [PMID: 24260154]
[63]
Howren, M.B.; Christensen, A.J.; Karnell, L.H.; Funk, G.F. Psychological factors associated with head and neck cancer treatment and survivorship: evidence and opportunities for behavioral medicine. J. Consult. Clin. Psychol., 2013, 81(2), 299-317.
[http://dx.doi.org/10.1037/a0029940] [PMID: 22963591]
[64]
D’Souza, G.; Anantharaman, D.; Gheit, T.; Abedi-Ardekani, B.; Beachler, D.C.; Conway, D.I.; Olshan, A.F.; Wunsch-Filho, V.; Toporcov, T.N.; Ahrens, W.; Wisniewski, K.; Merletti, F.; Boccia, S.; Tajara, E.H.; Zevallos, J.P.; Levi, J.E.; Weissler, M.C.; Wright, S.; Scelo, G.; Mazul, A.L.; Tommasino, M.; Cadoni, G.; Brennan, P. Effect of HPV on head and neck cancer patient survival, by region and tumor site: A comparison of 1362 cases across three continents. Oral Oncol., 2016, 62, 20-27.
[http://dx.doi.org/10.1016/j.oraloncology.2016.09.005] [PMID: 27865368]
[65]
Haughey, B.H.; Sinha, P.; Kallogjeri, D.; Goldberg, R.L.; Lewis, J.S., Jr; Piccirillo, J.F.; Jackson, R.S.; Moore, E.J.; Brandwein-Gensler, M.; Magnuson, S.J.; Carroll, W.R.; Jones, T.M.; Wilkie, M.D.; Lau, A.; Upile, N.S.; Sheard, J.; Lancaster, J.; Tandon, S.; Robinson, M.; Husband, D.; Ganly, I.; Shah, J.P.; Brizel, D.M.; O’Sullivan, B.; Ridge, J.A.; Lydiatt, W.M. Pathology-based staging for HPV-positive squamous carcinoma of the oropharynx. Oral Oncol., 2016, 62, 11-19.
[http://dx.doi.org/10.1016/j.oraloncology.2016.09.004] [PMID: 27865363]
[66]
Kawakita, D.; Lee, Y.A.; Turati, F.; Parpinel, M.; Decarli, A.; Serraino, D.; Matsuo, K.; Olshan, A.F.; Zevallos, J.P.; Winn, D.M.; Moysich, K.; Zhang, Z-F.; Morgenstern, H.; Levi, F.; Kelsey, K.; McClean, M.; Bosetti, C.; Garavello, W.; Schantz, S.; Yu, G-P.; Boffetta, P.; Chuang, S-C.; Hashibe, M.; Ferraroni, M.; La Vecchia, C.; Edefonti, V. Dietary fiber intake and head and neck cancer risk: A pooled analysis in the International Head and Neck Cancer Epidemiology consortium. Int. J. Cancer, 2017, 141(9), 1811-1821.
[http://dx.doi.org/10.1002/ijc.30886] [PMID: 28710831]
[67]
Van Liew, J.R.; Brock, R.L.; Christensen, A.J.; Karnell, L.H.; Pagedar, N.A.; Funk, G.F. Weight loss after head and neck cancer: A dynamic relationship with depressive symptoms. Head Neck, 2017, 39(2), 370-379.
[http://dx.doi.org/10.1002/hed.24601] [PMID: 27704695]
[68]
Hsiao, J-R.; Ou, C-Y.; Lo, H-I.; Huang, C-C.; Lee, W-T.; Huang, J-S.; Chen, K-C.; Wong, T-Y.; Tsai, S-T.; Yen, C-J.; Wu, Y-H.; Hsueh, W-T.; Yang, M-W.; Wu, S-Y.; Chang, J-Y.; Chang, K-Y.; Lin, C-L.; Wang, F-T.; Wang, Y-H.; Weng, Y-L.; Yang, H-C. Chang, JS Allergies and Risk of Head and Neck Cancer: An Original Study plus Meta-Analysis. PLoS One, 2013, •••, 8.
[69]
Oga, E.A.; Schumaker, L.M.; Alabi, B.S.; Obaseki, D.; Umana, A.; Bassey, I-A.; Ebughe, G.; Oluwole, O.; Akeredolu, T.; Adebamowo, S.N.; Dakum, P.; Cullen, K. Adebamowo, CA Paucity of HPV-Related Head and Neck Cancers (HNC) in Nigeria. PLoS One, 2016, •••, 11.
[70]
Wu, Y-H.; Yen, C-J.; Hsiao, J-R.; Ou, C-Y.; Huang, J-S.; Wong, T-Y.; Tsai, S-T.; Huang, C-C.; Lee, W-T.; Chen, K-C.; Fang, S-Y.; Wu, J-L.; Hsueh, W-T.; Lin, F-C.; Yang, M-W.; Chang, J-Y.; Liao, H-C.; Wu, S-Y.; Lin, C-L.; Wang, Y-H.; Weng, Y-L.; Yang, H-C.; Chen, Y-S.; Chang, J.S. A Comprehensive Analysis on the Association between Tobacco-Free Betel Quid and Risk of Head and Neck Cancer in Taiwanese Men. PLoS One, 2016, 11(10), e0164937.
[http://dx.doi.org/10.1371/journal.pone.0164937] [PMID: 27780233]
[71]
Luce, D.; Stücker, I. Investigation of occupational and environmental causes of respiratory cancers (ICARE): a multicenter, population-based case-control study in France. BMC Public Health, 2011, 11, 928.
[http://dx.doi.org/10.1186/1471-2458-11-928] [PMID: 22171573]
[72]
Nagel, G.; Stafoggia, M.; Pedersen, M.; Andersen, Z.J.; Galassi, C.; Munkenast, J.; Jaensch, A.; Sommar, J.; Forsberg, B.; Olsson, D.; Oftedal, B.; Krog, N.H.; Aamodt, G.; Pyko, A.; Pershagen, G.; Korek, M.; De Faire, U.; Pedersen, N.L.; Östenson, C.G.; Fratiglioni, L.; Sørensen, M.; Tjønneland, A.; Peeters, P.H.; Bueno-de-Mesquita, B.; Vermeulen, R.; Eeftens, M.; Plusquin, M.; Key, T.J.; Concin, H.; Lang, A.; Wang, M.; Tsai, M.Y.; Grioni, S.; Marcon, A.; Krogh, V.; Ricceri, F.; Sacerdote, C.; Ranzi, A.; Cesaroni, G.; Forastiere, F.; Tamayo-Uria, I.; Amiano, P.; Dorronsoro, M.; de Hoogh, K.; Beelen, R.; Vineis, P.; Brunekreef, B.; Hoek, G.; Raaschou-Nielsen, O.; Weinmayr, G. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Int. J. Cancer, 2018, 143(7), 1632-1643.
[http://dx.doi.org/10.1002/ijc.31564] [PMID: 29696642]
[73]
Ghias, AF.; Epps, G.; Cottrill, E.; Mardekian, S.K. Multifocal metastatic breast carcinoma to the thyroid gland histologically mimicking C cell lesions. Case Rep Pathol, 2019, 2019, 9890716.
[http://dx.doi.org/10.1155/2019/9890716] [PMID: 30956833]
[74]
Gupta, T.; Kannan, S.; Ghosh-Laskar, S.; Agarwal, J.P. Systematic review and meta-analyses of intensity-modulated radiation therapy versus conventional two-dimensional and/or or three-dimensional radiotherapy in curative-intent management of head and neck squamous cell carcinoma. PLoS One, 2018, 13(7), e0200137.
[http://dx.doi.org/10.1371/journal.pone.0200137] [PMID: 29979726]
[75]
Tirelli, G.; Hinni, M.; Fernández‐Fernández, M.; Bussani, R.; Gatto, A.; Bonini, P.; Giudici, F. Boscolo Nata, F Frozen sections and complete resection in oral cancer surgery. Oral Dis., 2019, 25(5), 1309-1317.
[76]
Licitra, L.; Perrone, F.; Bossi, P.; Suardi, S.; Mariani, L.; Artusi, R.; Oggionni, M.; Rossini, C.; Cantù, G.; Squadrelli, M.; Quattrone, P.; Locati, L.D.; Bergamini, C.; Olmi, P.; Pierotti, M.A.; Pilotti, S. High-risk human papillomavirus affects prognosis in patients with surgically treated oropharyngeal squamous cell carcinoma. J. Clin. Oncol., 2006, 24(36), 5630-5636.
[http://dx.doi.org/10.1200/JCO.2005.04.6136] [PMID: 17179101]
[77]
Siano, M.; Molinari, F.; Martin, V.; Mach, N.; Früh, M.; Meehan, B.; Crippa, S.; Ghielmini, M.; Espeli, V.; Frattini, M. 2807 Phase II explorative trial to prospectively investigate predictive molecular biomarkers for efficacy of panitumumab (P) in platinum-pretreated head and neck squamous cell cancer (HNSCC). Eur. J. Cancer, 2015, 51, S560.
[http://dx.doi.org/10.1016/S0959-8049(16)31550-7]
[78]
Olzowy, B.; Tsalemchuk, Y.; Schotten, K-J.; Reichel, O.; Harréus, U. Frequency of bilateral cervical metastases in oropharyngeal squamous cell carcinoma: a retrospective analysis of 352 cases after bilateral neck dissection. Head Neck, 2011, 33(2), 239-243.
[http://dx.doi.org/10.1002/hed.21436] [PMID: 20848445]
[79]
Sandler, M.L.; Sims, J.R.; Sinclair, C.; Sharif, K.F.; Ho, R.; Yue, L.E.; Téllez, M.J.; Ulkatan, S.; Khorsandi, A.S.; Brandwein-Weber, M.; Urken, M.L. Vagal schwannomas of the head and neck: A comprehensive review and a novel approach to preserving vocal cord innervation and function. Head Neck, 2019, 41(7), 2450-2466.
[http://dx.doi.org/10.1002/hed.25758] [PMID: 30957342]
[80]
See, A.; Lim, A.E.L.; Wong, J.; Choong, H.L.; Iyer, N.G.; Tan, H.K.; Tan, N.C.; Ng, J.C.F. The effect of parathyroidectomy on patients’ symptoms in tertiary hyperparathyroidism. Head Neck, 2019, 41(8), 2748-2755.
[http://dx.doi.org/10.1002/hed.25750] [PMID: 30957315]
[81]
Ancona, E.; Ruol, A.; Santi, S.; Merigliano, S.; Sileni, V.C.; Koussis, H.; Zaninotto, G.; Bonavina, L.; Peracchia, A. Only pathologic complete response to neoadjuvant chemotherapy improves significantly the long term survival of patients with resectable esophageal squamous cell carcinoma: final report of a randomized, controlled trial of preoperative chemotherapy versus surgery alone. Cancer, 2001, 91(11), 2165-2174.
[http://dx.doi.org/10.1002/1097-0142(20010601)91:11<2165::AID-CNCR1245>3.0.CO;2-H] [PMID: 11391598]
[82]
Rohlfing, M.L.; Mays, A.C.; Isom, S.; Waltonen, J.D. Insurance status as a predictor of mortality in patients undergoing head and neck cancer surgery. Laryngoscope, 2017, 127(12), 2784-2789.
[http://dx.doi.org/10.1002/lary.26713] [PMID: 28639701]
[83]
Pitman, K.T.; Johnson, J.T.; Brown, M.L.; Myers, E.N. Sentinel lymph node biopsy in head and neck squamous cell carcinoma. Laryngoscope, 2002, 112(12), 2101-2113.
[http://dx.doi.org/10.1097/00005537-200212000-00001] [PMID: 12461328]
[84]
Hinni, M.L.; Zarka, M.A.; Hoxworth, J.M. Margin mapping in transoral surgery for head and neck cancer. Laryngoscope, 2013, 123(5), 1190-1198.
[http://dx.doi.org/10.1002/lary.23900] [PMID: 23382042]
[85]
Kochhar, A.; Pronovost, P.J.; Gourin, C.G. Hospital-acquired conditions in head and neck cancer surgery. Laryngoscope, 2013, 123(7), 1660-1669.
[http://dx.doi.org/10.1002/lary.23975] [PMID: 23733563]
[86]
Paterson, C.; Robertson, A.G.; Grose, D.; Correa, P.D.; Rizwanullah, M. Neoadjuvant chemotherapy prior to surgery in head and neck cancer. Clin. Oncol. (R. Coll. Radiol.), 2012, 24(1), 79-80.
[http://dx.doi.org/10.1016/j.clon.2011.09.016] [PMID: 22070911]
[87]
Plaat, R.E.; van Dijk, B.A.C.; Muller Kobold, A.C.; Steenbakkers, R.J.H.M.; Links, T.P.; van der Laan, B.F.A.M.; Plaat, B.E.C. Onset of hypothyroidism after total laryngectomy: Effects of thyroid gland surgery and preoperative and postoperative radiotherapy. Head Neck, 2020, 42(4), 636-644.
[http://dx.doi.org/10.1002/hed.26048] [PMID: 31833166]
[88]
Prabhu, R.S.; Magliocca, K.R.; Hanasoge, S.; Aiken, A.H.; Hudgins, P.A.; Hall, W.A.; Chen, S.A.; Eaton, B.R.; Higgins, K.A.; Saba, N.F.; Beitler, J.J. Accuracy of computed tomography for predicting pathologic nodal extracapsular extension in patients with head-and-neck cancer undergoing initial surgical resection. Int. J. Radiat. Oncol. Biol. Phys., 2014, 88(1), 122-129.
[http://dx.doi.org/10.1016/j.ijrobp.2013.10.002] [PMID: 24331658]
[89]
Gutiérrez-Vargas, R.; Díaz-García, M.L.; Villasís-Keever, M.Á.; Portilla-Robertson, J.; Zapata-Tárres, M. Instruments to measure the quality of life in patients with oral mucositis undergoing oncological treatment: a systematic review of the literature. Bol. Méd. Hosp. Infant. México, 2016, 73(6), 457-466.
[http://dx.doi.org/10.1016/j.bmhimx.2016.10.007] [PMID: 29421290]
[90]
Jiang, N.; Zhao, Y.; Jansson, H.; Chen, X.; Mårtensson, J. Experiences of xerostomia after radiotherapy in patients with head and neck cancer: A qualitative study. J. Clin. Nurs., 2018, 27(1-2), e100-e108.
[http://dx.doi.org/10.1111/jocn.13879] [PMID: 28514511]
[91]
Sykes, K.J.; Morrow, E.; Smith, J.B.; Holcomb, A.J.; TenNapel, M.; Lominska, C.E.; Bur, A.M.; Kakarala, K What is the hold up?-Mixed-methods analysis of postoperative radiotherapy delay in head and neck cancer. Head Neck., 2020, 42(10), 2948-2957.
[http://dx.doi.org/10.1002/hed.26355] [PMID: 33174308]
[92]
Marín, A.; Martín, M.; Liñán, O.; Alvarenga, F.; López, M.; Fernández, L.; Büchser, D.; Cerezo, L. Bystander effects and radiotherapy. Rep. Pract. Oncol. Radiother., 2014, 20(1), 12-21.
[http://dx.doi.org/10.1016/j.rpor.2014.08.004] [PMID: 25535579]
[93]
Budach, W.; Bölke, E.; Kammers, K.; Gerber, P.A.; Orth, K.; Gripp, S.; Matuschek, C. Induction chemotherapy followed by concurrent radio-chemotherapy versus concurrent radio-chemotherapy alone as treatment of locally advanced squamous cell carcinoma of the head and neck (HNSCC): A meta-analysis of randomized trials. Radiother. Oncol., 2016, 118(2), 238-243.
[http://dx.doi.org/10.1016/j.radonc.2015.10.014] [PMID: 26589131]
[94]
Palacios, S.; de Villiers, T.J.; Nardone, Fde.C.; Levine, A.B.; Williams, R.; Hines, T.; Mirkin, S.; Chines, A.A. Assessment of the safety of long-term bazedoxifene treatment on the reproductive tract in postmenopausal women with osteoporosis: results of a 7-year, randomized, placebo-controlled, phase 3 study. Maturitas, 2013, 76(1), 81-87.
[http://dx.doi.org/10.1016/j.maturitas.2013.06.008] [PMID: 23871271]
[95]
Nghiem, P.; Kaufman, H.L.; Bharmal, M.; Mahnke, L.; Phatak, H.; Becker, J.C. Systematic literature review of efficacy, safety and tolerability outcomes of chemotherapy regimens in patients with metastatic Merkel cell carcinoma. Future Oncol., 2017, 13(14), 1263-1279.
[http://dx.doi.org/10.2217/fon-2017-0072] [PMID: 28350180]
[96]
Pignon, J.P.; Bourhis, J.; Domenge, C.; Designé, L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head and Neck Cancer. Lancet, 2000, 355(9208), 949-955.
[http://dx.doi.org/10.1016/S0140-6736(00)90011-4] [PMID: 10768432]
[97]
Weinstein, C.; Jordan, K.; Green, S.A.; Camacho, E.; Khanani, S.; Beckford-Brathwaite, E.; Vallejos, W.; Liang, L.W.; Noga, S.J.; Rapoport, B.L. Single-dose fosaprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with moderately emetogenic chemotherapy: results of a randomized, double-blind phase III trial. Ann. Oncol., 2016, 27(1), 172-178.
[http://dx.doi.org/10.1093/annonc/mdv482] [PMID: 26449391]
[98]
Ma, J.; Liu, Y.; Yang, X.; Zhang, C.P.; Zhang, Z.Y.; Zhong, L.P. Induction chemotherapy in patients with resectable head and neck squamous cell carcinoma: a meta-analysis. World J. Surg. Oncol., 2013, 11, 67.
[http://dx.doi.org/10.1186/1477-7819-11-67] [PMID: 23497185]
[99]
Rocha, P.V.; Alves, M de L. Impacto do Uso da Glutamina na Prevenção de Mucosite em Pacientes Submetidos a Radioterapia + Quimioterapia em Pacientes com Câncer de Cabeça E Pescoço. International Journal of Nutrology, 2018, 11
[http://dx.doi.org/10.1055/s-0038-1674740]
[100]
Meregaglia, M.; Cairns, J.; Licitra, L.; Bossi, P. The use of intensive radiological assessments in routine surveillance after treatment for head and neck cancer: An economic evaluation. Eur. J. Cancer, 2018, 93(93), 89-98.
[http://dx.doi.org/10.1016/j.ejca.2018.01.082] [PMID: 29477796]
[101]
Tolentino, E de S.; Centurion, B.S.; Ferreira, L.H.C.; Souza, A.P.; Damante, J.H.; Rubira-Bullen, I.R. Oral adverse effects of head and neck radiotherapy: literature review and suggestion of a clinical oral care guideline for irradiated patients. J. Appl. Oral Sci., 2011, 19(5), 448-454.
[http://dx.doi.org/10.1590/S1678-77572011000500003] [PMID: 21986648]
[102]
Buligon, M.P.; Da Silva, I.T.R.; De Mello Palma, V.; Danesi, C.C. Ferrazzo, KL PP - ORAL LATE ADVERSE EFFECTS OF CHEMORADIOTHERAPY OF THE HEAD AND NECK: A CASE REPORT. Oral Surg. Oral Med. Oral Pathol. Oral Radiol., 2017, 123, e55.
[103]
Bajpai, R.; Srivastava, A.; Lal, P. Kumar, S Defining the Standard of Care: Waiting Times, Data Recording, Adverse Effects Reporting, Radiotherapy Compliance and Follow-up of Head and Neck Cancer Patients, at a Tertiary Cancer Center in India. Int J Radiat Oncol, 2008, 72, S412-S413.
[http://dx.doi.org/10.1016/j.ijrobp.2008.06.1312]
[104]
Day, A.T.; Chang, H-Y.; Quon, H.; Kang, H.; Kiess, A.P.; Eisele, D.W.; Frick, K.D.; Gourin, C.G. Treatment, short-term outcomes, and costs associated with larynx cancer care in commercially insured patients. Laryngoscope, 2018, 128(1), 91-101.
[http://dx.doi.org/10.1002/lary.26717] [PMID: 28685830]
[105]
Li, L.; Mok, H.; Jhaveri, P.; Bonnen, M.D.; Sikora, A.G.; Eissa, N.T.; Komaki, R.U.; Ghebre, Y.T. Anticancer therapy and lung injury: molecular mechanisms. Expert Rev. Anticancer Ther., 2018, 18(10), 1041-1057.
[http://dx.doi.org/10.1080/14737140.2018.1500180] [PMID: 29996062]
[106]
Shahriari, M.; Zahiri, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release, 2019, 308, 172-189.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.004] [PMID: 31295542]
[107]
Ito, A.; Shinkai, M.; Honda, H.; Kobayashi, T. Medical application of functionalized magnetic nanoparticles. J. Biosci. Bioeng., 2005, 100(1), 1-11.
[http://dx.doi.org/10.1263/jbb.100.1] [PMID: 16233845]
[108]
Mohammadi, M.; Taghavi, S.; Abnous, K.; Taghdisi, S.M.; Ramezani, M. Alibolandi, M Hybrid Vesicular Drug Delivery Systems for Cancer Therapeutics. Adv. Funct. Mater., 2018, 28, 1802136.
[http://dx.doi.org/10.1002/adfm.201802136]
[109]
Shikanov, A.; Domb, A.J. Polymer-Based Drug Delivery Systems for Solid Tumor Treatment. In: Focal Controlled Drug Delivery. Advances in Delivery Science and Technology; Domb, A.J.; Khan, W., Eds.; Springer: Boston, MA, 2018; pp. 511-534.
[http://dx.doi.org/10.1007/978-1-4614-9434-8_23]
[110]
Guo, X.; Wang, L.; Wei, X.; Zhou, S. Polymer-Based Drug Delivery Systems for Cancer Treatment. J Polym Sci Part Polym Chem, 2016, 54(22), 3525-3550.
[http://dx.doi.org/10.1002/pola.28252]
[111]
Goerner, M.; Seiwert, T.Y.; Sudhoff, H. Molecular targeted therapies in head and neck cancer--an update of recent developments-. Head Neck Oncol., 2010, 2, 8.
[http://dx.doi.org/10.1186/1758-3284-2-8] [PMID: 20398256]
[112]
Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm., 2015, 93, 52-79.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.018] [PMID: 25813885]
[113]
Siegel, R.L.; Jemal, A.; Wender, R.C.; Gansler, T.; Ma, J.; Brawley, O.W. An assessment of progress in cancer control. CA Cancer J. Clin., 2018, 68(5), 329-339.
[http://dx.doi.org/10.3322/caac.21460] [PMID: 30191964]
[114]
Brawley, O.W.; Gansler, T.; Wender, R.C. Toward the control of cancer. CA Cancer J. Clin., 2018, 68(5), 327-328.
[http://dx.doi.org/10.3322/caac.21461] [PMID: 30303534]
[115]
Forte, A.J.; Boczar, D.; Huayllani, M.T.; Cinotto, G.J.; McLaughlin, S. Targeted Therapies in Surgical Treatment of Lymphedema: A Systematic Review. Cureus, 2019, 11(8), e5397.
[http://dx.doi.org/10.7759/cureus.5397] [PMID: 31431851]
[116]
Liu, T-Y.; Hussein, W.M.; Giddam, A.K.; Jia, Z.; Reiman, J.M.; Zaman, M.; McMillan, N.A.J.; Good, M.F.; Monteiro, M.J.; Toth, I.; Skwarczynski, M. Polyacrylate-based delivery system for self-adjuvanting anticancer peptide vaccine. J. Med. Chem., 2015, 58(2), 888-896.
[http://dx.doi.org/10.1021/jm501514h] [PMID: 25489968]
[117]
Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A. Perale, G Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem., 2019.
[PMID: 31502840]
[118]
Banerjee, S.M.; MacRobert, A.J.; Mosse, C.A.; Periera, B.; Bown, S.G.; Keshtgar, M.R.S. Photodynamic therapy: Inception to application in breast cancer. Breast Edinb Scotl, 2017, 31, 105-113.
[http://dx.doi.org/10.1016/j.breast.2016.09.016] [PMID: 27833041]
[119]
Yanase, M.; Shinkai, M.; Honda, H.; Wakabayashi, T.; Yoshida, J.; Kobayashi, T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn. J. Cancer Res., 1998, 89(4), 463-469.
[http://dx.doi.org/10.1111/j.1349-7006.1998.tb00586.x] [PMID: 9617354]
[120]
DeNardo, G.L.; DeNardo, S.J. Update: Turning the heat on cancer. Cancer Biother. Radiopharm., 2008, 23(6), 671-680.
[http://dx.doi.org/10.1089/cbr.2008.0591] [PMID: 20443694]
[121]
Kalidasan, V.; Liu, X.; Herng, T.; Yang, Y. Ding, J Bovine Serum Albumin-Conjugated Ferrimagnetic Iron Oxide 3 Nanoparticles to Enhance the Biocompatibility and Magnetic 4 Hyperthermia Performance. Nano-Micro Lett., 2015, •••, 8.
[122]
Huang, K-J.; Wu, S-R.; Shieh, D-B.P. 064 - Zero-valent Iron Nanoparticles Inhibited Head and Neck Cancer Cells Growth: A Pilot Evaluation and Mechanistic Characterization. Free Radic. Biol. Med., 2017, 108, S39. [Abstracts of the OCC World Congress and Annual SFRR-E Conference 2017 Metabolic Stress and Redox Regulation Berlin, Germany 21-23 June 2017].
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.04.149]
[123]
Wang, D.; Qin, X.; Qian, G.; Halig, L.; Fei, B.; Chen, Z.; Chen, G.; Saba, N.; Shin, D. xu, H.; Wang, A Abstract 3223: EGFR targeted iron-oxide nanoparticles for photodynamic therapy in head and neck cancer. Cancer Res., 2014, 74, 3223-3223.
[124]
Thompson, A.; Thapa, R.; Galoforo, S.; Hang, X.; Buelow, K. Wilson, G Targeting Stem Cells in Head and Neck Cancer Using Superparamagnetic Iron Oxide Nanoparticles. Int J Radiat Oncol, 2017, 99, E621.
[http://dx.doi.org/10.1016/j.ijrobp.2017.06.2098]
[125]
Davidi, E.S.; Dreifuss, T.; Motiei, M.; Shai, E.; Bragilovski, D.; Lubimov, L.; Kindler, M.J.J.; Popovtzer, A.; Don, J.; Popovtzer, R. Cisplatin-conjugated gold nanoparticles as a theranostic agent for head and neck cancer. Head Neck, 2018, 40(1), 70-78.
[http://dx.doi.org/10.1002/hed.24935] [PMID: 29130566]
[126]
Huilgol, N.G. A retrospective analysis of patients with head and neck cancer treated with radiation, hyperthermia, and cetuximab: A brief report of outcome. J. Cancer Res. Ther., 2016, 12(3), 1164-1166.
[PMID: 28054529]
[127]
Cappiello, G.; Drizdal, T.; Mc Ginley, B.; O’Halloran, M.; Glavin, M.; van Rhoon, G.C.; Jones, E.; Paulides, M.M. The potential of time-multiplexed steering in phased array microwave hyperthermia for head and neck cancer treatment. Phys. Med. Biol., 2018, 63(13), 135023.
[http://dx.doi.org/10.1088/1361-6560/aaca10] [PMID: 29863491]
[128]
Bose, S.; Robertson, S.F.; Bandyopadhyay, A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater., 2018, 66, 6-22.
[http://dx.doi.org/10.1016/j.actbio.2017.11.003] [PMID: 29109027]
[129]
Bansal, A.; Yang, F.; Xi, T.; Zhang, Y.; Ho, J.S. In vivo wireless photonic photodynamic therapy. Proc. Natl. Acad. Sci. USA, 2018, 115(7), 1469-1474.
[http://dx.doi.org/10.1073/pnas.1717552115] [PMID: 29378941]
[130]
Baron, E.D.; Suggs, A.K. Introduction to photobiology. Dermatol. Clin., 2014, 32(3), 255-266, vii. [vii.].
[http://dx.doi.org/10.1016/j.det.2014.03.002] [PMID: 24891049]
[131]
Juzenas, P.; Chen, W.; Sun, Y-P.; Coelho, M.A.N.; Generalov, R.; Generalova, N.; Christensen, I.L. Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer. Adv. Drug Deliv. Rev., 2008, 60(15), 1600-1614.
[http://dx.doi.org/10.1016/j.addr.2008.08.004] [PMID: 18840487]
[132]
Rkein, A.M.; Ozog, D.M. Photodynamic therapy. Dermatol. Clin., 2014, 32(3), 415-425, x.
[http://dx.doi.org/10.1016/j.det.2014.03.009] [PMID: 24891062]
[133]
Zhuang, X.; Ma, X.; Xue, X.; Jiang, Q.; Song, L.; Dai, L.; Zhang, C.; Jin, S.; Yang, K.; Ding, B.; Wang, P.C.; Liang, X-J.A. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy. ACS Nano, 2016, 10(3), 3486-3495.
[http://dx.doi.org/10.1021/acsnano.5b07671] [PMID: 26950644]
[134]
Niu, K.; Yao, Y.; Xiu, M.; Guo, C.; Ge, Y.; Wang, J. Controlled Drug Delivery by Polylactide Stereocomplex Micelle for Cervical Cancer Chemotherapy. Front. Pharmacol., 2018, 9, 930.
[http://dx.doi.org/10.3389/fphar.2018.00930] [PMID: 30154721]
[135]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.; Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8]
[136]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2015, •••, 60.
[PMID: 26706565]
[137]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[138]
Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release, 2014, 190, 3-8.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.054] [PMID: 24794901]
[139]
Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[140]
Xu, X.; Ho, W.; Zhang, X.; Bertrand, N.; Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med., 2015, 21(4), 223-232.
[http://dx.doi.org/10.1016/j.molmed.2015.01.001] [PMID: 25656384]
[141]
Roque, L.; Castro, P.; Molpeceres, J.; Viana, A.; Roberto, A.; Reis, C.; Rijo, P.; Tho, I.; Sarmento, B.; Reis, C. Bioadhesive polymeric nanoparticles as strategy to improve the treatment of yeast infections in oral cavity: in-vitro and ex-vivo studies. Eur. Polym. J., 2018, •••, 104.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.032]
[142]
Kumari, P.; Ghosh, B.; Biswas, S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target., 2016, 24(3), 179-191.
[http://dx.doi.org/10.3109/1061186X.2015.1051049] [PMID: 26061298]
[143]
Baldanza, V a. R.; Souza, FG.; Filho, ST.; Franco, HA.; Oliveira, GE.; Caetano, RMJ.; Hernandez, J a. R.; Leite, SGF.; Sousa, AMF.; Silva, ALN Controlled-release fertilizer based on poly(butylene succinate)/urea/clay and its effect on lettuce growth. J. Appl. Polym. Sci., 2018, 135, 46858.
[144]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[http://dx.doi.org/10.1007/978-1-60761-609-2_3] [PMID: 20217587]
[145]
Nehoff, H.; Parayath, N.N.; Domanovitch, L.; Taurin, S.; Greish, K. Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine, 2014, 9, 2539-2555.
[PMID: 24904213]
[146]
Patel, T.; Zhou, J.; Piepmeier, J.M.; Saltzman, W.M. Polymeric nanoparticles for drug delivery to the central nervous system. Adv. Drug Deliv. Rev., 2012, 64(7), 701-705.
[http://dx.doi.org/10.1016/j.addr.2011.12.006] [PMID: 22210134]
[147]
Yao, C.; Wu, M.; Zhang, C.; Lin, X.; Wei, Z.; Zheng, Y.; Da Zhang, ; Zhang, Z.; Liu, X. Photoresponsive lipid-polymer hybrid nanoparticles for controlled doxorubicin release. Nanotechnology, 2017, 28(25), 255101.
[http://dx.doi.org/10.1088/1361-6528/aa702a] [PMID: 28561013]
[148]
Nakamura, H.; Fang, J.; Maeda, H.; Maeda, H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin. Drug Deliv., 2015, 12(1), 53-64.
[http://dx.doi.org/10.1517/17425247.2014.955011] [PMID: 25425260]
[149]
Khurana, S.; Jain, N.K.; Bedi, P.M.S. Development and characterization of a novel controlled release drug delivery system based on nanostructured lipid carriers gel for meloxicam. Life Sci., 2013, 93(21), 763-772.
[http://dx.doi.org/10.1016/j.lfs.2013.09.027] [PMID: 24113071]
[150]
Lam, S.J.; Wong, E.H.H.; Boyer, C. Qiao, GG Antimicrobial polymeric nanoparticles. Prog. Polym. Sci., 2018, 76, 40-64.
[http://dx.doi.org/10.1016/j.progpolymsci.2017.07.007]
[151]
Cheng, C.J.; Tietjen, G.T.; Saucier-Sawyer, J.K.; Saltzman, W.M. A holistic approach to targeting disease with polymeric nanoparticles. Nat. Rev. Drug Discov., 2015, 14(4), 239-247.
[http://dx.doi.org/10.1038/nrd4503] [PMID: 25598505]
[152]
Long, Y.; Li, Z.; Bi, Q.; Deng, C.; Chen, Z.; Bhattachayya, S.; Li, C. Novel polymeric nanoparticles targeting the lipopolysaccharides of Pseudomonas aeruginosa. Int. J. Pharm., 2016, 502(1-2), 232-241.
[http://dx.doi.org/10.1016/j.ijpharm.2016.02.021] [PMID: 26899978]
[153]
Swain, S.; Sahu, P.K.; Beg, S.; Babu, S.M. Nanoparticles for Cancer Targeting: Current and Future Directions. Curr. Drug Deliv., 2016, 13(8), 1290-1302.
[http://dx.doi.org/10.2174/1567201813666160713121122] [PMID: 27411485]
[154]
Souza, F.G., Jr; Marins, J.A.; Rodrigues, C.H.M.; Pinto, J.C. A Magnetic Composite for Cleaning of Oil Spills on Water. Macromol. Mater. Eng., 2010, 295, 942-948.
[http://dx.doi.org/10.1002/mame.201000090]
[155]
Souza, F.G., Jr; Michel, R.C.; Soares, B.G. A methodology for studying the dependence of electrical resistivity with pressure in conducting composites. Polym. Test., 2005, 24, 998-1004.
[http://dx.doi.org/10.1016/j.polymertesting.2005.08.001]
[156]
Picciani, P.H.S.; Souza, F.G., Jr; Comerlato, N.M.; Soares, B.G. A novel material based on polyaniline doped with [Cs][In(dmit)2], (cesium). Synth. Met., 2007, 157, 1074-1079. [bis(1,3-dithiole-2-thione-4,5-dithiolato)indium (III)].
[http://dx.doi.org/10.1016/j.synthmet.2007.11.004]
[157]
Souza, F.G., Jr; Oliveira, G.E.; Anzai, T.; Richa, P.; Cosme, T.; Nele, M.; Rodrigues, C.H.M.; Soares, B.G.; Pinto, J.C. A Sensor for Acid Concentration Based on Cellulose Paper Sheets Modified with Polyaniline Nanoparticles. Macromol. Mater. Eng., 2009, 294, 739-748.
[http://dx.doi.org/10.1002/mame.200900111]
[158]
Moraes, T.A.; Julia Farrôco, M.; Pontes, K.; Bittencourt, M.F.; Soares, B.G. Souza, FG An optical-magnetic Material as a toxic gas filter and sensing device. RSC Advances, 2020, 10, 23233-23244.
[http://dx.doi.org/10.1039/D0RA00537A]
[159]
Aboelkheir, M.G.; Bedor, P.B.; Leite, S.G.; Pal, K.; Toledo Filho, R.D. Gomes de Souza, F Biodegradation of Vulcanized SBR: A Comparison between Bacillus subtilis, Pseudomonas aeruginosa and Streptomyces sp. Sci. Rep., 2019, 9, 1-12.
[http://dx.doi.org/10.1038/s41598-019-55530-y]
[160]
Péres, E.U.X.; Souza, F.G., Jr; Silva, F.M.; Chaker, J.A. Suarez, PAZ Biopolyester from ricinoleic acid: Synthesis, characterization and its use as biopolymeric matrix for magnetic nanocomposites. Ind. Crops Prod., 2014, 59, 260-267.
[http://dx.doi.org/10.1016/j.indcrop.2014.05.031]
[161]
Souza, F.G., Jr; Oliveira, G.E. Bioresinas, 1st ed; Novas Edições Acadêmicas: Saarbrücken, Germany, 2015.
[162]
Souza, F.G., Jr; Soares, B.G.; Mantovani, G.L.; Manjunath, A.; Somashekarappa, H.; Somashekar, R. Siddaramaiah Blends of styrene butadiene styrene TRI block copolymer/polyaniline-Characterization by WAXS. Polymer (Guildf.), 2006, 47, 2163-2171.
[http://dx.doi.org/10.1016/j.polymer.2006.01.033]
[163]
Souza, F.G., Jr; Soares, B.G. Siddaramaiah.; Manjunath, A.; Somashekar, R Blends of styrene–butadiene–styrene tri-block copolymer/polyaniline—Characterization by SAXS. Mater. Sci. Eng. A, 2008, 476, 240-247.
[http://dx.doi.org/10.1016/j.msea.2007.05.099]
[164]
Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E.; Souza, F.G. Jr. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent. Mater Res., 2013, 16(3)
[http://dx.doi.org/10.1590/S1516-14392013005000048]
[165]
Pereira, E.D.; Souza, F.G. Jr. Chemical stability of cotrimoxazole in front of its insertion method in composits of PLGA and maghemite. Gramado, RS; 2011.
[166]
da Silveira Maranhão, F.; Marques, D.; Visconte, L.Y.; Souza, F.G. Jr Chewing gum degradation as an environmental awakening tool. MOJ Poly Sci., 2018, 2(2), 71-73.
[http://dx.doi.org/10.15406/mojps.2018.02.00051]
[167]
Gomes, F.W.; Lima, R.C.; Piombini, C.R.; Sinfitele, J.F.; Souza, F.G., Jr; Coutinho, P.L.A. Pinto, JC Comparative Analyses of Poly(ethylene 2,5-furandicarboxylate) − PEF − and Poly(ethylene terephthalate) − PET − Resins and Production Processes. Macromol. Symp., 2018, 381, 1800129.
[http://dx.doi.org/10.1002/masy.201800129]
[168]
Souza, F.G., Jr Andréa Maria da Silva.; de Oliveira, GE.; Costa, RM.; Fernandes, ER.; Pereira, ED Conducting and magnetic mango fibers. Ind. Crops Prod., 2015, 68, 97-104. [FIBRE CROPS: From Production to End Use].
[169]
Baldanza, V.A.R.; Souza, F.G.; Filho, S.T.; Franco, H.A.; Oliveira, G.E.; Caetano, R.M.J.; Hernandez, J.A.R.; Ferreira Leite, S.G.; Furtado Sousa, A.M.; Nazareth Silva, A.L. Controlled-release fertilizer based on poly(butylene succinate)/urea/clay and its effect on lettuce growth. J Appl Polym Sci, 2018, e46858.
[http://dx.doi.org/10.1002/app.4685]
[170]
Spindola, K.C.; Simas, N.K. Santos, CE dos.; Silva, AG da.; Romão, W.; Vanini, G.; da Silva, SR.; Borges, GR.; F.G. Souza Jr.; Kuster, RM Dendranthema grandiflorum, a hybrid ornamental plant, is a source of larvicidal compounds against Aedes aegypti larvae. Rev. Bras. Farmacogn., 2016, 26, 342-346.
[http://dx.doi.org/10.1016/j.bjp.2016.01.003]
[171]
Al-Maqdasi, Z. Development of Constituents for Multi-functional Composites Reinforced with Cellulosic Fibers. 2019.
[172]
Souza, F.G., Jr; Soares, B.G.; Silveira, F.; Renukappa, N.M. Siddaramaiah, S Dielectric Behavior of SBS/Polyaniline Thermally Processable Blends. Chem Chem Technol, 2018, 12, 441-446.
[http://dx.doi.org/10.23939/chcht12.04.441]
[173]
Costa, R.C.D.; Pereira, E.D.; Silva, F.M.; Jesus, E.O.D.; Souza, F.G. Drug micro-carriers based on polymers and their sterilization. Chem Chem Technol, 2018, 12, 473-487.
[http://dx.doi.org/10.23939/chcht12.04.473]
[174]
Marinho, V.S.; Neves, M.A.F.S.; Pedrosa, M.S.; Souza, F.G. Jr. Efeito do meio contínuo na incorporação de material magnético em resinas de estirenodivinilbenzeno. Rev Eletrônica Perspect Ciênc E Tecnol - ISSN 1984-5693, 2018, 10, 110.
[175]
Santos, R.D.; Ferreira, S.R.; Santos, E.R.F.; Oliveira, G.E.; Silva, F.A.; Souza, F.G.; Toledo Filho, R.D. Effect of Alkaline Hornification in Sisal Fibers on the Mechanical Behaviour. Materials Research Proceedings, 2018, 7, 449-456.
[http://dx.doi.org/10.21741/9781945291838-42]
[176]
Ferreira, S.R.; da Silva, A.M.; Souza, F.G., Jr; Filho, R.D.T. de Andrade Silva, F Effect of Polyaniline and H2O2 Surface Modification on the Tensile Behavior and Chemical Properties of Coir Fibers. J. Biobased Mater. Bioenergy, 2014, 8, 578-586.
[http://dx.doi.org/10.1166/jbmb.2014.1478]
[177]
Souza, F.G., Jr; Soares, B.G.; Dahmouche, K. Effect of preparation method on nanoscopic structure of conductive SBS/PANI blends: Study using small‐angle X‐ray scattering. J. Polym. Sci., B, Polym. Phys., 2007, 45, 3069-3077.
[http://dx.doi.org/10.1002/polb.21305]
[178]
Souza, F.G., Jr; Orlando, M.T.D.; Michel, R.C.; Pinto, J.C.; Cosme, T. Oliveira, GE Effect of pressure on the structure and electrical conductivity of cardanol–furfural–polyaniline blends. J. Appl. Polym. Sci., 2011, 119, 2666-2673.
[http://dx.doi.org/10.1002/app.32848]
[179]
Souza, F.G., Jr; Soares, B.G. Pinto, JC Electrical surface resistivity of conductive polymers – A non-Gaussian approach for determination of confidence intervals. Eur. Polym. J., 2008, 44, 3908-3914.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.07.022]
[180]
Picciani, P.H.S.; Soares, B.G.; Medeiros, E.S.; Souza, F.G., Jr; Wood, D.F.; Orts, W.J. Mattoso, LHC Electrospinning of Polyaniline/Poly(Lactic Acid) Ultrathin Fibers: Process and Statistical Modeling using a Non Gaussian Approach. Macromol. Theory Simul., 2009, 18, 528-536.
[http://dx.doi.org/10.1002/mats.200900053]
[181]
Icart, L.; Fernandes, E.; Agüero, L.; Cuesta, M.; Silva, D.; Rodríguez-Fernández, D.; Souza, F., Jr; Lima, L.M. Dias, M End Functionalization by Ring Opening Polymerization: Influence of Reaction Conditions on the Synthesis of End Functionalized Poly(lactic Acid). J. Braz. Chem. Soc., 2017.
[http://dx.doi.org/10.21577/0103-5053.20170118]
[182]
Souza, F.G., Jr; Oliveira, G.E. Environmental Recovery by Magnetic Nanocomposites Based on Castor Oil - Chapter 22. In: Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs - CRC Press Book, 1st ed.; 1613.
[183]
Lopes, M.C.; Souza, F.G., Jr Oliveira, GE Espumados magnetizáveis úteis em processos de recuperação ambiental. Polímeros, 2010, 20, 359-365.
[http://dx.doi.org/10.1590/S0104-14282010005000054]
[184]
Souza, F.G., Jr; Picciani, P.H.; Rocha, E.V. Oliveira, GE Estudo das propriedades mecânicas e elétricas de fibras de curauá modificada com polianilina. Polímeros, 2010, 20, 377-382.
[http://dx.doi.org/10.1590/S0104-14282010005000058]
[185]
Souza, F.G., Jr; Ribeiro, M.E.S. Soares, B Estudo das propriedades térmicas e elétricas de compósitos formados pela inclusão de negro de fumo em poli(4,4′-difenil- ether-1,3,4-oxadiazole). M M -. Met. Mater., 2002, 58, 75-77.
[186]
Souza, F.G., Jr; Pinto, J.C.; de Oliveira, G.E. Soares, BG Evaluation of electrical properties of SBS/Pani blends plasticized with DOP and CNSL using an empirical statistical model. Polym. Test., 2007, 26, 720-728.
[http://dx.doi.org/10.1016/j.polymertesting.2007.03.004]
[187]
Lopes, M.C.; Marques, F.; Souza, F.G., Jr Oliveira, GE Experimental Design Optimization of Castor Oil, Phthalic Anhydride, and Glycerin Magnetic Nanocomposites Useful as Oil Spill Cleanup Tool. Macromol. Symp., 2018, 380, 1800085.
[http://dx.doi.org/10.1002/masy.201800085]
[188]
Figueiredo, A.S.; Icart, L.P.; Marques, F.D.; Fernandes, E.R.; Ferreira, L.P.; Oliveira, G.E.; Souza, F.G., Jr Extrinsically magnetic poly(butylene succinate): An up-and-coming petroleum cleanup tool. Sci. Total Environ., 2019, 647, 88-98.
[http://dx.doi.org/10.1016/j.scitotenv.2018.07.421] [PMID: 30077858]
[189]
Grance, E.G.O. Paiva, M das DM.; Toledo Filho, RD.; Souza Jr., FG Geopolymer: A Review of Structure, Applications and Properties of Fiber Reinforced Composites. Res Dev Mater Sci, 2018, 7, 1-8.
[190]
Santiago, J.P.; de Campos Silva, P.; Marques, F.D. Souza Jr., FG Glycerin-Based Polyurethane Obtained by Inverse Emulsion: Comparison Between Magnetic Induction and Conventional Heating. Macromol. Symp., 2018, 380, 1800091.
[http://dx.doi.org/10.1002/masy.201800091]
[191]
da Costa, R.M.D. Hungerbühler, G.; Saraiva, T.; De Jong, G.; Moraes, RS.; Furtado, EG.; Silva, FM.; Oliveira, GE de.; Ferreira, LS.; Souza Jr, FG Green polyurethane synthesis by emulsion technique: a magnetic composite for oil spill removal. Polímeros, 2017, 27, 273-279.
[http://dx.doi.org/10.1590/0104-1428.2397]
[192]
Perez, D.D. de Souza, FG Growing Use of Conventional Methods for Preparation of Scaffolds for Bone Tissue Engineering. Curr. Appl. Polym. Sci., 2018, 1.
[193]
de Almeida, T.M.; da Silveira Maranhão, F.; de Carvalho, F.V.; Middea, A.; de Araujo, J.R. Souza Jr., FG H2S Sensing Material Based on Cotton Fabrics Modified with Polyaniline. Macromol. Symp., 2018, 381, 1800111.
[http://dx.doi.org/10.1002/masy.201800111]
[194]
Moraes, R.S.; Saez, V.; Hernandez, J.A.R. Souza Jr., FG Hyperthermia System Based on Extrinsically Magnetic Poly (Butylene Succinate). Macromol. Symp., 2018, 381, 1800108.
[http://dx.doi.org/10.1002/masy.201800108]
[195]
de Araújo Segura, T.C.; Pereira, E.D.; Icart, L.P.; Fernandes, E.; Esperandio de Oliveira, G. Souza Jr., FG Hyperthermic Agent Prepared by One-Pot Modification of Maghemite Using an Aliphatic Polyester Model. Polym. Sci. Ser. B, 2018, 60, 806-815.
[http://dx.doi.org/10.1134/S1560090418060106]
[196]
Souza, F.G., Jr; Anzai, T.K.; Rodrigues, M.V.A.; Melo, P.A., Jr; Nele, M. Pinto, JC In situ determination of aniline polymerization kinetics through near‐infrared spectroscopy. J. Appl. Polym. Sci., 2009, 112, 157-162.
[http://dx.doi.org/10.1002/app.29355]
[197]
Souza, F.G., Jr; Sirelli, L.; Michel, R.C.; Soares, B.G. Herbst, MH In situ polymerization of aniline in the presence of carbon black. J. Appl. Polym. Sci., 2006, 102, 535-541.
[http://dx.doi.org/10.1002/app.24280]
[198]
Neves, J.S.; Souza, F.G., Jr; Suarez, P.A.Z.; Umpierre, A.P.; Machado, F. In situ Production of Polystyrene Magnetic Nanocomposites through a Batch Suspension Polymerization Process. Macromol. Mater. Eng., 2011, 296, 1107-1118.
[http://dx.doi.org/10.1002/mame.201100050]
[199]
Santos, R.D.; Ferreira, S.R.; Oliveira, G.E.; Silva, F.A.; Souza, F.G., Jr Filho, RDT Influence of Alkaline Hornification Treatment Cycles on the Mechanical Behavior in Curaua Fibers. Macromol. Symp., 2018, 381, 1800096.
[http://dx.doi.org/10.1002/masy.201800096]
[200]
Pereira, E.D.; Souza, F.G.; Santana, C.I.; Soares, D.Q.; Lemos, A.S.; Menezes, L.R. Influence of magnetic field on the dissolution profile of cotrimoxazole inserted into poly(lactic acid-co-glycolic acid) and maghemite nanocomposites. Polym. Eng. Sci., 2013, 53, 2308-2317.
[http://dx.doi.org/10.1002/pen.23606]
[201]
Souza, F.G.; Soares, B.G. Siddaramaiah.; Barra, GMO.; Herbst, MH Influence of plasticizers (DOP and CNSL) on mechanical and electrical properties of SBS/polyaniline blends. Polymer (Guildf.), 2006, 47, 7548-7553.
[http://dx.doi.org/10.1016/j.polymer.2006.08.026]
[202]
Pereira, E.D.; Cerruti, R.; Fernandes, E.; Peña, L.; Saez, V.; Pinto, J.C.; Ramón, J.A.; Oliveira, G.E.; de Souza, F.G. Jr. Influence of PLGA and PLGA-PEG on the dissolution profile of oxaliplatin. Polímeros, 2016, 26(2)
[http://dx.doi.org/10.1590/0104-1428.2323]
[203]
Souza, F.G., Jr; Anzai, T.K.; Melo, P.A., Jr; Soares, B.G.; Nele, M. Pinto, JC Influence of reaction media on pressure sensitivity of polyanilines doped with DBSA. J. Appl. Polym. Sci., 2008, 107, 2404-2413.
[http://dx.doi.org/10.1002/app.27290]
[204]
Aboelkheir, M.; Siqueira, C.Y.S.; Souza, F.G., Jr Toledo Filho, RD Influence of Styrene-Butadiene Co-Polymer on the Hydration Kinetics of SBR-Modified Well Cement Slurries. Macromol. Symp., 2018, 380, 1800131.
[http://dx.doi.org/10.1002/masy.201800131]
[205]
Siddaramaiah.; Souza Jr., FG.; Soares, BG.; Somashekar, R Investigation on microstructural behavior of styroflex/polyaniline blends by WAXS. J. Appl. Polym. Sci., 2012, 124, 5097-5105.
[206]
Elkodous, M.A.; El-Sayyad, G.S.; Mohamed, A.E.; Pal, K.; Asthana, N.; de Souza, F.G., Junior; Mosallam, F.M.; Gobara, M.; El-Batal, A.I. Layer-by-layer preparation and characterization of recyclable nanocomposite (CoxNi1−xFe2O4; X=0.9/SiO2/TiO2). J. Mater. Sci. Mater. Electron., 2019.
[http://dx.doi.org/10.1007/s10854-019-01149-8]
[207]
Varela, A.; Lopes, M.C.; Delazare, T.; Oliveira, G.E. Magnetic and green resins useful to oil spill cleanup. In: Oil: Production, Consumption and Environmental Impact; Edited by Nova Science Publishers I.: New York: Shuangning Xiu, 2012; 7, .
[208]
Oliveira, G.E.; Souza, F.G. Jr; Lopes, M.C. Magnetic Biofoams Based on Polyurethane Applied in Oil Spill Cleanup Processes - Chapter 23. In: Natural Polymers, Biopolymers, Biomaterials, and Their Composites, Blends, and IPNs - CRC Press Book, 1st ed.; 1613.
[209]
Souza, F.G., Jr; Marins, J.; Pinto, J.; de Oliveira, G.; Rodrigues, C. Lima, L Magnetic field sensor based on a maghemite/polyaniline hybrid material. J. Mater. Sci., 2010, 45, 5012-5021.
[http://dx.doi.org/10.1007/s10853-010-4321-y]
[210]
Middea, A.; Spinelli, L.; Souza, F.G., Jr; Neumann, R.; Fernandes, T.; Faulstich, F.R.L.; Gomes, O. Magnetic polystyrene–palygorskite nanocomposite obtained by heterogeneous phase polymerization to apply in the treatment of oily waters. J. Appl. Polym. Sci., 2018, 135, 46162.
[http://dx.doi.org/10.1002/app.46162]
[211]
de Almeida, K.M.; de Sousa, A.M.F.; Souza, F.G., Jr; Bertolino, L.C.; Rocha, M.C.G.; Peres, A.C.C.; Ossig, A. da Silva, ALN Melt rheology and morphology of binary and ternary PS/HIPS blends for blown film extrusion applications. Polym. Test., 2017, 64, 277-286.
[http://dx.doi.org/10.1016/j.polymertesting.2017.10.016]
[212]
Souza, F.G., Jr; Ferreira, A.C.; Varela, A.; Oliveira, G.E.; Machado, F.; Pereira, E.D.; Fernandes, E.; Pinto, J.C.; Nele, M. Methodology for determination of magnetic force of polymeric nanocomposites. Polym. Test., 2013, 32, 1466-1471.
[http://dx.doi.org/10.1016/j.polymertesting.2013.09.018]
[213]
Souza, F.G., Jr Soares, BG Methodology for determination of Pani.DBSA content in conductive blends by using UV-Vis spectrometry. Polym. Test., 2006, 25, 512-517.
[http://dx.doi.org/10.1016/j.polymertesting.2006.01.014]
[214]
Siddaramaiah.; Souza Jr., FG.; Soares, BG.; Parameswara, P.; Somashekar, R Microstructural behaviors of polyaniline/CB Composites by SAXS. J. Appl. Polym. Sci., 2010, 116, 673-679.
[215]
Brandão, L.T. A.; F. Oechsler, B.; W. Gomes, F.; Souza Jr., FG.; Carlos Pinto, J Modeling and parameter estimation of step-growth polymerization of poly(ethylene-2,5-furandicarboxylate). Polym. Eng. Sci., 2017.
[216]
Souza, F.G., Jr; Paiva, L.O.; Michel, R.C. de Oliveira, GE Modificação da fibra de coco com polianilina e o seu uso como sensor de pressão. Polímeros, 2011, 21, 39-46.
[http://dx.doi.org/10.1590/S0104-14282011005000016]
[217]
Souza Jr, F.G.; Carlos Pinto, J.; Alves Garcia, F.; de Oliveira, G.E.; Bruno Tavares, M.I.; da Silva, A.M. Daher Pereira, E Modification of coconut fibers with polyaniline for manufacture of pressure-sensitive devices. Polym. Eng. Sci., 2014, 54, 2887-2895.
[http://dx.doi.org/10.1002/pen.23845]
[218]
Lange, J.; Souza, FG., Jr; Nele, M.; Tavares, FW.; Segtovich, ISV.; da Silva, GCQ. Molecular Dynamic Simulation of Oxaliplatin Diffusion in Poly(lactic acid‐co‐glycolic acid). Part A: Parameterization and Validation of the Force‐Field CVFF. Macromol Theory Simul, 2015.
[http://dx.doi.org/10.1002/MATS.201500049]
[219]
Vargas, A.; Souza, F.G.Jr Nanocomposites of Poly(L-Lactic Acid) and Maghemite for Drug Delivery of Caffeine. In: Biomaterials Science - Processing, Properties, and Applications; Narayan, R.; Bandyopadhyay, A.; Bose, S., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; pp. 95-105.
[220]
Souza, F.G., Jr; Oliveira, G.E.; Rodrigues, C.H.M.; Soares, B.G.; Nele, M. Pinto, JC Natural Brazilian Amazonic (Curauá) Fibers Modified with Polyaniline Nanoparticles. Macromol. Mater. Eng., 2009, 294, 484-491.
[http://dx.doi.org/10.1002/mame.200900033]
[221]
Souza, F.G., Jr; Richa, P.; de Siervo, A.; Oliveira, G.E.; Rodrigues, C.H.M.; Nele, M. Pinto, JC New in situ Blends of Polyaniline and Cardanol Bio‐Resins. Macromol. Mater. Eng., 2008, 293, 675-683.
[http://dx.doi.org/10.1002/mame.200800077]
[222]
Varela, A.; Oliveira, G.; Souza, F.G., Jr; Rodrigues, C.H.M. Costa, MAS New petroleum absorbers based on cardanol-furfuraldehyde magnetic nanocomposites. Polym. Eng. Sci., 2013, 53, 44-51.
[http://dx.doi.org/10.1002/pen.23229]
[223]
Grance, E.G.O.; Souza, F.G., Jr; Varela, A.; Pereira, E.D.; Oliveira, G.E. Rodrigues, CHM New petroleum absorbers based on lignin‐CNSL‐formol magnetic nanocomposites. J. Appl. Polym. Sci., 2012, 126, E305-E312.
[http://dx.doi.org/10.1002/app.36998]
[224]
Souza, F.G., Jr; Pinto, J.C.; Rodrigues, M.V.; Anzai, T.K.; Richa, P.; Melo, P.A.; Nele, M.; Oliveira, G.E. Soares, BG New polyaniline/polycardanol conductive blends characterized by FTIR, NIR, and XPS. Polym. Eng. Sci., 2008, 48, 1947-1952.
[http://dx.doi.org/10.1002/pen.21047]
[225]
Caetano, R.M.J.; Bedor, P.B.A.; de Jesus, E.F.O.; Leite, S.G.F. Souza Jr., FG Oil Biodegradation Systems Based on γ Irradiated Poly (Butylene Succinate). Macromol. Symp., 2018, 380, 1800123.
[http://dx.doi.org/10.1002/masy.201800123]
[226]
Marques, F.D.; Souza, F.G., Jr Oliveira, GE Oil sorbers based on renewable sources and coffee grounds. J. Appl. Polym. Sci., 2016, 133, 43127-43134.
[http://dx.doi.org/10.1002/app.43127]
[227]
Silva, J.C.; Oliveira, G.E.; Toledo Filho, R.D. Souza Jr., FG Oil Spill Clean-Up Tool Based on Castor Oil and Coffee Grounds Magnetic Resins. Macromol. Symp., 2018, 380, 1800095.
[http://dx.doi.org/10.1002/masy.201800095]
[228]
Elias, E.; Costa, R.; Marques, F.; Oliveira, G.; Guo, Q.; Thomas, S.; Souza, F.G., Jr Oil-spill cleanup: The influence of acetylated curaua fibers on the oil-removal capability of magnetic composites. J. Appl. Polym. Sci., 2015, 132, 41732-41740.
[http://dx.doi.org/10.1002/app.41732]
[229]
Peña Icart, L.; Fernandes dos Santos, E.; Agüero Luztonó, L.; Zaldívar Silva, D.; Andrade, L.; Lopes Dias, M. Trambaioli da Rocha e Lima, LM.; Souza Jr., FG Paclitaxel-Loaded PLA/PEG/Magnetite Anticancer and Hyperthermic Agent Prepared From Materials Obtained by the Ugi’s Multicomponent Reaction. Macromol. Symp., 2018, 380, 1800094.
[http://dx.doi.org/10.1002/masy.201800094]
[230]
Elias, E. C, SC.; Zachariah, AK.; V, VK.; A, SM.; Bose, S.; Souza Jr., FG.; Thomas, S Percolated network formation in biocidal 3D porous PCL/clay nanocomposite scaffolds: effect of organic modifier on interfacial and water sorption properties. RSC Advances, 2016, 6, 85107-85116.
[http://dx.doi.org/10.1039/C6RA14774G]
[231]
Ferreira, L.P.; Moreira, A.N.; Delazare, T.; Oliveira, G.E. Souza Jr., FG Petroleum Absorbers Based on CNSL, Furfural and Lignin – The Effect of the Chemical Similarity on the Interactions among Petroleum and Bioresins. Macromol. Symp., 2012, 319, 210-221.
[http://dx.doi.org/10.1002/masy.201100145]
[232]
Marinho, V.; Lima, N.; Neves, M.A. Souza Jr., FG Petroleum Sorbers Based on Renewable Alkyd Resin and Lignin. Macromol. Symp., 2018, 380, 1800116.
[http://dx.doi.org/10.1002/masy.201800116]
[233]
Icart, L. Souza Jr, FG PLA-b-PEG/magnetite hyperthermic agent prepared by ugi four component condensation. Express Polym. Lett., 2016, (10(3)), 188-203.
[http://dx.doi.org/10.3144/expresspolymlett.2016.18]
[234]
Borges, G.R.; Aboelkheir, M.G.; de Souza Junior, F.G.; Waldhelm, K.C.; Kuster, R.M. Poly (butylene succinate) and derivative copolymer filled with Dendranthema grandiflora biolarvicide extract. Environ. Sci. Pollut. Res. Int., 2020, 27(19), 23575-23585.
[http://dx.doi.org/10.1007/s11356-020-08679-3] [PMID: 32297111]
[235]
Pérez, D.D.; Silva, J.; Fernades, E.; Oliveira, G.; Jesus, EFO de.; Souza, Jr. FGS Poly (Butylene Succinate) Scaffolds Prepared by Leaching. MOJ Polym Sci, 2017, 1
[236]
da Costa, V.C.; de Souza Pinto, G.L.; Nascimento, M.V.F.; de Campos, V.E.B. Souza Jr., FG Poly (Butylene Succinate)-g-Poly(Hydroxypropyl Methacrylate) as a New Meloxican Delivery System. Macromol. Symp., 2018, 380, 1800109.
[http://dx.doi.org/10.1002/masy.201800109]
[237]
Souza, F.G., Jr; Soares, D.; Freitas, R.; Soares, V.; Ferreira, L.; Ramon, J. Oliveira, GE Praziquantel Release Systems Based on Poly(Butylene Succinate) / Polyethylene Glycol Nanocomposites. Curr. Appl. Polym. Sci., 2017, 1, 1-7.
[238]
Middea, A.; Spinelli, L.S.; Souza, F.G., Jr; Neumann, R.; Fernandes, T.L.A.P. Gomes, O da FM Preparation and characterization of an organo-palygorskite-Fe3O4 nanomaterial for removal of anionic dyes from wastewater. Appl. Clay Sci., 2017, 139(Suppl. C), 45-53.
[http://dx.doi.org/10.1016/j.clay.2017.01.017]
[239]
Souza, F.G., Jr; Almeida, M.; Soares, B.G. Carlos Pinto, J Preparation of a semi-conductive thermoplastic elastomer vulcanizate based on EVA and NBR blends with polyaniline. Polym. Test., 2007, 26, 692-697.
[http://dx.doi.org/10.1016/j.polymertesting.2007.04.008]
[240]
Ferreira, L.P.; Moreira, A.N.; Souza, F.G., Jr Pinto, JCC da S Preparation of nanocomposites based on poly(Butylene Succinate) and montmorillonite organoclay via in situ polymerization. Polímeros, 2014, 24, 604-611.
[http://dx.doi.org/10.1590/0104-1428.1662]
[241]
da Costa, R.C. Souza Jr., FG Preparo de nanocompósitos de maghemita e polianilina assistido por ultrassom. Polímeros, 2014, 24, 243-249.
[http://dx.doi.org/10.4322/polimeros.2014.035]
[242]
França, D.; Rebessi, A.C.; Camilo, F.F.; Souza, F.G., Jr Faez, R Pressure Sensibility of Conductive Rubber Based on NBR- and Polypyrrole-Designed Materials. Front. Mater., 2019, 6, 189.
[http://dx.doi.org/10.3389/fmats.2019.00189]
[243]
Besteti, M.D.; Souza, F.G., Jr; Freire, D.M.G. Pinto, JC Production of core-shell polymer particles-containing cardanol by semibatch combined suspension/emulsion polymerization. Polym. Eng. Sci., 2014, 54, 1222-1229.
[http://dx.doi.org/10.1002/pen.23660]
[244]
Pérez, D.D. Souza Jr., FG Protein Release Systems for Bone Regeneration. Res Dev Mater Sci, 2018, 5, 1-6.
[245]
Saez, V.; Cerruti, R.; Ramón, J.A.; Santos, E.R.F.; Silva, D.Z.; Pinto, J.C. Souza Jr., FG Quantification of Oxaliplatin Encapsulated into PLGA Microspheres by TGA. Macromol. Symp., 2016, 368, 116-121.
[http://dx.doi.org/10.1002/masy.201500181]
[246]
Souza, F.G., Jr; Pinto, J.C.; Soares, B.G. SBS/Pani · DBSA mixture plasticized with DOP and NCLS – Effect of the plasticizers on the probability density of volume resistivity measurements. Eur. Polym. J., 2007, 43, 2007-2016.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.02.037]
[247]
Souza, F.G., Jr; Soares, B.G.; Pinto, J.C. SBS/Polyaniline or Carbon Black System: Finding the Optimal Process and Molding Temperatures Through Experimental Design. Macromol. Mater. Eng., 2006, 291, 463-469.
[http://dx.doi.org/10.1002/mame.200500406]
[248]
Marques, F.D.; Nele de Souza, M. Souza Jr., FG Sealing system activated by magnetic induction polymerization. J. Appl. Polym. Sci., 2017, 134, 45549.
[http://dx.doi.org/10.1002/app.45549]
[249]
Pal, K.; Sajjadifar, S.; Abd Elkodous, M.; Alli, Y.A.; Gomes, F.; Jeevanandam, J.; Thomas, S.; Sigov, A Soft, self-assembly liquid crystalline nanocomposite for superior switching. Electron. Mater. Lett., 2019, 15, 84-101.
[http://dx.doi.org/10.1007/s13391-018-0098-y]
[250]
Neto, W.S.; Dutra, G.V.S.; Jensen, A.T.; Araújo, O.A.; Garg, V.; de Oliveira, A.C.; Valadares, L.F.; de Souza, F.G.; Machado, F. Superparamagnetic nanoparticles stabilized with free-radical polymerizable oleic acid-based coating. J. Alloys Compd., 2018, 739, 1025-1036.
[http://dx.doi.org/10.1016/j.jallcom.2017.12.338]
[251]
Icart, L.P.; Souza, F.G.; Lima, L.M Sustained release and pharmacologic effects of human glucagon-like peptide-1 and liraglutide from polymeric microparticles bioRxiv, 2018.
[http://dx.doi.org/10.1101/262782]
[252]
Icart, L.P.; Souza, F.G., Jr; Lima, L.M.T.R. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles. J. Microencapsul., 2019, 36(8), 747-758.
[http://dx.doi.org/10.1080/02652048.2019.1677795] [PMID: 31594428]
[253]
Péres, E.U.X.; Sousa, M.H.; Souza, F.G.Jr.; Machado, F. Suarez, PAZ Synthesis and characterization of a new biobased poly(urethane-ester) from ricinoleic acid and its use as biopolymeric matrix for magnetic nanocomposites: Biopolymer as matrix for magnetic nanocomposites. Eur J Lipid Sci Technol, 2017, 1600451.
[254]
Ramon, J.; Saez, V.; Souza, F.G., Jr; Pinto, J. Nele, M Synthesis and Characterization of PEG-PBS Copolymers to Obtain Microspheres With Different Naproxen Release Profiles. Macromol. Symp., 2018, 380, 1800065.
[http://dx.doi.org/10.1002/masy.201800065]
[255]
Sá, L.; Viçosa, A.; Rocha, S.; Souza Junior, F.G. Synthesis and characterization of poly (butylene succinate) -g- poly (vinyl acetate) as ibuprofen drug delivery system. Curr Appl Polym Sci, 2017, 01
[256]
Ferreira, L.P.; da Cunha, B.P.; Kuster, R.M.; Pinto, J.C.; Souza, M.N. Souza Jr., FG Synthesis and chemical modification of poly(butylene succinate) with rutin useful to the release of silybin. Ind. Crops Prod., 2017, 97, 599-611.
[http://dx.doi.org/10.1016/j.indcrop.2016.12.064]
[257]
Moraes, R.S.; Ricardo, N.S.; Saez, V. Souza Jr., FG Synthesis of magnetic composite of poly (butylene succinate) and magnetite for the controlled release of meloxicam. MOJ Polym Sci, 2018, 2, 39-42.
[258]
Ferreira, L.P.; Moreira, A.N.; Pinto, J.C. Souza Jr., FG Synthesis of poly(butylene succinate) using metal catalysts. Polym. Eng. Sci., 2015, 55, 1889-1896.
[http://dx.doi.org/10.1002/pen.24029]
[259]
Pereira, E.D.; Souza, F.G., Jr; Pinto, J.C.C.S.; Cerruti, R.; Santana, C. Synthesis, Characterization and Drug Delivery Profile of Magnetic PLGA-PEG-PLGA/Maghemite Nanocomposite. Macromol. Symp., 2014, 343, 18-25.
[http://dx.doi.org/10.1002/masy.201300168]
[260]
Neto, W.; Peña, L.; Ferreira, G.; Souza, F.G., Jr Machado, F Target Delivery from Modified Polymers to Cancer Treatment. Curr. Org. Chem., 2016, 20, 1-17.
[261]
Aboelkheir, M.G.; Visconte, L.Y.; Oliveira, G.E.; Toledo Filho, R.D.; Souza, F.G., Jr The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Sci. Total Environ., 2019, 649, 1075-1082.
[http://dx.doi.org/10.1016/j.scitotenv.2018.08.228] [PMID: 30308879]
[262]
Soares, B.G.; Amorim, G.S.; Souza, F.G., Jr; Oliveira, M.G. Silva, JEP da The in situ polymerization of aniline in nitrile rubber. Synth. Met., 2006, 156, 91-98.
[http://dx.doi.org/10.1016/j.synthmet.2005.09.045]
[263]
Lopes, E.S.; Domingos, E.; Neves, R.S.; Romão, W. Souza, KR de.; Valaski, R.; Archanjo, BS.; Souza, FG.; Silva, AM.; Kuznetsov, A.; Araujo, JR The role of intermolecular interactions in polyaniline/polyamide-6,6 pressure-sensitive blends studied by DFT and 1H NMR. Eur. Polym. J., 2016, 85, 588-604.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.11.011]
[264]
Souza, F.G., Jr; Sena, M.E. Soares, BG Thermally stable conducting composites based on a carbon black‐filled polyoxadiazole matrix. J. Appl. Polym. Sci., 2004, 93, 1631-1637.
[http://dx.doi.org/10.1002/app.20601]
[265]
Soares, B.; Souza, F.G., Jr; Manjunath, A.; Somashekarappa, H.; Somashekar, R. Siddaramaiah Variation of long periodicity in blends of styrene butadiene, styrene copolymer/polyaniline using small angle X-ray scattering data. Pramana, 2007, 69, 435-443.
[http://dx.doi.org/10.1007/s12043-007-0144-z]
[266]
Singh, A.; Sahoo, S.K. Magnetic nanoparticles: a novel platform for cancer theranostics. Drug Discov. Today, 2014, 19(4), 474-481.
[http://dx.doi.org/10.1016/j.drudis.2013.10.005] [PMID: 24140592]
[267]
Ulbrich, K.; Holá, K.; Šubr, V.; Bakandritsos, A.; Tuček, J.; Zbořil, R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev., 2016, 116(9), 5338-5431.
[http://dx.doi.org/10.1021/acs.chemrev.5b00589] [PMID: 27109701]
[268]
Mou, X.; Ali, Z.; Li, S.; He, N. Applications of Magnetic Nanoparticles in Targeted Drug Delivery System. J. Nanosci. Nanotechnol., 2015, 15(1), 54-62.
[http://dx.doi.org/10.1166/jnn.2015.9585] [PMID: 26328305]
[269]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics, 2015, 5(11), 1249-1263.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[270]
Zhu, L.; Zhou, Z.; Mao, H.; Yang, L. Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond.), 2017, 12(1), 73-87.
[http://dx.doi.org/10.2217/nnm-2016-0316] [PMID: 27876448]
[271]
Kandasamy, G.; Maity, D. Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int. J. Pharm., 2015, 496(2), 191-218.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.058] [PMID: 26520409]
[272]
Li, K.; Nejadnik, H.; Daldrup-Link, H.E. Next-generation superparamagnetic iron oxide nanoparticles for cancer theranostics. Drug Discov. Today, 2017, 22(9), 1421-1429.
[http://dx.doi.org/10.1016/j.drudis.2017.04.008] [PMID: 28454771]
[273]
Magro, M.; Baratella, D.; Bonaiuto, E.; de A Roger, J.; Vianello, F. New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles. Curr. Med. Chem., 2018, 25(4), 540-555.
[http://dx.doi.org/10.2174/0929867324666170616102922] [PMID: 28618993]
[274]
Kolosnjaj-Tabi, J.; Lartigue, L.; Javed, Y.; Luciani, N.; Pellegrino, T.; Wilhelm, C.; Alloyeau, D.; Gazeau, F. Biotransformations of magnetic nanoparticles in the body. Nano Today, 2016, 11, 280-284.
[http://dx.doi.org/10.1016/j.nantod.2015.10.001]
[275]
Wiekhorst, F.; Steinhoff, U.; Eberbeck, D.; Trahms, L. Magnetorelaxometry assisting biomedical applications of magnetic nanoparticles. Pharm. Res., 2012, 29(5), 1189-1202.
[http://dx.doi.org/10.1007/s11095-011-0630-3] [PMID: 22161287]
[276]
Zhao, M-X.; Zeng, E-Z. Application of functional quantum dot nanoparticles as fluorescence probes in cell labeling and tumor diagnostic imaging. Nanoscale Res. Lett., 2015, 10, 171.
[http://dx.doi.org/10.1186/s11671-015-0873-8] [PMID: 25897311]
[277]
Veiseh, O.; Gunn, J.W.; Zhang, M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev., 2010, 62(3), 284-304.
[http://dx.doi.org/10.1016/j.addr.2009.11.002] [PMID: 19909778]
[278]
Ruta, S.; Chantrell, R.; Hovorka, O. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles. Sci. Rep., 2015, 5, 9090.
[http://dx.doi.org/10.1038/srep09090] [PMID: 25766365]
[279]
Mahmoudi, M.; Sant, S.; Wang, B.; Laurent, S.; Sen, T. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Adv. Drug Deliv. Rev., 2011, 63(1-2), 24-46.
[http://dx.doi.org/10.1016/j.addr.2010.05.006] [PMID: 20685224]
[280]
Hurwitz, M.; Stauffer, P. Hyperthermia, radiation and chemotherapy: the role of heat in multidisciplinary cancer care. Semin. Oncol., 2014, 41(6), 714-729.
[http://dx.doi.org/10.1053/j.seminoncol.2014.09.014] [PMID: 25499632]
[281]
Shaw, S.K.; Alla, S.K.; Meena, S.S.; Mandal, R.K.; Prasad, N.K. Stabilization of temperature during magnetic hyperthermia by Ce substituted magnetite nanoparticles. J. Magn. Magn. Mater., 2017, 434, 181-186.
[http://dx.doi.org/10.1016/j.jmmm.2017.03.055]
[282]
Larach, M.G.; Localio, A.R.; Allen, G.C.; Denborough, M.A.; Ellis, F.R.; Gronert, G.A.; Kaplan, R.F.; Muldoon, S.M.; Nelson, T.E.; Ording, H. A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology, 1994, 80(4), 771-779.
[http://dx.doi.org/10.1097/00000542-199404000-00008] [PMID: 8024130]
[283]
Wust, P.; Hildebrandt, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P.M. Hyperthermia in combined treatment of cancer. Lancet Oncol., 2002, 3(8), 487-497.
[http://dx.doi.org/10.1016/S1470-2045(02)00818-5] [PMID: 12147435]
[284]
Sanz, B.; Calatayud, M.P.; Torres, T.E.; Fanarraga, M.L.; Ibarra, M.R.; Goya, G.F. Magnetic hyperthermia enhances cell toxicity with respect to exogenous heating. Biomaterials, 2017, 114, 62-70.
[http://dx.doi.org/10.1016/j.biomaterials.2016.11.008] [PMID: 27846403]
[285]
Abenojar, E.C.; Wickramasinghe, S.; Bas-Concepcion, J.; Samia, A.C.S. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Prog. Nat. Sci., 2016, 26, 440-448. [Special Issue for Nano Materials].
[http://dx.doi.org/10.1016/j.pnsc.2016.09.004]
[286]
Maebayashi, T.; Ishibashi, N.; Aizawa, T.; Sakaguchi, M.; Sato, T.; Kawamori, J.; Tanaka, Y. Treatment outcomes of concurrent hyperthermia and chemoradiotherapy for pancreatic cancer: Insights into the significance of hyperthermia treatment. Oncol. Lett., 2017, 13(6), 4959-4964.
[http://dx.doi.org/10.3892/ol.2017.6066] [PMID: 28588736]
[287]
Espinosa, A.; Di Corato, R.; Kolosnjaj-Tabi, J.; Flaud, P.; Pellegrino, T.; Wilhelm, C. Duality of Iron Oxide Nanoparticles in Cancer Therapy: Amplification of Heating Efficiency by Magnetic Hyperthermia and Photothermal Bimodal Treatment. ACS Nano, 2016, 10(2), 2436-2446.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]
[288]
Mantso, T.; Goussetis, G.; Franco, R.; Botaitis, S.; Pappa, A.; Panayiotidis, M. Effects of hyperthermia as a mitigation strategy in DNA damage-based cancer therapies. Semin. Cancer Biol., 2016, 37-38, 96-105.
[http://dx.doi.org/10.1016/j.semcancer.2016.03.004] [PMID: 27025900]
[289]
Huilgol, N.G. A phase I study to study arsenic trioxide with radiation and hyperthermia in advanced head and neck cancer. Int. J. Hyperthermia, 2006, 22(5), 391-397.
[http://dx.doi.org/10.1080/02656730600722685] [PMID: 16891241]
[290]
Amichetti, M.; Graiff, C.; Fellin, G.; Pani, G.; Bolner, A.; Maluta, S.; Valdagni, R. Cisplatin, hyperthermia, and radiation (trimodal therapy) in patients with locally advanced head and neck tumors: a phase I-II study. Int. J. Radiat. Oncol. Biol. Phys., 1993, 26(5), 801-807.
[http://dx.doi.org/10.1016/0360-3016(93)90495-H] [PMID: 8344849]
[291]
Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[292]
Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; Korbelik, M.; Moan, J.; Mroz, P.; Nowis, D.; Piette, J.; Wilson, B.C.; Golab, J. Photodynamic therapy of cancer: an update. CA Cancer J. Clin., 2011, 61(4), 250-281.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[293]
Allison, R.R. Photodynamic therapy: oncologic horizons. Future Oncol., 2014, 10(1), 123-124.
[http://dx.doi.org/10.2217/fon.13.176] [PMID: 24328413]
[294]
Kushibiki, T.; Hirasawa, T.; Okawa, S.; Ishihara, M. Responses of cancer cells induced by photodynamic therapy. J. Healthc. Eng., 2013, 4(1), 87-108.
[http://dx.doi.org/10.1260/2040-2295.4.1.87] [PMID: 23502251]
[295]
Oniszczuk, A.; Wojtunik-Kulesza, K.A.; Oniszczuk, T.; Kasprzak, K. The potential of photodynamic therapy (PDT)-Experimental investigations and clinical use. Biomed Pharmacother Biomedecine Pharmacother, 2016, 83, 912-929.
[http://dx.doi.org/10.1016/j.biopha.2016.07.058] [PMID: 27522005]
[296]
Robertson, C.A.; Evans, D.H.; Abrahamse, H. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J. Photochem. Photobiol. B, 2009, 96(1), 1-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2009.04.001] [PMID: 19406659]
[297]
Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev., 2015, 115(4), 1990-2042.
[http://dx.doi.org/10.1021/cr5004198] [PMID: 25602130]
[298]
Quirk, B.J.; Brandal, G.; Donlon, S.; Vera, J.C.; Mang, T.S.; Foy, A.B.; Lew, S.M.; Girotti, A.W.; Jogal, S.; LaViolette, P.S.; Connelly, J.M.; Whelan, H.T. Photodynamic therapy (PDT) for malignant brain tumors--where do we stand? Photodiagn. Photodyn. Ther., 2015, 12(3), 530-544.
[http://dx.doi.org/10.1016/j.pdpdt.2015.04.009] [PMID: 25960361]
[299]
Kleinovink, J.W.; van Driel, P.B.; Snoeks, T.J.; Prokopi, N.; Fransen, M.F.; Cruz, L.J.; Mezzanotte, L.; Chan, A.; Löwik, C.W.; Ossendorp, F. Combination of Photodynamic Therapy and Specific Immunotherapy Efficiently Eradicates Established Tumors. Clin. Cancer Res., 2016, 22(6), 1459-1468.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0515] [PMID: 26546617]
[300]
Dai, X.; Du, T. Han, K Engineering Nanoparticles for Optimized Photodynamic Therapy. ACS Biomater. Sci. Eng., 2019.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01251]
[301]
Macdonald, I.; Dougherty, T. Basic principles of photodynamic theory. J. Porphyr. Phthalocyanines, 2001, 5, 105-129.
[http://dx.doi.org/10.1002/jpp.328]
[302]
Jori, G.; Fabris, C.; Soncin, M.; Ferro, S.; Coppellotti, O.; Dei, D.; Fantetti, L.; Chiti, G.; Roncucci, G. Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med., 2006, 38(5), 468-481.
[http://dx.doi.org/10.1002/lsm.20361] [PMID: 16788934]
[303]
Juarranz, A.; Jaén, P.; Sanz-Rodríguez, F.; Cuevas, J.; González, S. Photodynamic therapy of cancer. Basic principles and applications. Clin. Transl. Oncol., 2008, 10(3), 148-154.
[http://dx.doi.org/10.1007/s12094-008-0172-2] [PMID: 18321817]
[304]
Majumdar, A. Bioassays based on molecular nanomechanics. Dis. Markers, 2002, 18(4), 167-174.
[http://dx.doi.org/10.1155/2002/856032] [PMID: 12590170]
[305]
Milla, L.; Rodriguez, M.; Cogno, I.; Rumie Vittar, N.B.; Pansa, M.; Lamberti, M.J.; Rivarola, V. Direct and indirect photodynamic therapy effects on the cellular and molecular components of the tumor microenvironment. Biochim. Biophys. Acta, 2012, •••, 1835.
[PMID: 23046998]
[306]
Liang, R.; Liu, L.; He, H.; Chen, Z.; Han, Z.; Luo, Z.; Wu, Z.; Zheng, M.; Ma, Y.; Cai, L. Oxygen-boosted immunogenic photodynamic therapy with gold nanocages@manganese dioxide to inhibit tumor growth and metastases. Biomaterials, 2018, 177, 149-160.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.051] [PMID: 29890364]
[307]
Galluzzi, L.; Kepp, O.; Kroemer, G. Enlightening the impact of immunogenic cell death in photodynamic cancer therapy. EMBO J., 2012, 31(5), 1055-1057.
[http://dx.doi.org/10.1038/emboj.2012.2] [PMID: 22252132]
[308]
Liu, L.; He, H.; Luo, Z.; Zhou, H.; Liang, R.; Pan, H.; Ma, Y.; Cai, L. In Situ Photocatalyzed Oxygen Generation with Photosynthetic Bacteria to Enable Robust Immunogenic Photodynamic Therapy in Triple‐Negative Breast Cancer. Adv. Funct. Mater., 2020, 30, 1910176.
[http://dx.doi.org/10.1002/adfm.201910176]
[309]
Garg, A.D.; Agostinis, P. ER stress, autophagy and immunogenic cell death in photodynamic therapy-induced anti-cancer immune responses. Photochem. Photobiol. Sci., 2014, 13(3), 474-487.
[http://dx.doi.org/10.1039/C3PP50333J] [PMID: 24493131]
[310]
Garg, A.D.; Krysko, D.V.; Verfaillie, T.; Kaczmarek, A.; Ferreira, G.B.; Marysael, T.; Rubio, N.; Firczuk, M.; Mathieu, C.; Roebroek, A.J.M.; Annaert, W.; Golab, J.; de Witte, P.; Vandenabeele, P.; Agostinis, P. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO J., 2012, 31(5), 1062-1079.
[http://dx.doi.org/10.1038/emboj.2011.497] [PMID: 22252128]
[311]
Rumie Vittar, N.B.; Lamberti, M.J.; Pansa, M.F.; Vera, R.E.; Rodriguez, M.E.; Cogno, I.S.; Milla Sanabria, L.N.; Rivarola, V.A. Ecological photodynamic therapy: new trend to disrupt the intricate networks within tumor ecosystem. Biochim. Biophys. Acta, 2013, 1835(1), 86-99.
[PMID: 23127970]
[312]
Zhong, S.; Chen, C.; Yang, G.; Zhu, Y.; Cao, H.; Xu, B.; Luo, Y.; Gao, Y.; Zhang, W. Acid-Triggered Nanoexpansion Polymeric Micelles for Enhanced Photodynamic Therapy. ACS Appl. Mater. Interfaces, 2019, 11(37), 33697-33705.
[http://dx.doi.org/10.1021/acsami.9b12620] [PMID: 31487149]
[313]
Wang, S.; Wu, W.; Manghnani, P.; Xu, S.; Wang, Y.; Goh, C.C.; Ng, L.G.; Liu, B. Polymerization-Enhanced Two-Photon Photosensitization for Precise Photodynamic Therapy. ACS Nano, 2019, 13(3), 3095-3105.
[http://dx.doi.org/10.1021/acsnano.8b08398] [PMID: 30763072]
[314]
Gayathri, T.; Vijayalakshmi, A.; Mangalath, S.; Joseph, J.; Rao, N.M.; Singh, S.P. Study on Liposomal Encapsulation of New Bodipy Sensitizers for Photodynamic Therapy. ACS Med. Chem. Lett., 2018, 9(4), 323-327.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00490] [PMID: 29670694]
[315]
Zhao, X.; Zhang, Z.; Cai, X.; Ding, B.; Sun, C.; Liu, G.; Hu, C.; Shao, S.; Pang, M. Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy. ACS Appl. Mater. Interfaces, 2019, 11(8), 7884-7892.
[http://dx.doi.org/10.1021/acsami.9b00740] [PMID: 30698413]
[316]
Yoshida, T.; Saeki, T.; Ohashi, S.; Okudaira, T.; Lee, M.; Yoshida, H.; Maruoka, H.; Ito, H.; Funasaka, S.; Kato, H. [Clinical study of photodynamic therapy for laryngeal cancer]. Nippon Jibiinkoka Gakkai Kaiho, 1995, 98(5), 795-804. [Clinical study of photodynamic therapy for laryngeal cancer].
[http://dx.doi.org/10.3950/jibiinkoka.98.795] [PMID: 7602415]
[317]
Di Stasio, D.; Romano, A.; Gentile, C.; Maio, C.; Lucchese, A.; Serpico, R.; Paparella, R.; Minervini, G.; Candotto, V.; Laino, L. Systemic and topical photodynamic therapy (PDT) on oral mucosa lesions: an overview. J. Biol. Regul. Homeost. Agents, 2018, 32(2)(Suppl. 1), 123-126.
[PMID: 29460529]
[318]
Huiying Ding Characterization and Optimization of mTHPP Nanoparticles for Photodynamic Therapy of Head and Naeck Cancer. Otolaryngol. Head Neck Surg., 2011, 145, 162.
[319]
van Driel, P.B.A.A.; Boonstra, M.C.; Slooter, M.D.; Heukers, R.; Stammes, M.A.; Snoeks, T.J.A.; de Bruijn, H.S.; van Diest, P.J.; Vahrmeijer, A.L.; van Bergen En Henegouwen, P.M.P.; van de Velde, C.J.H.; Löwik, C.W.G.M.; Robinson, D.J.; Oliveira, S. EGFR targeted nanobody-photosensitizer conjugates for photodynamic therapy in a pre-clinical model of head and neck cancer. J. Control. Release, 2016, 229, 93-105.
[http://dx.doi.org/10.1016/j.jconrel.2016.03.014] [PMID: 26988602]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy