Review Article

Recent Progress in Stimuli-Responsive Intelligent Nano Scale Drug Delivery Systems: A Special Focus Towards pH-Sensitive Systems

Author(s): Vaidevi Sethuraman, Kumar Janakiraman, Venkateshwaran Krishnaswami and Ruckmani Kandasamy*

Volume 22, Issue 8, 2021

Published on: 28 January, 2021

Page: [947 - 966] Pages: 20

DOI: 10.2174/1389450122999210128180058

Price: $65

Abstract

Stimuli-responsive nanocarriers are gaining much attention due to their versatile multifunctional activities, including disease diagnosis and treatment. Recently, clinical applications of nano-drug delivery systems for cancer treatment pose a challenge due to their limited cellular uptake, low bioavailability, poor targetability, stability issues, and unfavourable pharmacokinetics. To overcome these issues, researchers are focussing on stimuli-responsive systems. Nanocarriers elicit their role through endogenous (pH, temperature, enzyme, and redox) or exogenous (temperature, light, magnetic field, ultrasound) stimulus. These systems were designed to overcome the shortcomings such as non-specificity and toxicity associated with the conventional drug delivery systems. The pH variation between healthy cells and tumor microenvironment creates a platform for the generation of pH-sensitive nano delivery systems. Herein, we propose to present an overview of various internal and external stimuli-responsive behavior-based drug delivery systems. Herein, the present review will focus specifically on the significance of various pH-responsive nanomaterials such as polymeric nanoparticles, nano micelles, inorganic-based pH-sensitive drug delivery carriers such as calcium phosphate nanoparticles, and carbon dots in cancer treatment. Moreover, this review elaborates the recent findings on pH-based stimuli-responsive drug delivery systems with special emphasis on our reported stimuli-responsive systems for cancer treatment.

Keywords: pH-sensitive, organic, inorganic, calcium phosphate nanoparticles, carbon dots, cancer treatment.

« Previous
Graphical Abstract
[1]
Lim EK, Chung BH, Chung SJ. Recent advances in ph-sensitive polymeric nanoparticles for smart drug delivery in cancer therapy. Curr Drug Targets 2018; 19(4): 300-17.
[http://dx.doi.org/10.2174/1389450117666160602202339] [PMID: 27262486]
[2]
Gao W, Chan JM, Farokhzad OC. pH-Responsive nanoparticles for drug delivery. Mol Pharm 2010; 7(6): 1913-20.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[3]
Shao P, Wang B, Wang Y, Li J, Zhang Y. The application of thermosensitive nanocarriers in controlled drug delivery. J Nanomater 2011; 2011: 1-12.
[http://dx.doi.org/10.1155/2011/389640]
[4]
Bordat A, Boissenot T, Nicolas J, Tsapis N. Thermoresponsive polymer nanocarriers for biomedical applications. Adv Drug Deliv Rev 2019; 138: 167-92.
[http://dx.doi.org/10.1016/j.addr.2018.10.005] [PMID: 30315832]
[5]
Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces 2016; 8(33): 21107-33.
[http://dx.doi.org/10.1021/acsami.6b00371] [PMID: 27349465]
[6]
Wadajkar AS, Menon JU, Tsai YS, et al. Prostate cancer-specific thermo-responsive polymer-coated iron oxide nanoparticles. Biomaterials 2013; 34(14): 3618-25.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.062] [PMID: 23419645]
[7]
Antoniraj MG, Kumar CS, Kandasamy R. Synthesis and characterization of poly (N-isopropylacrylamide)-g-carboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for Thermoresponsive drug release. Colloid Polym Sci 2016; 294: 527-35.
[http://dx.doi.org/10.1007/s00396-015-3804-4]
[8]
Alvarez-Lorenzo C, Bromberg L, Concheiro A. Light-sensitive intelligent drug delivery systems. Photochem Photobiol 2009; 85(4): 848-60.
[http://dx.doi.org/10.1111/j.1751-1097.2008.00530.x] [PMID: 19222790]
[9]
Poelma SO, Oh SS, Helmy S, et al. Controlled drug release to cancer cells from modular one-photon visible light-responsive micellar system. Chem Commun (Camb) 2016; 52(69): 10525-8.
[http://dx.doi.org/10.1039/C6CC04127B] [PMID: 27491357]
[10]
Dongdong L, Liyi M, Yanxin A, Yu L, Yuxin L, Lu W. Thermoresponsive Nanogel-Encapsulated PEDOT and HSP70 inhibitor for improving the depth of the photothermal therapeutic effect. Adv Funct Mater 2016; 26: 4749-59.
[http://dx.doi.org/10.1002/adfm.201600031]
[11]
Yang G, Liu J, Wu Y, Feng L, Liu Z. Near-infrared-light responsive nanoscale drug delivery systems for cancer treatment. Coord Chem Rev 2016; 320-321: 100-17.
[http://dx.doi.org/10.1016/j.ccr.2016.04.004]
[12]
Knežević NZ, Trewyn BG, Lin VS. Functionalized mesoporous silica nanoparticle-based visible light responsive controlled release delivery system. Chem Commun (Camb) 2011; 47(10): 2817-9.
[http://dx.doi.org/10.1039/c0cc04424e] [PMID: 21240408]
[13]
Li H, Tan LL, Jia P, et al. Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods. Chem Sci (Camb) 2014; 5: 2804-8.
[http://dx.doi.org/10.1039/c4sc00198b]
[14]
Wang Y, Deng Y, Luo H, et al. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano 2017; 11(12): 12134-44.
[http://dx.doi.org/10.1021/acsnano.7b05214] [PMID: 29141151]
[15]
de la Rica R, Aili D, Stevens MM. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv Drug Deliv Rev 2012; 64(11): 967-78.
[http://dx.doi.org/10.1016/j.addr.2012.01.002] [PMID: 22266127]
[16]
Hu Q, Katti PS, Gu Z. Enzyme-responsive nanomaterials for controlled drug delivery. Nanoscale 2014; 6(21): 12273-86.
[http://dx.doi.org/10.1039/C4NR04249B] [PMID: 25251024]
[17]
Qin SY, Feng J, Rong L, et al. Theranostic GO-based nanohybrid for tumor induced imaging and potential combinational tumor therapy. Small 2014; 10(3): 599-608.
[http://dx.doi.org/10.1002/smll.201301613] [PMID: 24000121]
[18]
Xiao D, Jia HZ, Zhang J, Liu CW, Zhuo RX, Zhang XZ. A dual-responsive mesoporous silica nanoparticle for tumor-triggered targeting drug delivery. Small 2014; 10(3): 591-8.
[http://dx.doi.org/10.1002/smll.201301926] [PMID: 24106109]
[19]
Shahriari M, Zahiri M, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Enzyme responsive drug delivery systems in cancer treatment. J Control Release 2019; 308: 172-89.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.004] [PMID: 31295542]
[20]
Ghadiali JE, Stevens MM. Enzyme-responsive nanoparticle systems. Adv Mater 2008; 20: 4359-63.
[http://dx.doi.org/10.1002/adma.200703158]
[21]
Andresen TL, Thompson DH, Kaasgaard T. Enzyme-triggered nanomedicine: drug release strategies in cancer therapy. Mol Membr Biol 2010; 27(7): 353-63.
[http://dx.doi.org/10.3109/09687688.2010.515950] [PMID: 20939771]
[22]
Yamamoto N, Bryce NS, Metzler-Nolte N, Hambley TW. Effects of enzymatic activation on the distribution of fluorescently tagged MMP-2 cleavable peptides in cancer cells and spheroids. Bioconjug Chem 2012; 23(6): 1110-8.
[http://dx.doi.org/10.1021/bc200561n] [PMID: 22621307]
[23]
Kim SW, Oh KT, Youn YS, Lee ES. Hyaluronated nanoparticles with pH- and enzyme-responsive drug release properties. Colloids Surf B Biointerfaces 2014; 116: 359-64.
[http://dx.doi.org/10.1016/j.colsurfb.2014.01.017] [PMID: 24521699]
[24]
Radhakrishnan K, Tripathy J, Gnanadhas DP, Chakravortty D, Raichur AM. Dual enzyme responsive and targeted nanocapsules for intracellular delivery of anticancer agents. RSC Advances 2014; 4(86): 45961-8.
[http://dx.doi.org/10.1039/C4RA07815B]
[25]
McAtee CO, Barycki JJ, Simpson MA. Emerging roles for hyaluronidase in cancer metastasis and therapy. Adv Cancer Res 2014; 123: 1-34.
[http://dx.doi.org/10.1016/B978-0-12-800092-2.00001-0] [PMID: 25081524]
[26]
Zhang C, Pan D, Luo K, et al. Dendrimer–doxorubicin conjugate as enzyme sensitive and polymeric nanoscale drug delivery vehicle for ovarian cancer therapy. Polym Chem 2014; 5: 5227.
[http://dx.doi.org/10.1039/C4PY00601A]
[27]
Cheng R, Feng F, Meng F, Deng C, Feijen J, Zhong Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J Control Release 2011; 152(1): 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[28]
Song N, Liu W, Tu Q, Liu R, Zhang Y, Wang J. Preparation and in vitro properties of redox-responsive polymeric nanoparticles for paclitaxel delivery. Colloids Surf B Biointerfaces 2011; 87(2): 454-63.
[http://dx.doi.org/10.1016/j.colsurfb.2011.06.009] [PMID: 21719259]
[29]
Li N, Li N, Yi Q, et al. Amphiphilic peptide dendritic copolymer-doxorubicin nanoscale conjugate self-assembled to enzyme-responsive anti-cancer agent. Biomaterials 2014; 35(35): 9529-45.
[http://dx.doi.org/10.1016/j.biomaterials.2014.07.059] [PMID: 25145854]
[30]
M GA, S AT, Ayyavu M, A S, Kandasamy R. Synthesis and characterization of cystamine conjugated chitosan-SS-mPEG based 5-Fluorouracil loaded polymeric nanoparticles for redox responsive drug release. Eur J Pharm Sci 2018; 116: 37-47.
[http://dx.doi.org/10.1016/j.ejps.2017.10.035] [PMID: 29080854]
[31]
Palanisamy S, Wang Y-M. Superparamagnetic iron oxide nanoparticulate system: synthesis, targeting, drug delivery and therapy in cancer. Dalton Trans 2019; 48(26): 9490-515.
[http://dx.doi.org/10.1039/C9DT00459A] [PMID: 31211303]
[32]
Rodrigues RO, Baldi G, Doumett S, et al. Multifunctional graphene-based magnetic nanocarriers for combined hyperthermia and dual stimuli-responsive drug delivery. Mater Sci Eng C 2018; 93: 206-17.
[http://dx.doi.org/10.1016/j.msec.2018.07.060] [PMID: 30274052]
[33]
Lim EK, Jang E, Lee K, Haam S, Huh YM. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 2013; 5(2): 294-317.
[http://dx.doi.org/10.3390/pharmaceutics5020294] [PMID: 24300452]
[34]
Liu J, Huang Y, Kumar A, et al. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol Adv 2014; 32(4): 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[35]
Pourbadiei B, Pyadar R, Mansouri F. pH-sensitive nanoscale polymers: highly efficient systems for dox delivery in cancer treatment. J Nanomed Res 2017; 5(3): 1-6.
[http://dx.doi.org/10.15406/jnmr.2017.05.00114]
[36]
Lee ES, Gao Z, Bae YH. Recent progress in tumor pH targeting nanotechnology. J Control Release 2008; 132(3): 164-70.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.003] [PMID: 18571265]
[37]
Lee ES, Na K, Bae YH. Polymeric micelle for tumor pH and folate-mediated targeting. J Control Release 2003; 91(1-2): 103-13.
[http://dx.doi.org/10.1016/S0168-3659(03)00239-6] [PMID: 12932642]
[38]
Shen Y, Tang H, Radosz M, Van Kirk E, Murdoch WJ. pH-responsive nanoparticles for cancer drug delivery. Methods Mol Biol 2008; 437: 183-216.
[http://dx.doi.org/10.1007/978-1-59745-210-6_10] [PMID: 18369970]
[39]
Sun Q, Radosz M, Shen Y. Challenges in design of translational nanocarriers. J Control Release 2012; 164(2): 156-69.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.042] [PMID: 22664472]
[40]
Das NA, Gupta V, Gowda DV, Bhosale RR. A review on pH-sensitive polymeric nanoparticles for cancer therapy. Int J Chemtech Res 2017; 10(6): 575-88.
[41]
Kawamura A, Miyata T. pH-responsive polymer, encyclopedia of polymeric. Nanomaterials 2014; 1-9.
[42]
Nakamae K, Nizuka T, Miyata T, et al. Lysozyme loading and release from hydrogels carrying pendant phosphate groups. J Biomater Sci Polym Ed 1997; 9(1): 43-53.
[http://dx.doi.org/10.1163/156856297X00254] [PMID: 9505202]
[43]
Dong LC, Hoffman AS. A novel approach for preparation of pH-sensitive hydrogels for enteric drug delivery. J Control Release 1991; 15: 141.
[http://dx.doi.org/10.1016/0168-3659(91)90072-L]
[44]
Pramanik P, Halder D, Jana SS, Ghosh S. pH-triggered sustained drug delivery from a polymer micelle having the β-thiopropionate linkage. Macromol Rapid Commun 2016; 37(18): 1499-506.
[http://dx.doi.org/10.1002/marc.201600260] [PMID: 27448089]
[45]
M GA, C SK, Henry LJK, Natesan S, Kandasamy R. Atrial natriuretic peptide-conjugated chitosan-hydrazone-mPEG copolymer nanoparticles as pH-responsive carriers for intracellular delivery of prednisone. Carbohydr Polym 2017; 157: 1677-86.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.049] [PMID: 27987883]
[46]
Koo H, Lee H, Lee S, et al. In vivo tumor diagnosis and photodynamic therapy via tumoral pH-responsive polymeric micelles. Chem Commun (Camb) 2010; 46(31): 5668-70.
[http://dx.doi.org/10.1039/c0cc01413c] [PMID: 20623050]
[47]
Cui T, Zhang S, Sun H. Co-delivery of doxorubicin and pH-sensitive curcumin prodrug by transferrin-targeted nanoparticles for breast cancer treatment. Oncol Rep 2017; 37(2): 1253-60.
[http://dx.doi.org/10.3892/or.2017.5345] [PMID: 28075466]
[48]
Jiang J, Xie J, Ma B, Bartlett DE, Xu A, Wang C-H. Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater 2014; 10(3): 1324-32.
[http://dx.doi.org/10.1016/j.actbio.2013.11.012] [PMID: 24287161]
[49]
Lu D, Wen X, Liang J, Gu Z, Zhang X, Fan Y. A pH-sensitive nano drug delivery system derived from pullulan/doxorubicin conjugate. J Biomed Mater Res B Appl Biomater 2009; 89(1): 177-83.
[http://dx.doi.org/10.1002/jbm.b.31203] [PMID: 18777581]
[50]
Yao Y, Saw PE, Nie Y, et al. Multifunctional sharp pH-responsive nanoparticles for targeted drug delivery and effective breast cancer therapy. J Mater Chem B Mater Biol Med 2019; 7(4): 576-85.
[http://dx.doi.org/10.1039/C8TB02600A] [PMID: 32254791]
[51]
Lv Y, Hao L, Hu W, Ran Y, Bai Y, Zhang L. Novel multifunctional pH-sensitive nanoparticles loaded into microbubbles as drug delivery received: vehicles for enhanced tumor targeting. Sci Rep 2016; 6: 1-20.
[52]
Zhang H, Wang C, Chen B, Wang X. Daunorubicin-TiO2 nanocomposites as a “smart” pH-responsive drug delivery system. Int J Nanomedicine 2012; 7: 235-42.
[PMID: 22275838]
[53]
Kundu M, Sadhukhan P, Ghosh N, et al. pH-responsive and targeted delivery of curcumin via phenylboronic acid-functionalized ZnO nanoparticles for breast cancer therapy. J Adv Res 2019; 18: 161-72.
[http://dx.doi.org/10.1016/j.jare.2019.02.036] [PMID: 31032117]
[54]
Lu L, Zou Y, Yang W, et al. Anisamide-Decorated pH-sensitive degradable chimaeric polymersomes mediate potent and targeted protein delivery to lung cancer cells. Biomacromolecules 2015; 16(6): 1726-35.
[http://dx.doi.org/10.1021/acs.biomac.5b00193] [PMID: 25938556]
[55]
Roointan A, Farzanfar J, Mohammadi-Samani S. Behzad- Behbahani A, Farjadian F. Smart pH responsive drug delivery system based on poly(HEMA-co-DMAEMA). Nanohydrogel Int J Pharm 2018; 552(1-2): 301-11.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.001] [PMID: 30291961]
[56]
Miyazaki M, Yuba E, Hayashi H, Harada A, Kono K. Hyaluronic acid-based pH-Sensitive polymer-modified liposomes for cell-specific intracellular drug delivery systems. Bioconjug Chem 2018; 29(1): 44-55.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00551] [PMID: 29183110]
[57]
Ji F, Zhang K, Li J, Gu Y, Zhao J, Zhang J. A Dual pH/magnetic responsive nanocarrier based on pegylated fe3o4 nanoparticles for doxorubicin delivery. J Nanosci Nanotechnol 2018; 18(7): 4464-70.
[http://dx.doi.org/10.1166/jnn.2018.15275] [PMID: 29442620]
[58]
Gan Q, Zhu J, Yuan Y, et al. A dual-delivery system of pH-responsive chitosan-functionalized mesoporous silica nanoparticles bearing BMP-2 and dexamethasone for enhanced bone regeneration. J Mater Chem B Mater Biol Med 2015; 3(10): 2056-66.
[http://dx.doi.org/10.1039/C4TB01897D] [PMID: 32262373]
[59]
Yang T, Du G, Cui Y, et al. pH-sensitive doxorubicin-loaded polymeric nanocomplex based on β-cyclodextrin for liver cancer-targeted therapy. Int J Nanomedicine 2019; 14: 1997-2010.
[http://dx.doi.org/10.2147/IJN.S193170] [PMID: 30962684]
[60]
Bao W, Ma H, Wang N, He Z. pH sensitive carbon quantum dots-doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym Adv Technol 2019; 30(11): 2664-73.
[http://dx.doi.org/10.1002/pat.4696]
[61]
Du JZ, Du XJ, Mao CQ, Wang J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 2011; 133(44): 17560-3.
[http://dx.doi.org/10.1021/ja207150n] [PMID: 21985458]
[62]
Yu H, Zou Y, Jiang L, et al. Induction of apoptosis in non-small cell lung cancer by downregulation of MDM2 using pH-responsive PMPC-b-PDPA/siRNA complex nanoparticles. Biomaterials 2013; 34(11): 2738-47.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.042] [PMID: 23352573]
[63]
Yu P, Yu H, Guo C, et al. Reversal of doxorubicin resistance in breast cancer by mitochondria-targeted pH-responsive micelles. Acta Biomater 2015; 14: 115-24.
[http://dx.doi.org/10.1016/j.actbio.2014.12.001] [PMID: 25498306]
[64]
Fan X, Zhao X, Qu X, Fang J. pH sensitive polymeric complex of cisplatin with hyaluronic acid exhibits tumor-targeted delivery and improved in vivo antitumor effect. Int J Pharm 2015; 496(2): 644-53.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.066] [PMID: 26529576]
[65]
Zhao Y, Zhou Y, Wang D, et al. pH-responsive polymeric micelles based on poly(2-ethyl-2-oxazoline)-poly(D,L-lactide) for tumor-targeting and controlled delivery of doxorubicin and P-glycoprotein inhibitor. Acta Biomater 2015; 17: 182-92.
[http://dx.doi.org/10.1016/j.actbio.2015.01.010] [PMID: 25612838]
[66]
Lee ES, Na K, Bae YH. Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor. J Control Release 2005; 103(2): 405-18.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.018] [PMID: 15763623]
[67]
Kang Y, Zhang XM, Zhang S, Dinga LS, Li BJ. pH-Responsive Dendritic Polyrotaxane drug-polymer conjugates forming nanoparticles as efficient drug delivery system for cancer therapy. Polym Chem 2015; 6: 2098-107.
[http://dx.doi.org/10.1039/C4PY01431F]
[68]
Zhao BX, Zhao Y, Huang Y, et al. The efficiency of tumor-specific pH-responsive peptide-modified polymeric micelles containing paclitaxel. Biomaterials 2012; 33(8): 2508-20.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.078] [PMID: 22197569]
[69]
Pan D, She W, Guo C, Luo K, Yi Q, Gu Z. PEGylated dendritic diaminocyclohexyl-platinum (II) conjugates as pH-responsive drug delivery vehicles with enhanced tumor accumulation and antitumor efficacy. Biomaterials 2014; 35(38): 10080-92.
[http://dx.doi.org/10.1016/j.biomaterials.2014.09.006] [PMID: 25263685]
[70]
He X, Yu H, Bao X, et al. pH-responsive wormlike micelles with sequential metastasis targeting inhibit lung metastasis of breast cancer. Adv Healthc Mater 2016; 5(4): 439-48.
[http://dx.doi.org/10.1002/adhm.201500626] [PMID: 26711864]
[71]
Shang HB, Chen F, Wu J, et al. Multifunctional biodegradable terbium-doped calcium phosphate nanoparticles: facile preparation. pH-sensitive drug release and in vitro bioimaging. RSC Advances 2014; 4: 53122-9.
[http://dx.doi.org/10.1039/C4RA09902H]
[72]
Wu C, Xu J, Hao Y, et al. Application of a lipid-coated hollow calcium phosphate nanoparticle in synergistic co-delivery of doxorubicin and paclitaxel for the treatment of human lung cancer A549 cells. Int J Nanomedicine 2017; 12: 7979-92.
[http://dx.doi.org/10.2147/IJN.S140957] [PMID: 29184399]
[73]
Zhou Z, Kennell C, Lee JY, Leung YK, Tarapore P. Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine (Lond) 2017; 13(2): 403-10.
[http://dx.doi.org/10.1016/j.nano.2016.07.016] [PMID: 27520723]
[74]
He Y, Zeng B, Liang S, Long M, Xu H. Synthesis of pH-responsive biodegradable mesoporous silica calcium phosphate hybrid nanoparticle as a high potential drug carrier. ACS Appl Mater Interfaces 2017; 9(51): 44402-9.
[http://dx.doi.org/10.1021/acsami.7b16787] [PMID: 29215868]
[75]
Cheng X, Kuhn L. Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomedicine 2007; 2(4): 667-74.
[PMID: 18203433]
[76]
Rim HP, Min KH, Lee HJ, Jeong SY, Lee SC. pH-Tunable calcium phosphate covered mesoporous silica nanocontainers for intracellular controlled release of guest drugs. Angew Chem Int Ed Engl 2011; 50(38): 8853-7.
[http://dx.doi.org/10.1002/anie.201101536] [PMID: 21826770]
[77]
Sethuraman V, Janakiraman K, Krishnaswami V, Natesan S, Kandasamy R. pH responsive delivery of lumefantrine with calcium phosphate nanoparticles loaded lipidic cubosomes for the site specific treatment of lung cancer. Chem Phys Lipids 2019; 224
[http://dx.doi.org/10.1016/j.chemphyslip.2019.03.016] [PMID: 30951710]
[78]
Han B, Wang W, Wu H, et al. Polyethyleneimine modified fluorescent carbon dots and their application in cell labeling. Colloids Surf B Biointerfaces 2012; 100: 209-14.
[http://dx.doi.org/10.1016/j.colsurfb.2012.05.016] [PMID: 22766299]
[79]
Wang K, Gao Z, Gao G, et al. Systematic safety evaluation on photoluminescent carbon dots. Nanoscale Res Lett 2013; 8(1): 122.
[http://dx.doi.org/10.1186/1556-276X-8-122] [PMID: 23497260]
[80]
Feng T, Zhao Y. Preparation of responsive carbon dots for anticancer drug Delivery. Methods Mol Biol 2019; 2000: 227-34.
[http://dx.doi.org/10.1007/978-1-4939-9516-5_15] [PMID: 31148018]
[81]
Sun X, Lei Y. Fluorescent carbon dots and their sensing applications. Trends Analyt Chem 2017; 89: 163-80.
[http://dx.doi.org/10.1016/j.trac.2017.02.001]
[82]
Hill S, Galan MC. Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications. Beilstein J Org Chem 2017; 13: 675-93.
[http://dx.doi.org/10.3762/bjoc.13.67] [PMID: 28503203]
[83]
Bhartiya P, Singh A, Kumar H, Jain T, Singh BK, Dutta PK. Carbon dots: Chemistry, properties and applications. J Indian Chem Soc 2016; 93: 1-8.
[84]
Kong W, Wu H, Ye Z, Li R, Xu T, Zhang B. Optical properties of pH-sensitive carbon-dots with different modifications. J Lumin 2014; 148: 238-42.
[http://dx.doi.org/10.1016/j.jlumin.2013.12.007]
[85]
Zuo P, Lu X, Sun Z, Guo Y, He H. A review on syntheses, properties, and characterization and bioanalytical applications of fluorescent carbon dots. Mikrochim Acta 2016; 183: 519-42.
[http://dx.doi.org/10.1007/s00604-015-1705-3]
[86]
Bao W, Ma H, Wang N, He Z. pH-sensitive carbon quantum dots−doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym Adv Technol 2019; 30(11): 2664-73.
[http://dx.doi.org/10.1002/pat.4696]
[87]
Seo J, Lee J, Lee CB, Bae SK, Na K. Non-polymeric pH-sensitive carbon dots for treatment of tumor. Bioconjug Chem 2019; 30(3): 621-32.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00813] [PMID: 30630310]
[88]
Kong T, Hao L, Wei Y, Cai X, Zhu B. Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell Prolif 2018; 51(5)
[http://dx.doi.org/10.1111/cpr.12488] [PMID: 30039515]
[89]
Zhao S, Sun S, Jiang K, et al. In Situ synthesis of fluorescent mesoporous silica–carbon dot nanohybrids featuring folate receptor overexpressing cancer cell targeting and drug delivery. Nano-Micro Lett 2019; 11(32): 1-13.
[http://dx.doi.org/10.1007/s40820-019-0263-3]
[90]
Zeng Q, Shao D, He X, et al. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. J Mater Chem B Mater Biol Med 2016; 4(30): 5119-26.
[http://dx.doi.org/10.1039/C6TB01259K] [PMID: 32263509]
[91]
Hettiarachchi SD, Graham RM, Mintz KJ, et al. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale 2019; 11(13): 6192-205.
[http://dx.doi.org/10.1039/C8NR08970A] [PMID: 30874284]
[92]
Yuan Y, Guo B, Hao L, et al. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids Surf B Biointerfaces 2017; 159(159): 349-59.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.030] [PMID: 28806666]
[93]
Wang J, Qiu J. A review of carbon dots in biological applications. J Mater Sci 2016; 51(10): 4728-38.
[http://dx.doi.org/10.1007/s10853-016-9797-7]
[94]
Chen S, Jia Q, Zheng X, et al. PEGylated carbon dot/MnO2 nanohybrid: a new pH/H2O2-driven, turn-on cancer nanotheranostics. Sci China Mater 2018; 61(10): 1325-38.
[http://dx.doi.org/10.1007/s40843-018-9261-x]
[95]
Zheng M, Ruan S, Liu S, et al. Self-targeting fluorescent carbon dots for diagnosis of brain cancer cells. ACS Nano 2015; 9(11): 11455-61.
[http://dx.doi.org/10.1021/acsnano.5b05575] [PMID: 26458137]
[96]
Zhai Y, Bai X, Cui H, et al. Carbon dot/polyvinylpyrrolidone hybrid nanofibers with efficient solid-state photoluminescence constructed using an electrospinning technique. Nanotechnology 2018; 29(2)
[http://dx.doi.org/10.1088/1361-6528/aa99be] [PMID: 29125471]
[97]
Bao X, Yuan Y, Chen J, et al. In vivo theranostics with near-infrared-emitting carbon dots-highly efficient photothermal therapy based on passive targeting after intravenous administration. Light Sci Appl 2018; 7(91): 91.
[http://dx.doi.org/10.1038/s41377-018-0090-1] [PMID: 30479757]
[98]
Wu F, Yue L, Su H, Wang K, Yang L, Zhu X. Carbon dots @ platinum porphyrin composite as theranostic nanoagent for efficient photodynamic cancer therapy. Nanoscale Res Lett 2018; 13(1): 357.
[http://dx.doi.org/10.1186/s11671-018-2761-5] [PMID: 30411168]
[99]
Wu YF, Wu HC, Kuan CH, et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Sci Rep 2016; 6: 21170.
[http://dx.doi.org/10.1038/srep21170] [PMID: 26880047]
[100]
Aguilar Cosme JR, Bryant HE, Claeyssens F. Carbon dot-protoporphyrin IX conjugates for improved drug delivery and bioimaging. PLoS One 2019; 14(7)
[http://dx.doi.org/10.1371/journal.pone.0220210] [PMID: 31344086]
[101]
Ding H, Du F, Liu P, Chen Z, Shen J. DNA-carbon dots function as fluorescent vehicles for drug delivery. ACS Appl Mater Interfaces 2015; 7(12): 6889-97.
[http://dx.doi.org/10.1021/acsami.5b00628] [PMID: 25742297]
[102]
Bai Y, Zhang B, Chen L, et al. Facile One-pot synthesis of polydopamine carbon dots for photothermal therapy. Nanoscale Res Lett 2018; 13(1): 287.
[http://dx.doi.org/10.1186/s11671-018-2711-2] [PMID: 30225652]
[103]
Das T, Saikia BK, Dekaboruah HP, et al. Blue-fluorescent and biocompatible carbon dots derived from abundant low-quality coals. J Photochem Photobiol B 2019; 195: 1-11.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.04.004] [PMID: 31029912]
[104]
Bhattacharya D, Behera B, Sahu SK, Ananthakrishnan R, Maitic TK, Pramanik P. Design of dual stimuli responsive polymer modified magnetic nanoparticles for targeted anti-cancer drug delivery and enhanced MR imaging. New J Chem 2016; 40: 545-57.
[http://dx.doi.org/10.1039/C5NJ02504D]
[105]
Wang X, Gao Z, Zhang L, Wang H, Hu X. A magnetic and pH-sensitive composite nanoparticle for drug delivery. J Nanomater 2018; 1-7.
[http://dx.doi.org/10.1155/2018/1506342]
[106]
Chen D, Yu H, Sun K, Liu W, Wang H. Dual thermoresponsive and pH-responsive self-assembled micellar nanogel for anticancer drug delivery. Drug Deliv 2014; 21(4): 258-64.
[http://dx.doi.org/10.3109/10717544.2013.838717] [PMID: 24102086]
[107]
Zhang W, Dai J, Zhang G, Zhang Y, Li S, Nie D. Photothermal/pH dual-responsive drug delivery system of amino-terminated HBP-modified rGO and the chemo-photothermal therapy on tumor cells. Nanoscale Res Lett 2018; 13(1): 379.
[http://dx.doi.org/10.1186/s11671-018-2787-8] [PMID: 30470923]
[108]
Hervault A, Dunn AE, Lim M, et al. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 2016; 8(24): 12152-61.
[http://dx.doi.org/10.1039/C5NR07773G] [PMID: 26892588]
[109]
Wang X, Zhang J, Wang Y, et al. Multi-responsive photothermal-chemotherapy with drug-loaded melanin-like nanoparticles for synergetic tumor ablation. Biomaterials 2016; 81: 114-24.
[http://dx.doi.org/10.1016/j.biomaterials.2015.11.037] [PMID: 26731575]
[110]
Du J, Choi B, Liu Y, Feng A, Thang SH. Degradable pH and redox dual responsive nanoparticles for efficient covalent drug delivery. Polym Chem 2019; 10: 1291-8.
[http://dx.doi.org/10.1039/C8PY01583J]
[111]
Zhang M, Su R, Zhong J, et al. Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Res 2019; 12(4): 815-21.
[http://dx.doi.org/10.1007/s12274-019-2293-z] [PMID: 31737223]
[112]
Feng T, Ai X, Ong H, Zhao Y. Dual-responsive carbon dots for tumor extracellular microenvironment triggered targeting and enhanced anticancer drug delivery. ACS Appl Mater Interfaces 2016; 8(29): 18732-40.
[http://dx.doi.org/10.1021/acsami.6b06695] [PMID: 27367152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy