Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Optimization of Aqueous Extraction of the Australian Maroon Bush (Scaevola Spinescens R. Br.) to Maximize Bioactive Compound and Antioxidant Yield

Author(s): Kien Q. Nguyen*, Christopher J. Scarlett and Quan V. Vuong

Volume 2, Issue 4, 2021

Published on: 26 January, 2021

Page: [265 - 277] Pages: 13

DOI: 10.2174/2665978602666210127110728

Price: $65

Abstract

Background: Scaevola spinescens is an endemic Australian shrub that is linked to various health benefits and traditionally used as a medicine by decoction. To date, the extraction efficiency of the plant under various conditions has not been well understood. This study aimed to optimize aqueous extraction conditions of S. spinescens, for maximum extraction of total phenolic compounds, flavonoids and saponins, as well as antioxidant activities.

Methods: Response surface methodology was used to determine the influence of four independent parameters including temperature, time, sample-to-water ratio and pH. The optimal ranges of temperature (60-90°C), time (30-60 min), sample-to-water ratio (2-6 g/100 mL) and pH (3-7) were determined in preliminary experiments. Following assessment and optimization of the response surface methodology models, validation experiments were conducted to compare predicted and experimental values.

Results: The RSM models showed that extraction temperature, time and sample-to-water ratio significantly affected total phenolic compound yields. Extraction temperature and time significantly affected flavonoid yields, while only sample-to-water ratio significantly affected saponin yields. Optimal conditions for extraction were determined to be: 90°C, 53 min, 2:100 (g/mL), and pH of 4.5, if saponins are the target compounds for extraction. For phenolics, flavonoids and antioxidant capacity, a higher sample-to-water ratio of 6:100 (g/mL) is recommended.

Conclusion: Response surface methodology proved to be a reliable method for predicting yields of bioactive compounds and antioxidant capacity in S. spinescens. These findings can be used for efficient decoction by practitioners and end users, or by researchers for further isolation and purification of bioactive compounds from S. spinescens extracts.

Keywords: Scaevola spinescens, maroon bush, response surface methodology, optimization, bioactive compounds, antioxidant activity.

Graphical Abstract
[1]
Ghisalberti, E.L. The Goodeniaceae. Fitoterapia, 2004, 75(5), 429-446.
[http://dx.doi.org/10.1016/j.fitote.2004.01.018] [PMID: 15261380]
[2]
Semple, S.J.; Reynolds, G.D.; O’Leary, M.C.; Flower, R.L.P. Screening of Australian medicinal plants for antiviral activity. J. Ethnopharmacol., 1998, 60(2), 163-172.
[http://dx.doi.org/10.1016/S0378-8741(97)00152-9] [PMID: 9582007]
[3]
Cock, I.E.; Kukkonen, L. An examination of the medicinal potential of Scaevola spinescens: Toxicity, antibacterial, and antiviral activities. Pharmacognosy Res., 2011, 3(2), 85-94.
[http://dx.doi.org/10.4103/0974-8490.81955] [PMID: 21772751]
[4]
Vuong, Q.; Sadeqzadeh, E.; Hirun, S.; Goldsmith, C.; Zammitt, N.; Bowyer, M.; Sakoff, J.; Thorne, R.; Weidenhofer, J.; Scarlett, C. Phenolic Compounds, Antioxidant and Anti-Cancer Properties of the Australian Maroon Bush Scaevola spinescens (Goodeniaceae). Journal of Bioanalysis & Biomedicine, 2014, S12:002.
[5]
Pham, H. N. T.; Vuong, Q. V.; Bowyer, M. C.; Scarlett, C. J. Effect of extraction solvents and thermal drying methods on bioactive compounds and antioxidant properties of Catharanthus roseus (L.) G. Don (Patricia White cultivar). J. Food Process. Preserv., 2017, 41(5), e13199-n/a.
[6]
Vuong, Q.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med., 2013, 3(3), 104-111.
[http://dx.doi.org/10.1016/j.hermed.2013.04.004]
[7]
Nguyen, V.T.; Thuy Pham, H.N.; Bowyer, M.C.; van Altena, I.A.; Scarlett, C.J. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus. Chem. Pap., 2016, 70(5), 556-566.
[http://dx.doi.org/10.1515/chempap-2015-0240]
[8]
Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5), 965-977.
[http://dx.doi.org/10.1016/j.talanta.2008.05.019] [PMID: 18761143]
[9]
Alu’datt, M.H.; Alli, I.; Ereifej, K.; Alhamad, M.N.; Alsaad, A.; Rababeh, T. Optimisation and characterisation of various extraction conditions of phenolic compounds and antioxidant activity in olive seeds. Nat. Prod. Res., 2011, 25(9), 876-889.
[http://dx.doi.org/10.1080/14786419.2010.489048] [PMID: 21547838]
[10]
Chen, M.; Zhao, Y.; Yu, S. Optimisation of ultrasonic-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from sugar beet molasses. Food Chem., 2015, 172, 543-550.
[http://dx.doi.org/10.1016/j.foodchem.2014.09.110] [PMID: 25442590]
[11]
Nguyen, K.Q.; Vuong, Q.V.; Nguyen, M.H.; Roach, P.D. The effects of drying conditions on bioactive compounds and antioxidant activity of the Australian maroon bush, Scaevola spinescens. J. Food Process. Preserv., 2018, 42(10), e13711.
[http://dx.doi.org/10.1111/jfpp.13711]
[12]
Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem., 2005, 89(2), 191-198.
[http://dx.doi.org/10.1016/j.foodchem.2004.02.025]
[13]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64(4), 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[14]
Hiai, S.; Oura, H.; Nakajima, T. Color reaction of some sapogenins and saponins with vanillin and sulfuric acid. Planta Med., 1976, 29(2), 116-122.
[http://dx.doi.org/10.1055/s-0028-1097639] [PMID: 948509]
[15]
Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19(6), 669-675.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[16]
Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem., 2005, 53(6), 2111-2117.
[http://dx.doi.org/10.1021/jf0488110] [PMID: 15769143]
[17]
Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng., 2003, 59(4), 379-389.
[http://dx.doi.org/10.1016/S0260-8774(02)00497-1]
[18]
Hossain, M.B.; Brunton, N.P.; Patras, A.; Tiwari, B.; O’Donnell, C.P.; Martin-Diana, A.B.; Barry-Ryan, C. Optimization of ultrasound assisted extraction of antioxidant compounds from marjoram (Origanum majorana L.) using response surface methodology. Ultrason. Sonochem., 2012, 19(3), 582-590.
[http://dx.doi.org/10.1016/j.ultsonch.2011.11.001] [PMID: 22172467]
[19]
Cracolice, M. Basics of Introductory Chemistry with Math Review; Cengage Learning, 2009.
[20]
Vuong, Q.V.; Golding, J.B.; Stathopoulos, C.E.; Roach, P.D. Effects of aqueous brewing solution pH on the extraction of the major green tea constituents. Food Res. Int., 2013, 53(2), 713-719.
[http://dx.doi.org/10.1016/j.foodres.2012.09.017]
[21]
Vuong, Q.; Hirun, S.; Chuen, T.L.; Goldsmith, C.D.; Murchie, S.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Antioxidant and anticancer capacity of saponin enriched Carica papaya leaf extracts. Int. J. Food Sci. Technol., 2015, 50(1), 169-177.
[http://dx.doi.org/10.1111/ijfs.12618]
[22]
Bhuyan, D.J.; Van Vuong, Q.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Microwave-assisted extraction of Eucalyptus robusta leaf for the optimal yield of total phenolic compounds. Ind. Crops Prod., 2015, 69, 290-299.
[http://dx.doi.org/10.1016/j.indcrop.2015.02.044]
[23]
Gertenbach, D.D. Solid–liquid extraction technologies for manufacturing nutraceuticals from botanicals; CRC Press: Boca Raton, London, New York, Washington, DC, 2001, pp. 331-366.
[24]
Martínez-Las Heras, R.; Heredia, A.; Castelló, M.; Andres, A. Influence of drying method and extraction variables on the antioxidant properties of persimmon leaves. Food Biosci., 2014, 6, 1-8.
[http://dx.doi.org/10.1016/j.fbio.2014.01.002]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy