Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Simultaneous Determination of Amlodipine and Irbesartan in their Pharmaceutical Formulations by Square-Wave Voltammetry

Author(s): İsmail Murat Palabıyık*, Aysegul Dogan and İncilay Süslü

Volume 25, Issue 2, 2022

Published on: 20 January, 2021

Page: [241 - 251] Pages: 11

DOI: 10.2174/1386207324666210121110819

Price: $65

Abstract

Background: Hypertension is one of the most important health problems in the world and irbesartan and amlodipine are used in combination in various dosages for the treatment of high blood pressure.

Objective: The aim of this study is to develop a fast, easy, sensitive, accurate, and precise squarewave voltammetry method for simultaneous determination of irbesartan and amlodipine besylate from pharmaceutical formulations at a hanging mercury drop electrode.

Methods: In the applied method, since both active substances gave a peak at different potentials, no interference occurred between them. In optimization studies, Britton-Robinson buffer of pH 8.0 was chosen, in which the most appropriate peak shape and maximum peak current were observed. At the same time, as a result of instrumental parameter optimization to obtain reproducible results, 6 mV for scan increment, 30 mV for pulse amplitude, and 50 Hz for frequency were found suitable.

Results: As a result of the calibration studies of the optimized method, linear working ranges were determined as 1.00-13.08 μg mL-1 for irbesartan and 5.83-16.51 μg mL-1 for amlodipine besylate. Limit of detection and limit of quantitation values were respectively calculated as 0.63 and 1.00 μg mL-1 for irbesartan and 0.50 and 1.98 μg mL-1 for amlodipine besylate. The results of precision values (RSD) ranged from 0.67% to 2.31% for irbesartan and 0.65% to 1.49% for amlodipine besylate. Accuracy values were calculated as -0.15% to 1.63% for irbesartan and -0.07% to 3.78% for amlodipine besylate. The results obtained from the recovery studies ranged from 101.05% to 102.78% and from 98.88% to 102.20% for amlodipine besylate and irbesartan, respectively.

Conclusion: After the validation studies of the developed method were carried out, it was successfully applied to pharmaceutical formulations containing these active substances.

Keywords: Irbesartan, amlodipine besylate, square-wave voltammetry, validation, pharmaceutical formulation, electrochemistry.

Graphical Abstract
[1]
Gradman, A.H.; Basile, J.N.; Carter, B.L.; Bakris, G.L.; Materson, B.J.; Black, H.R.; Izzo, J.L., Jr; Oparil, S.; Weber, M.A. Combination therapy in hypertension. J. Am. Soc. Hypertens., 2010, 4(2), 90-98.
[http://dx.doi.org/10.1016/j.jash.2010.03.001] [PMID: 20400053]
[2]
Guerrero-García, C.; Rubio-Guerra, A.F. Combination therapy in the treatment of hypertension. Drugs Context, 2018, 7212531
[http://dx.doi.org/10.7573/dic.212531] [PMID: 29899755]
[3]
Shetty, K.; Shetty, R.; Bairy, L.; Rao, P.; Kiran, M.; Shetty, M. Deepak; Nayak, V. A comparative study on clinical and biochemical parameters in amlodipine and cilnidipine treated hypertensive patients. J. Clin. Diagn. Res., 2017, 11(5), FC01-FC05.
[4]
Adams, M.A.; Trudeau, L. Irbesartan: review of pharmacology and comparative properties. Can. J. Clin. Pharmacol., 2000, 7(1), 22-31.
[PMID: 10822210]
[5]
Bkhaitan, M.; Mirza, A. Stability-indicating HPLC-DAD method for simultaneous determination of atorvastatin, irbesartan, and amlodipine in bulk and pharmaceutical preparations. Bull. Korean Chem. Soc., 2015, 36(9), 2230-2237.
[http://dx.doi.org/10.1002/bkcs.10433]
[6]
Ebeid, W.M.; Elkady, E.F.; El-Zaher, A.A.; El-Bagary, R.I.; Patonay, G. Synchronized separation of seven medications representing most commonly prescribed antihypertensive classes by using reversed-phase liquid chromatography: Application for analysis in their combined formulations. J. Sep. Sci., 2014, 37(7), 748-757.
[http://dx.doi.org/10.1002/jssc.201301298] [PMID: 24482404]
[7]
Nimmu, N.; Arnipalli, M.; Appu, K.; Khalid, S.; Ramisetti, N. LC-MS/MS determination of antihypertension drugs in rat plasma and urine: applications to pharmacokinetics. Chromatographia, 2018, 81(11), 1551-1557.
[http://dx.doi.org/10.1007/s10337-018-3618-x]
[8]
Uslu, A.; Dikmen, I.; Kokturk, M.; Unlu, S.; Unsalan, S.; Cakici, I.; Eren, S.; Kilinc, B.; Saglam, O.; Nacak, M.; Ocak, O. Bıoequıvalence study of a fıxed dose combınatıon of irbesartan/amlodıpıne/hydrochlorothıazıde fılm coated tablet manufactured in Turkey. Nobel Med., 2014, 10(3), 24-31.
[9]
Kristoffersen, L.; Øiestad, E.L.; Opdal, M.S.; Krogh, M.; Lundanes, E.; Christophersen, A.S. Simultaneous determination of 6 beta-blockers, 3 calcium-channel antagonists, 4 angiotensin-II antagonists and 1 antiarrhythmic drug in post-mortem whole blood by automated solid phase extraction and liquid chromatography mass spectrometry. Method development and robustness testing by experimental design. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 850(1-2), 147-160.
[http://dx.doi.org/10.1016/j.jchromb.2006.11.030] [PMID: 17175206]
[10]
Mirceski, V.; Komorsky-Lovric, S.; Lovric, M. Square-wave voltammetry: theory and application; Springer Science & Business Media, 2007.
[http://dx.doi.org/10.1007/978-3-540-73740-7]
[11]
Kissinger, P.T.; Heineman, W.R. Laboratory Techniques in Electroanalytical Chemistry; Marcel Dekker: New York, 1996.
[12]
Wang, J. Electroanalytical techniques in clinical chemistry and laboratory medicine; John Wiley & Sons, 1988.
[13]
A.J B.; L.R, F. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.
[14]
Laitinen, H. Principles of Polorography. J. Am. Chem. Soc., 1967, 89(4), 1045-1046.
[http://dx.doi.org/10.1021/ja00980a064]
[15]
Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications; Wiley: New York, 1980.
[16]
Laviron, E.; Roullier, L.; Degrand, C.A. A multilayer model for the study of space dıstrıbuted redox modıfıed electrodes. 2. theory and applicatıon of linear potential sweep voltammetry for a simple reaction. J. Electroanal. Chem., 1980, 112(1), 11-23.
[http://dx.doi.org/10.1016/S0022-0728(80)80003-9]
[17]
Zuman, P.; Perrin, C.L. Organic polarography, 1st ed.; Interscience Publishers (a division of John Wiley & Sons): New York, 1969.
[18]
Elvıng, P.; Pace, S.; Oreılly, J. Electrochemıcal reductıon of purıne, pyrımıdıne, and imıdazoleiin aqueous-medıa - kınetıcs and mechanısms. J. Am. Chem. Soc., 1973, 95(3), 647-658.
[http://dx.doi.org/10.1021/ja00784a001]
[19]
Pekmez, N.; Can, M.; Yildiz, A. Spectroscopic and electrochemical observation of hydrogen-bonded imidazole and 2-aminoimidazole clusters. Acta Chim. Slov., 2007, 54(1), 131-139.
[20]
Samarkandy, A.A. Polarographic behavior and determination of vitamin b 13 in aqueous media at dropping mercury electrode. Magalat Game’at al-Malik Abdul Aziz. Al-U’lum, 2007, 19, 23-40.
[http://dx.doi.org/10.4197/Sci.19-1.3]
[21]
Gazy, A.A.; Mahgoub, H.; Khamis, E.F.; Youssef, R.M.; El-Sayed, M.A. Differential pulse, square wave and adsorptive stripping voltammetric quantification of tianeptine in tablets. J. Pharm. Biomed. Anal., 2006, 41(4), 1157-1163.
[http://dx.doi.org/10.1016/j.jpba.2006.02.039] [PMID: 16597493]
[22]
Habib, I.; Weshahy, S.; Toubar, S.; El-Alamin, M. Cathodic Stripping Voltammetric Determination of Losartan in Bulk and Pharmaceutical Products. Port. Electrochem. Acta, 2008, 26(4), 315-324.
[http://dx.doi.org/10.4152/pea.200804315]
[23]
El-Desoky, H.; Ghoneim, M.; Habazy, A. Voltammetry of irbesartan drug in pharmaceutical formulations and human blood: quantification and pharmacokinetic studies. J. Braz. Chem. Soc., 2011, 22(2), 239-247.
[http://dx.doi.org/10.1590/S0103-50532011000200008]
[24]
Celebier, M.; Suslu, I.; Altinoz, S. Validated voltammetric determination of olmesartan medoxomil: Method development and electrochemical behaviors investigation. Anal. Methods, 2013, 5(5), 1301-1306.
[http://dx.doi.org/10.1039/c2ay26138c]
[25]
Kolthoff, I.M.; Lingane, J.J. Polarography; Interscience Publ., 1952, Vol. 2, .
[26]
Rifi, M.R.; Covitz, F.H. Introduction to Organic Electrochemistry; Marcel Dekker: New York, 1974.
[27]
Zuman, P. Organic Polarographic Analysis; Organic Polarographic Analysis: London, 1964.
[28]
Suslu, I.; Celebier, M.; Altinoz, S. Electrochemical behaviour investigation and square-wave voltammetric determination of rivaroxaban in pharmaceutical dosage forms. Anal. Methods, 2014, 6(23), 9397-9403.
[http://dx.doi.org/10.1039/C4AY01871K]
[29]
Elving, P.J. Variation of the half-wave potential of organic compounds with pH. Pure Appl. Chem., 1963, 7, 423-454.
[http://dx.doi.org/10.1351/pac196307020423]
[30]
Zuman, P. Substituent Effects in Organic Polarography; Springer, 1967.
[http://dx.doi.org/10.1007/978-1-4684-8661-2]
[31]
Abdelrahman, M.; Abdelhamıd, R.; Rabıa, M.; Eldessoukı, M. Kınetıc-studıes on the chemıcal and electrochemıcal reductıon of some 4-arylıdene-5-pyrazolone compounds. Bull. Chem. Soc. Jpn., 1991, 64(12), 3713-3717.
[http://dx.doi.org/10.1246/bcsj.64.3713]
[32]
Kablan, S.; Ozaltin, N. Investigation of electrochemical behaviour of cefuroxime axetil using hanging mercury drop electrode and graphene oxide modified glassy carbon electrode. J. Electroanal. Chem., 2017, 785, 144-151.
[http://dx.doi.org/10.1016/j.jelechem.2016.12.030]
[33]
I.C.H.. Tripartite, I.H., Ed.; Validation of analytical procedures: text and methodology Q2 (R1); Geneva, Switzerland, 2005.
[34]
Hart, J. Electroanalysis of biological important compounds: Ellis Horvood Limited; New York, 1990.
[35]
Smyth, M.R.; Vos, J.G. Analytical voltammetry; Elsevier, 1992.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy