Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Recent Advantages of Mediator Based Chemically Modified Electrodes; Powerful Approach in Electroanalytical Chemistry

Author(s): Farideh Mousazadeh, Sayed Zia Mohammadi*, Sedighe Akbari, Nastaran Mofidinasab, Mohammad Reza Aflatoonian and Arman Shokooh-Saljooghi

Volume 18, Issue 1, 2022

Published on: 24 December, 2020

Page: [6 - 30] Pages: 25

DOI: 10.2174/1573411017999201224124347

Price: $65

Abstract

Background:Modified electrodes have advanced from the initial studies aimed at understanding electron transfer in films to applications in areas such as energy production and analytical chemistry. This review emphasizes the major classes of modified electrodes with mediators that are being explored for improving analytical methodology. Chemically modified electrodes (CMEs) have been widely used to counter the problems of poor sensitivity and selectivity faced in bare electrodes. We have briefly reviewed the organometallic and organic mediators that have been extensively employed to engineer adapted electrode surfaces for the detection of different compounds. Also, the characteristics of the materials that improve the electrocatalytic activity of the modified surfaces are discussed.

Objective: Improvement and promotion of pragmatic CMEs have generated a diversity of novel and probable strong detection prospects for electroanalysis. While the capability of handling the chemical nature of the electrode/solution interface accurately and creatively increases, it is predictable that different mediators-based CMEs could be developed with electrocatalytic activity and completely new applications be advanced.

Keywords: Chemically modified electrodes, electrocatalysis, electrochemical sensors, organometallic mediators, organic mediators, review

Graphical Abstract
[1]
Tajik, S.; Taher, M.A.; Beitollahi, H.; Torkzadeh-Mahani, M. Electrochemical determination of the anticancer drug taxol at a ds-DNA modified pencil-graphite electrode and its application as a label-free electrochemical biosensor. Talanta, 2015, 134, 60-64.
[http://dx.doi.org/10.1016/j.talanta.2014.10.063] [PMID: 25618641]
[2]
Akbarian, Y.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Fabrication of a new electrocatalytic sensor for determination of diclofenac, morphine and mefenamic acid using synergic effect of NiO-SWCNT and 2,4-dimethyl-N/-[1-(2,3-dihydroxy phenyl) methylidene] aniline. Sens. Actuators B Chem., 2018, 273, 228-233.
[http://dx.doi.org/10.1016/j.snb.2018.06.049]
[3]
Moghaddam, H.M.; Beitollahi, H.; Tajik, S.; Karimi-Maleh, H.; Noudeh, G.D. Simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified graphene nanosheets paste electrode. Res. Chem. Intermed., 2015, 41, 6885-6896.
[http://dx.doi.org/10.1007/s11164-014-1785-4]
[4]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[http://dx.doi.org/10.1007/s11694-017-9676-1]
[5]
Tajik, S.; Mahmoudi-Moghaddam, H.; Beitollahi, H. Screen-Printed Electrode Modified with La3+-Doped Co3O4 Nanocubes for Electrochemical Determination of Hydroxylamine. J. Electrochem. Soc., 2019, 166, B402-B406.
[http://dx.doi.org/10.1149/2.0491906jes]
[6]
Mohamadzadeh-Jahani, P.; Tajik, S.; Beitollahi, H.; Mohammadi, S.; Aflatoonian, M.R. Fabrication of electrochemical nanosensor based on carbon paste electrode modified with graphene oxide nano-ribbons and 3-(4′-amino-3′-hydroxy-biphenyl-4-yl)-acrylic acid for simultaneous detection of carbidopa and droxidopa. Res. Chem. Intermed., 2019, 45, 5143-5157.
[http://dx.doi.org/10.1007/s11164-019-03908-y]
[7]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153] [PMID: 25952889]
[8]
Mahmoudi-Moghaddam, H.; Beitollahi, H.; Tajik, S.; Soltani, H. Fabrication of a nanostructure based electrochemical sensor for voltammetric determination of epinephrine, uric acid and folic acid. Electroanalysis, 2015, 27, 2620-2628.
[http://dx.doi.org/10.1002/elan.201500166]
[9]
Ghosh, M.; Shinde, V.S.; Rueping, M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J. Org. Chem., 2019, 15, 2710-2746.
[http://dx.doi.org/10.3762/bjoc.15.264] [PMID: 31807206]
[10]
Motaghi, M.M.; Beitollahi, H.; Tajik, S.; Hosseinzadeh, R. Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis. Int. J. Electrochem. Sci., 2016, 11, 7849-7860.
[http://dx.doi.org/10.20964/2016.09.60]
[11]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. Chem. Rec., 2020, 20(7), 682-692.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[12]
Beitollahi, H.; Safaei, M.; Tajik, S. Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: a review. Anal. Bioanal. Chem. Res., 2019, 6, 81-96.
[13]
Elyasi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food Chem., 2013, 141(4), 4311-4317.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.020] [PMID: 23993620]
[14]
Mohamadzadeh-Jahani, P.; Tajik, S.; Aflatoonian, M.R.; Alizadeh, R.; Beitollahi, H. DMOF-1 Assessment and Preparation to Electrochemically Determine Hydrazine in Different Water Samples. Anal. Bioanal. Chem. Res., 2020, 7, 151-160.
[15]
Beitollahi, H.; Hamzavi, M.; Torkzadeh‐Mahani, M.; Shanesaz, M.; Karimi-Maleh, H. A novel strategy for simultaneous determination of dopamine and uric acid using a carbon paste electrode modified with CdTe quantum dots. Electroanalysis, 2015, 27, 524-533.
[http://dx.doi.org/10.1002/elan.201400635]
[16]
Bozal-Palabiyik, B.; Dogan-Topal, B.; Moghaddam, A.B.; Ozkan, S.A.; Kazemzad, M.; Uslu, B. Electrochemical detection of ct-dsDNA on nanomaterial-modified carbon based electrodes. Curr. Anal. Chem., 2019, 15, 305-312.
[http://dx.doi.org/10.2174/1573411014666180426165425]
[17]
Garkani-Nejad, F.; Beitollahi, H.; Alizadeh, R. Sensitive determination of hydroxylamine on ZnO nanorods/graphene oxide nanosheets modified graphite screen printed electrode. Anal. Bioanal. Electrochem., 2017, 9, 134-144.
[18]
Tajik, S.; Taher, M.A.; Beitollahi, H. First report for simultaneous determination of methyldopa and hydrochlorothiazide using a nanostructured based electrochemical sensor. J. Electroanal. Chem. (Lausanne Switz.), 2013, 704, 137-144.
[http://dx.doi.org/10.1016/j.jelechem.2013.07.008]
[19]
Wen, Z.; Niu, X.; Li, X.; Zhao, W.; Li, X.; Ma, D.; Deng, Y.; Sun, X.; Sun, W. Application of Nanosized LiFePO4 Modified Electrode to Electrochemical Sensor and Biosensor. Curr. Anal. Chem., 2018, 14, 452-457.
[http://dx.doi.org/10.2174/1573411013666170824150715]
[20]
Soltani, H.; Beitollahi, H.; Hatefi-Mehrjardi, A.H.; Tajik, S.; Torkzadeh-Mahani, M. Voltammetric determination of glutathione using a modified single walled carbon nanotubes paste electrode. Anal. Bioanal. Electrochem, 2014, 6, 67-79.
[21]
Alizadeh, S.; Madrakian, T.; Bahram, M. Selective and sensitive simultaneous determination of mercury and cadmium based on the aggregation of PHCA modified-AuNPs in west azerbaijan regional waters. Adv. J. Chem. A, 2019, 2, 57-72.
[22]
Mazloum-Ardakani, M.; Beitollahi, H.; Amini, M.K.; Mirkhalaf, F.; Mirjalili, B.F.; Akbari, A. Application of 2-(3,4-dihydroxyphenyl)-1,3-dithialone self-assembled monolayer on gold electrode as a nanosensor for electrocatalytic determination of dopamine and uric acid. Analyst (Lond.), 2011, 136(9), 1965-1970.
[http://dx.doi.org/10.1039/c0an00823k] [PMID: 21387075]
[23]
Tajik, S.; Taher, M.A.; Beitollahi, H. First report for electrochemical determination of levodopa and cabergoline: Application for determination of levodopa and cabergoline in human serum, urine and pharmaceutical formulations. Electroanalysis, 2014, 26, 796-806.
[http://dx.doi.org/10.1002/elan.201300589]
[24]
Rabiee, N.; Safarkhani, M.; Rabiee, M. Ultra-sensitive electrochemical on-line determination of Clarithromycin based on Poly (L-Aspartic acid)/graphite oxide/pristine graphene/glassy carbon electrode. Asian J. Nanosci. Mater, 2018, 1, 63-73.
[25]
Beitollahi, H.; Tajik, S.; Asadi, M.H.; Biparva, P. Application of a modified graphene nanosheet paste electrode for voltammetric determination of methyldopa in urine and pharmaceutical formulation. J. Anal. Sci. Technol., 2014, 5, 29.
[http://dx.doi.org/10.1186/s40543-014-0029-y]
[26]
Khalilzadeh, M.A.; Arab, Z. High Sensitive Nanostructure Square Wave Voltammetric Sensor for Determination of Vanillin in Food Samples. Curr. Anal. Chem., 2017, 13, 81-86.
[http://dx.doi.org/10.2174/1573411012666160805145331]
[27]
Beitollahi, H.; Safaei, M.; Tajik, S. Voltammetric and amperometric sensors for determination of epinephrine: A short review (2013-2017). J. Electrochem. Sci. Eng., 2019, 9, 27-43.
[http://dx.doi.org/10.5599/jese.569]
[28]
Mohamadzadeh-Jahani, P.; Tajik, S.; Alizadeh, R.; Mortazavi, M.; Beitollahi, H. Highly electrocatalytic oxidation of bisphenol a at glassy carbon electrode modified with metal-organic framework MOF-508a and its application in real sample analysis. Anal. Bioanal. Chem. Res., 2020, 7, 161-170.
[29]
Ghodsi, J.; Rafati, A.A.; Shoja, Y. Determination of acetaminophen using a glassy carbon electrode modified by horseradish peroxidase trapped in MWCNTs/silica sol-gel matrix. Adv. J. Chem. A, 2018, 1, 39-55.
[30]
Beitollahi, H.; Safaei, M.; Tajik, S. Electrochemical deduction of levodopa by utilizing modified electrodes: A review. Microchem. J., 2020.152104287
[http://dx.doi.org/10.1016/j.microc.2019.104287]
[31]
Karimi-Maleh, H.; Bananezhad, A.; Ganjali, M.R.; Norouzi, P.; Sadrnia, A. Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl. Surf. Sci., 2018, 441, 55-60.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.237]
[32]
Esfandiari-Baghbamidi, S.; Beitollahi, H.; Mohammadi, S.Z.; Tajik, S.; Soltani-Nejad, S.; Soltani-Nejad, V. Nanostructure-based electrochemical sensor for the voltammetric determination of benserazide, uric acid, and folic acid. Chin. J. Catal., 2013, 34, 1869-1875.
[http://dx.doi.org/10.1016/S1872-2067(12)60655-X]
[33]
Stoytcheva, M.; Zlatev, R.; Triny-Beleno, M.; Montero, G. Detection of phenolic compounds by tyrosinase modified clark type electrode. Curr. Anal. Chem., 2015, 11, 50-55.
[http://dx.doi.org/10.2174/1573411010666141119220515]
[34]
Karimi-Maleh, H.; Ganjali, M.R.; Norouzi, P.; Bananezhad, A. Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater. Sci. Eng. C, 2017, 73, 472-477.
[http://dx.doi.org/10.1016/j.msec.2016.12.094] [PMID: 28183634]
[35]
Esfandiari-Baghbamidi, S.; Beitollahi, H.; Tajik, S.; Khabazzadeh, H. Construction of a nanostructure based voltammetric sensor for the determination of dopamine. Anal. Bioanal. Electrochem., 2016, 8, 547-556.
[36]
Srivastava, A.K.; Upadhyay, S.S.; Rawool, C.R.; Punde, N.S.; Rajpurohit, A.S. Voltammetric techniques for the analysis of drugs using nanomaterials based chemically modified electrodes. Curr. Anal. Chem., 2019, 15, 249-276.
[http://dx.doi.org/10.2174/1573411014666180510152154]
[37]
Moghaddam, H.M.; Beitollahi, H.; Tajik, S.; Malakootian, M.; Maleh, H.K. Simultaneous determination of hydroxylamine and phenol using a nanostructure-based electrochemical sensor. Environ. Monit. Assess., 2014, 186(11), 7431-7441.
[http://dx.doi.org/10.1007/s10661-014-3938-8] [PMID: 25027778]
[38]
Taherkhani, A.; Jamali, T.; Hadadzadeh, H.; Karimi-Maleh, H.; Beitollahi, H.; Taghavi, M.; Karimi, F. ZnO nanoparticle-modified ionic liquid-carbon paste electrodefor voltammetric determination of folic acid in food and pharmaceutical samples. Ionics, 2014, 20, 421-429.
[http://dx.doi.org/10.1007/s11581-013-0992-0]
[39]
Demir, E.; Senocak, A.; Tassembedo-Koubangoye, M.F.; Demirbas, E.; Aboul-Eneın, H.Y. Electrochemical evaluation of the total antioxidant capacity of yam food samples on a polyglycine-glassy carbon modified electrode. Curr. Anal. Chem., 2018, 14, 1-8.
[40]
Beitollahi, H.; Tajik, S.; Aflatoonian, M.R.; Makarem, A. NiFe2O4 nanoparticles modified screen printed electrode for simultaneous determination of serotonin and norepinephrine. Anal. Bioanal. Electrochem., 2018, 10, 1399-1413.
[41]
Alavi-Tabari, S.A.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. (Lausanne Switz.), 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[42]
Tajik, S.; Taher, M.A.; Beitollahi, H. Mangiferin DNA biosensor using double-stranded DNA modified pencil graphite electrode based on guanine and adenine signals. J. Electroanal. Chem. (Lausanne Switz.), 2014, 720, 134-138.
[http://dx.doi.org/10.1016/j.jelechem.2014.03.039]
[43]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Gupta, V.K.; Ahmar, H.; Asadi, M.H. A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J. Mol. Liq., 2014, 196, 258-263.
[http://dx.doi.org/10.1016/j.molliq.2014.03.049]
[44]
Tajik, S.; Akbarzadeh-Torbati, N.; Safaei, M.; Beitollahi, H. Electrochemical determination of mangiferin using modified screen printed electrode. Int. J. Electrochem. Sci., 2019, 14, 4361-4370.
[http://dx.doi.org/10.20964/2019.05.51]
[45]
Beitollahi, H.; Tajik, S.; Parvan, H.; Soltani, H.; Akbari, A.; Asadi, M.H. Nanostructured based electrochemical sensor for voltammetric determination of ascorbic acid in pharmaceutical and biological samples. Anal. Bioanal. Electrochem, 2014, 6, 54-66.
[46]
Fouladgar, M.; Karimi-Maleh, H. Ionic liquid/multiwall carbon nanotubes paste electrode for square wave voltammetric determination of methyldopa. Ionics, 2013, 19(8), 1163-1170.
[http://dx.doi.org/10.1007/s11581-012-0832-7]
[47]
Shamsadin-Azad, Z.; Taher, M.A.; Cheraghi, S.; Karimi-Maleh, H. A nanostructure voltammetric platform amplified with ionic liquid for determination of tert-butylhydroxyanisole in the presence kojic acid. J. Food Meas. Charact., 2019, 13, 1781-1787.
[http://dx.doi.org/10.1007/s11694-019-00096-6]
[48]
Beitollahi, H.; Mahmoudi-Moghaddam, H.; Tajik, S. Voltammetric determination of bisphenol a in water and juice using a lanthanum (III)-Doped Cobalt (II, III) nanocube modified carbon screen-printed electrode. Anal. Lett., 2019, 52, 1432-1444.
[http://dx.doi.org/10.1080/00032719.2018.1545132]
[49]
Ganjali, M.R.; Salimi, H.; Tajik, S.; Beitollahi, H.; Badiei, A.; Ziarani, G.M. Electrochemical determination of gliclazide on magnetic core-shell Fe3O4@SiO2 Functionalized Multiwall Carbon Nanotubes Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci., 2017, 12, 8868-8877.
[http://dx.doi.org/10.20964/2017.10.63]
[50]
Yazdely, M.A.; Taher, M.A.; Tajik, S. Voltammetric Determination of Epinephrine using a Thiourea Modified Glassy Carbon Electrode. Anal. Bioanal. Electrochem., 2013, 5, 517-527.
[51]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[http://dx.doi.org/10.1016/j.talanta.2017.08.027] [PMID: 28917742]
[52]
Mohammadi, S.; Taheri, A.; Rezayati-Zad, Z. Ultrasensitive and selective non-enzymatic glucose detection based on pt electrode modified by carbon nanotubes@ graphene oxide/nickel hydroxide-Nafion hybrid composite in alkaline media. Prog. Chem. Biochem. Res, 2019, 1, 1-10.
[53]
Karimi-Maleh, H.; Biparva, P.; Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens. Bioelectron., 2013, 48, 270-275.
[http://dx.doi.org/10.1016/j.bios.2013.04.029] [PMID: 23707873]
[54]
Mohammadi, S.Z.; Beitollahi, H.; Bani Asadi, E. Electrochemical determination of hydrazine using a ZrO2 nanoparticles-modified carbon paste electrode. Environ. Monit. Assess., 2015, 187(3), 122.
[http://dx.doi.org/10.1007/s10661-015-4309-9] [PMID: 25694032]
[55]
Sethuraman, V.; Muthuraja, P.; Anandha Raj, J.; Manisankar, P. A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide-metal oxide enzyme modified electrode. Biosens. Bioelectron., 2016, 84, 112-119.
[http://dx.doi.org/10.1016/j.bios.2015.12.074] [PMID: 26751827]
[56]
Dourandish, Z.; Beitollahi, H. Electrochemical sensing of isoproterenol using graphite screen-printed electrode modified with graphene quantum dots. Anal. Bioanal. Chem., 2018, 10, 192-202.
[57]
Elobeid, W.H.; Elbashir, A.A. Development of chemically modified pencil graphite electrode based on benzo-18-crown-6 and multi-walled CNTs for determination of lead in water samples. Prog. Chem. Biochem. Res, 2019, 2, 24-33.
[http://dx.doi.org/10.33945/SAMI/PCBR.2019.2.2433]
[58]
Beitollahi, H.; Garkani-Nejad, F. Voltammetric determination of vitamin B6 (pyridoxine) at a graphite screen-printed electrode modified with graphene oxide/Fe3O4@SiO2 nanocomposite. Russ. Chem. Bull., 2018, 67, 238-242.
[http://dx.doi.org/10.1007/s11172-018-2064-0]
[59]
Salmanpour, S.; Tavana, T.; Pahlavan, A.; Khalilzadeh, M.A.; Ensafi, A.A.; Karimi-Maleh, H.; Beitollahi, H.; Kowsari, E.; Zareyee, D. Mater. Sci. Eng. C, 2012, 32(7), 1912-1918.
[http://dx.doi.org/10.1016/j.msec.2012.05.038]
[60]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[61]
Devaraj, M.; Saravanan, R.; Deivasigamani, R.; Gupta, V.K.; Gracia, F.; Jayadevan, S. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq., 2016, 221, 930-941.
[http://dx.doi.org/10.1016/j.molliq.2016.06.028]
[62]
Karimi-Maleh, H.; Hatami, M.; Moradi, R.; Khalilzadeh, M.A.; Amiri, S.; Sadeghifar, H. Synergic effect of Pt-Co nanoparticles and a dopamine derivative in a nanostructured electrochemical sensor for simultaneous determination of N-acetylcysteine, paracetamol and folic acid. Mikrochim. Acta, 2016, 183, 2957-2964.
[http://dx.doi.org/10.1007/s00604-016-1946-9]
[63]
Ganjali, M.R.; Garkani-Nejad, F.; Tajik, S.; Beitollahi, H.; Pourbasheer, E.; Larijanii, B. Determination of salicylic acid by differential pulse voltammetry using ZnO/Al2O3 nanocomposite modified graphite screen printed electrode. Int. J. Electrochem. Sci., 2017, 12, 9972-9982.
[http://dx.doi.org/10.20964/2017.11.49]
[64]
Karimi-Maleh, H.; Ensafi, A.A.; Beitollahi, H.; Nasiri, V.; Khalilzadeh, M.A.; Biparva, P. Electrocatalytic determination of sulfite using a modified carbon nanotubes paste electrode: application for determination of sulfite in real samples. Ionics, 2012, 18, 687-694.
[http://dx.doi.org/10.1007/s11581-011-0654-z]
[65]
Salmanpour, S.; Khalilzadeh, M.A.; Karimi-Maleh, H.; Zareyeea, D. An electrochemical sensitive sensor for determining sulfamethoxazole using a modified electrode based on biosynthesized NiO nanoparticles paste electrode. Int. J. Electrochem. Sci., 2019, 14, 9552-9561.
[http://dx.doi.org/10.20964/2019.10.03]
[66]
Beitollahi, H.; Tajik, S.; Alizadeh, R. Nano composite system based on ZnO-functionalized graphene oxide nanosheets for determination of cabergoline. J. Electrochem. Sci. Technol., 2017, 8, 307-313.
[http://dx.doi.org/10.33961/JECST.2017.8.4.307]
[67]
Jamali, T.; Karimi-Maleh, H.; Khalilzadeh, M.A. A novel nanosensor based on Pt:Co nanoalloy ionic liquid carbon paste electrode for voltammetric determination of vitamin B9 in food samples. Lebensm. Wiss. Technol., 2014, 57, 679-685.
[http://dx.doi.org/10.1016/j.lwt.2014.01.023]
[68]
Prasad, P.; Sreedhar, N.Y. Effective SWCNTs/Nafion electrochemical sensor for detection of dicapthon pesticide in water and agricultural food samples. Chem. Methodol, 2018, 2, 277-290.
[69]
Garkani-Nejad, F.; Beitollahi, H.; Shakeri, Sh. Magnetic core–shell Fe3O4@SiO2/graphene nanocomposite modified carbon paste electrode for voltammetric determination of ascorbic acid in the presence of l-cysteine. 2016, 8, 318-328.,
[70]
Payehghadr, M.; Adineh Salarvand, S.; Nourifard, F.; Rofouei, M.K.; Bahramipanah, N. Construction of modified carbon paste electrode by a new pantazene ligand for ultra-trace determination of ion silver in real samples. Adv. J. Chem. Sec A, 2019, 2, 377-385.
[71]
Khodadadi, A.; Faghih-Mirzaei, E.; Karimi-Maleh, H.; Abbaspourrad, A.; Agarwal, S.; Gupta, V.K. A new epirubicin biosensor based on amplifying DNA interactions with polypyrrole and nitrogen-doped reduced graphene: experimental and docking theoretical investigations. Sens. Actuators B Chem., 2019, 284, 568-574.
[http://dx.doi.org/10.1016/j.snb.2018.12.164]
[72]
Shahid, M.M.; Rameshkumar, P.; Huang, N.M. A glassy carbon electrode modified with graphene oxide and silver nanoparticles for amperometric determination of hydrogen peroxide. Mikrochim. Acta, 2016, 183, 911-916.
[http://dx.doi.org/10.1007/s00604-015-1679-1]
[73]
Aflatoonian, M.R.; Tajik, S.; Aflatoonian, B.; Sheikhshoaie, I.; Sheikhshoaie, M.; Beitollahi, H. Copper oxide, ionic liquid and Mn (III) Salen modified carbon paste electrode as selective electrochemical sensor for determination of droxidopa in the presence of carbidopa. Eurasian Chem. Commun., 2020, 2, 387-397.
[http://dx.doi.org/10.33945/SAMI/ECC.2020.3.9]
[74]
Amos, P.; Louis, H.; Adesina Adegoke, K.; Eno, E.A.; Udochukwu, A.O.; Odey Magub, T. Understanding the Mechanism of Electrochemical Reduction of CO2 Using Cu/Cu-Based Electrodes: A Review. Asian J. Nanosci. Mater, 2018, 1, 183-224.
[75]
Najafi, M.; Khalilzadeh, M.A.; Karimi-Maleh, H. A new strategy for determination of bisphenol A in the presence of Sudan I using a ZnO/CNTs/ionic liquid paste electrode in food samples. Food Chem., 2014, 158, 125-131.
[http://dx.doi.org/10.1016/j.foodchem.2014.02.082] [PMID: 24731323]
[76]
Tajik, S.; Beitollahi, H.; Aflatoonian, M.R. A novel dopamine electrochemical sensor based on La3+/ZnO nanoflower modified graphite screen printed electrode. J. Electrochem. Sci. Eng., 2019, 9, 187-195.
[http://dx.doi.org/10.5599/jese.674]
[77]
Ensafi, A.A.; Bahrami, H.; Rezaei, B.; Karimi-Maleh, H. Application of ionic liquid-TiO2 nanoparticle modified carbon paste electrode for the voltammetric determination of benserazide in biological samples. Mater. Sci. Eng. C, 2013, 33(2), 831-835.
[http://dx.doi.org/10.1016/j.msec.2012.11.008] [PMID: 25427494]
[78]
Kamran, S.; Amiri Shiri, N. A Comparative study for adsorption of alizarin red s from aqueous samples by magnetic nanoparticles of Fe3O4, CoFe2O4 and ionic liquid-modified Fe3O4. Chem. Methodol, 2018, 2, 23-38.
[79]
Miraki, M.; Karimi-Maleh, H.; Taher, M.A.; Cheraghi, S.; Karimi, F.; Agarwal, S.; Gupta, V.K. Voltammetric amplified platform based on ionic liquid/NiO nanocomposite for determination of benserazide and levodopa. J. Mol. Liq., 2019, 278, 672-676.
[http://dx.doi.org/10.1016/j.molliq.2019.01.081]
[80]
Handa, Y.; Watanabe, K.; Chihara, K.; Katsuno, E.; Horiba, T.; Inoue, M.; Komaba, S. The Mechanism of Electro-Catalytic Oxidation of Glucose on Manganese Dioxide Electrode Used for Amperometric Glucose Detection. J. Electrochem. Soc., 2018, 165, H742-H749.
[http://dx.doi.org/10.1149/2.0781811jes]
[81]
Tajik, S.; Taher, M.A.; Beitollahi, H. The first electrochemical sensor for determination of mangiferin based on an ionic liquid–graphene nanosheets paste electrode. Ionics, 2014, 20, 1155-1161.
[http://dx.doi.org/10.1007/s11581-013-1063-2]
[82]
Alem, M.; Teimouri, A.; Salavati, H.; Kazemi, S. Central composite design optimization of methylene blue scavenger using modified graphene oxide based polymer. Chem. Methodol, 2017, 1, 49-67.
[http://dx.doi.org/10.22631/chemm.2017.49743]
[83]
Karimi-Maleh, H.; Sheikhshoaie, M.; Sheikhshoaie, I.; Ranjbar, M.; Alizadeh, J.; Maxakato, N.W.; Abbaspourrad, A. A novel electrochemical epinine sensor using amplified CuO nanoparticles and an-hexyl-3-methylimidazolium hexafluorophosphate electrode. New J. Chem., 2019, 43, 2362-2367.
[http://dx.doi.org/10.1039/C8NJ05581E]
[84]
Banaei, A.; Shourian, M.; Dashtestani, F.; Eskandari, K. Sensitive detection of human hemoglobin by MWCNTs-ionic liquid: Anthraquinone modified electrode. Nanosci. Nanotechnol. Asia, 2019, 9, 479-485.
[http://dx.doi.org/10.2174/2210681208666180626161341]
[85]
Kingsley, M.P.; Desai, P.B.; Srivastava, A.K. Simultaneous electro-catalytic oxidative determination of ascorbic acid and folic acid using Fe3O4 nanoparticles modified carbon paste electrode. J. Electroanal. Chem. (Lausanne Switz.), 2015, 741, 71-79.
[http://dx.doi.org/10.1016/j.jelechem.2014.12.039]
[86]
Nehru, S.; Sakthinathan, S.; Tamizhdurai, P.; Chiu, T.W.; Shanthi, K. Reduced graphene oxide/multiwalled carbon nanotube composite decorated with Fe3O4 magnetic nanoparticles for electrochemical determination of hydrazine in environmental water. J. Nanosci. Nanotechnol., 2020, 20(5), 3148-3156.
[http://dx.doi.org/10.1166/jnn.2020.17379] [PMID: 31635659]
[87]
Forooghi, M.M.; Tajik, S.; Beitollahi, H. New strategy for determination of levodopa using carbon paste electrode modified with SiO2@Fe3O4/GR nanocomposite, ionic liquid and 2-(ferrocenylethynyl)fluoren-9-one‏. Anal. Bioanal. Electrochem., 2017, 9, 535-545.
[88]
Ciucu, A.A. Chemically modified electrodes in biosensing. J. Biosens. Bioelectron., 2014, 5, 1-10.
[89]
Sun, W.; Yang, M.X.; Jiang, Q.; Jiao, K. Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin. Chem. Lett., 2008, 19, 1156-1158.
[http://dx.doi.org/10.1016/j.cclet.2008.07.011]
[90]
Chandrashekar, B.N.; Swamy, B.E.K.; Ashoka, N.B.; Pandurangachar, M. Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode: A voltammetric study. J. Mol. Liq., 2012, 165, 168-172.
[http://dx.doi.org/10.1016/j.molliq.2011.11.005]
[91]
Daneshgar, P.; Norouzi, P.; Dousty, F.; Ganjali, M.R.; Moosavi-Movahedi, A.A. Dysprosium hydroxide nanowires modified electrode for determination of rifampicin drug in human urine and capsules by adsorptive square wave voltammetry. Curr. Pharm. Anal., 2009, 5, 246-255.
[http://dx.doi.org/10.2174/157341209788922066]
[92]
Wang, X.; You, Z.; Sha, H.; Gong, S.; Niu, Q.; Sun, W. Direct electrochemistry and electrocatalysis of myoglobin using an ionic liquid-modified carbon paste electrode coated with Co3O4 nanorods and gold nanoparticles. Mikrochim. Acta, 2014, 181, 767-774.
[http://dx.doi.org/10.1007/s00604-013-1110-8]
[93]
Mosammam, M.K.; Ganjali, M.R.; Habibi-Kool-Gheshlaghi, M.; Faridbod, F. Electroanalysis of catecholamine drugs using graphene modified electrodes. Curr. Anal. Chem., 2019, 15, 443-466.
[http://dx.doi.org/10.2174/1573411014666180917113206]
[94]
Lu, L.; Guo, L.; Kang, T.; Cheng, S. A gold electrode modified with a three-dimensional graphene-DNA composite for sensitive voltammetric determination of dopamine. Mikrochim. Acta, 2017, 184, 2949-2957.
[http://dx.doi.org/10.1007/s00604-017-2267-3]
[95]
Mohamadzadeh-Jahani, P.; Tajik, S.; Beitollahi, H.; Mohammadi, S.; Aflatoonian, M.R. Voltammetric detection of gliclazide and glibenclamide with graphite screen-printed electrode modified with nanopetal-structured MoWS2. Res. Chem. Intermed., 2020, 46, 837-852.
[http://dx.doi.org/10.1007/s11164-019-03993-z]
[96]
Mohammadi, S.Z.; Beitollahi, H.; Tajik, S. Screen printed carbon electrode modified with magnetic core shell manganese ferrite nanoparticles for electrochemical detection of amlodipine. J. Serb. Chem. Soc., 2019, 84, 1005-1016.
[http://dx.doi.org/10.2298/JSC1810056036M]
[97]
Tajik, S.; Garkani-Nejad, F.; Beitollahi, H. Synthesis of La3+/Co3O4 Nanoflowers for Sensitive Detection of Chlorpromazine. Russ. J. Electrochem., 2019, 55, 314-321.
[http://dx.doi.org/10.1134/S1023193519030108]
[98]
Mohammadzadeh Jahani, P.; Tajik, S.; Beitollahi, H.; Mohammadi, S.; Jafari, M. Electrochemical determination of hydroxylamine through MOWS2 nano-composite modified electrode. Int. J. Environ. Anal. Chem., 2021, 101, 225-236.
[http://dx.doi.org/10.1080/03067319.2019.1663183]
[99]
Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Beitollahi, H.; Benvidi, A.; Naeimi, H. Electrochemical determination of vitamin C in the presence of uric acid by a novel TiO2 nanoparticles modified carbon paste electrode. Chin. Chem. Lett., 2010, 21, 1471-1474.
[http://dx.doi.org/10.1016/j.cclet.2010.07.026]
[100]
Tajik, S. Application of Cu (II) Nanocomplex modified graphite screen printed electrode to improve the sensitivity for norepinephrine detection. Anal. Bioanal. Electrochem., 2018, 10, 778-788.
[101]
Tajik, S.; Taher, M.A.; Beitollahi, H.; Hosseinzadeh, R.; Ranjbar, M. Preparation, characterization and electrochemical application of ZnS/ZnAl2S4 nanocomposite for voltammetric determination of methionine and tryptophan using modified carbon paste electrode. Electroanalysis, 2016, 28, 656-662.
[http://dx.doi.org/10.1002/elan.201500423]
[102]
Mohammadi, S.Z.; Beitollahi, H.; Rohani, T.; Allahabadi, H.; Tajik, S. La2O3/Co3O4 nanocomposite modified screen printed electrode for voltammetric determination of sertraline. J. Serb. Chem. Soc., 2019, 84, 1-12.
[http://dx.doi.org/10.2298/JSC190326126M]
[103]
Tajik, S.; Aflatoonian, M.R.; Shabanzade, R.; Beitollahi, H.; Alizadeh, R. Amplified electrochemical sensor employing ZnO-CuO nanoplates for sensitive analysis of Sudan I. Int. J. Environ. Anal. Chem., 2020, 100, 109-120.
[http://dx.doi.org/10.1080/03067319.2019.1631304]
[104]
Jomma, E.Y.; Bao, N.; Ding, S.N. Electrochemical properties of prussian blue@Fe3O4 nano-hybrid modified pencil drawn electrode on paper. Curr. Anal. Chem., 2018, 14, 49-57.
[http://dx.doi.org/10.2174/1573411013666170718100102]
[105]
Ganjali, M.R.; Beitollahi, H.; Zaimbashi, R.; Tajik, S.; Rezapour, M.; Larijani, B. Voltammetric determination of dopamine using glassy carbon electrode modified with ZnO/Al2O3 nanocomposite. Int. J. Electrochem. Sci., 2018, 13, 2519-2529.
[http://dx.doi.org/10.20964/2018.03.11]
[106]
Siddiquee, S.; Yusof, N.A.; Bakar-Salleh, A.; Tan, S.G.; Abu-Bakar, F. Enhancement of DNA immobilization and hybridization on gold electrode modified using ZnO Nanoparticles/Chitosan Film. Curr. Anal. Chem., 2011, 7, 296-305.
[http://dx.doi.org/10.2174/157341111797183047]
[107]
Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. Highly sensitive electrochemical sensor based on La3+-doped Co3O4 nanocubes for determination of sudan I content in food samples. Food Chem., 2019, 286, 191-196.
[http://dx.doi.org/10.1016/j.foodchem.2019.01.143] [PMID: 30827595]
[108]
Ward-Jones, S.E.; Compton, R.G. Fabrication and applications of nanoparticle-modified electrodes in stripping analysis. Curr. Anal. Chem., 2008, 4, 177-182.
[http://dx.doi.org/10.2174/157341108784911370]
[109]
Tajik, S.; Beitollahi, H.; Biparva, P. Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J. Serb. Chem. Soc., 2018, 83, 863-874.
[http://dx.doi.org/10.2298/JSC170930024T]
[110]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[111]
Beitollahi, H.; Safaei, M.; Shishehbore, M.R.; Tajik, S. Application of Fe3O4@ SiO2/GO nanocomposite for sensitive and selective electrochemical sensing of tryptophan. J. Electrochem. Sci. Eng., 2019, 9, 45-53.
[http://dx.doi.org/10.5599/jese.576]
[112]
Ganjali, M.R.; Salimi, H.; Tajik, S.; Beitollahi, H.; Rezapour, M.; Larijani, B. Application of Fe3O4@SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int. J. Electrochem. Sci., 2017, 12, 5243-5253.
[http://dx.doi.org/10.20964/2017.06.88]
[113]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[http://dx.doi.org/10.1007/s12161-014-9926-3]
[114]
Karimi-Maleh, H.; Shojaei, A.F.; Tabatabaeian, K.; Karimi, F.; Shakeri, S.; Moradi, R. Simultaneous determination of 6-mercaptopruine, 6-thioguanine and dasatinib as three important anticancer drugs using nanostructure voltammetric sensor employing Pt/MWCNTs and 1-butyl-3-methylimidazolium hexafluoro phosphate. Biosens. Bioelectron., 2016, 86, 879-884.
[http://dx.doi.org/10.1016/j.bios.2016.07.086] [PMID: 27494812]
[115]
Mohammadzadeh-Jahani, P.; Beitollahi, H.; Tajik, S.; Tashakkorian, H. Selective electrochemical determination of bisphenol a via a Fe3O4 NPs derivative-modified graphite screen-printed electrode. Int. J. Environ. Anal. Chem., 2020, 100, 1209-1225.
[http://dx.doi.org/10.1080/03067319.2019.1651299]
[116]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.065]
[117]
Vinodhkumar, G.; Ramya, R.; Potheher, I.; Cyrac-Peter, A. Reduced graphene oxide based on simultaneous detection of neurotransmitters. Prog. Chem. Biochem. Res., 2018, 1, 40-49.
[http://dx.doi.org/10.29088/SAMI/PCBR.2018.1.4049]
[118]
Karimi-Maleh, H.; Ensafi, A.A.; Ensafi, H.R. Ferrocenedicarboxylic acid modified carbon paste electrode: a sensor for electrocatalytic determination of hydrochlorothiazide. J. Braz. Chem. Soc., 2009, 20(5), 880-887.
[http://dx.doi.org/10.1590/S0103-50532009000500012]
[119]
Fouladgar, M.; Karimi-Maleh, H.; Opoku, F.; Govender, P.P. J. Mol. Liq., 2020, 311113314
[http://dx.doi.org/10.1016/j.molliq.2020.113314]
[120]
Beitollahi, H.; Hamzavi, M.; Torkzadeh-Mahani, M. Electrochemical determination of hydrochlorothiazide and folic acid in real samples using a modified graphene oxide sheet paste electrode. Mater. Sci. Eng. C, 2015, 52, 297-305.
[http://dx.doi.org/10.1016/j.msec.2015.03.031] [PMID: 25953571]
[121]
Xing, H.; Xu, J.; Zhu, X.; Duan, X.; Lu, L.; Wang, W.; Zhang, Y.; Yang, T. Highly sensitive simultaneous determination of cadmium (II), lead (II), copper (II), and mercury (II) ions on N-doped graphene modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2016, 760, 52-58.
[http://dx.doi.org/10.1016/j.jelechem.2015.11.043]
[122]
Beitollahi, H.; Dourandish, Z.; Ganjali, M.R.; Shakeri, S. Voltammetric determination of dopamine in the presence of tyrosine using graphite screen-printed electrode modified with graphene quantum dots. Ionics, 2018, 24, 4023-4031.
[http://dx.doi.org/10.1007/s11581-018-2489-3]
[123]
Norouzi, P.; Salimi, H.; Tajik, S.; Beitollahi, H.; Rezapour, M.; Larijani, B. Biosensing Applications of ZnO/Graphene on Glassy Carbon Electrode in Analysis of Tyrosine. Int. J. Electrochem. Sci., 2017, 12, 5254-5263.
[http://dx.doi.org/10.20964/2017.06.79]
[124]
Esfandiari-Baghbamidi, S.; Beitollahi, H.; Tajik, S. Graphene oxide nano-sheets/ferrocene derivative modified carbon paste electrode as an electrochemical sensor for determination of hydrazine. Anal. Bioanal. Electrochem., 2014, 6, 634-645.
[125]
Manal, A.; Hendawy, H.A.; Eldin, G.M.; El-Sherif, Z.A. Application of nano graphene-modified electrode as an electrochemical sensor for determination of tapentadol in the presence of paracetamol. J. Iran. Chem. Soc., 2019, 16, 1123-1130.
[http://dx.doi.org/10.1007/s13738-018-01585-z]
[126]
Tajik, S.; Beitollahi, H. A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Anal. Bioanal. Chem. Res., 2019, 6, 171-182.
[127]
Esfandiari-Baghbamidi, S.; Beitollahi, H.; Tajik, S. Synthesis of graphene oxide nanosheets and its application to construct a modified carbon paste electrode as a hydroxylamine electrochemical sensor. Ionics, 2015, 21, 2363-2370.
[http://dx.doi.org/10.1007/s11581-015-1398-y]
[128]
Bahadır, E.B.; Sezgintürk, M.K. Applications of graphene in electrochemical sensing and biosensing. TrAC Trend. Anal. Chem., 2016, 76, 1-14.
[129]
Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J., 2019.150104085
[http://dx.doi.org/10.1016/j.microc.2019.104085]
[130]
Khameneh-Asl, S. Preparation of graphene/graphene oxide microsupercapacitor by using laser-scribed method. Chem. Methodol., 2019, 3, 183-193.
[131]
Ganjali, M.R.; Dourandish, Z.; Beitollahi, H.; Tajik, S.; Hajiaghababaei, L.; Larijani, B. Highly sensitive determination of theophylline based on graphene quantum dots modified electrode. Int. J. Electrochem. Sci., 2018, 13, 2448-2461.
[http://dx.doi.org/10.20964/2018.03.09]
[132]
Goodarzian, M.; Khalilzade, M.A.; Karimi, F.; Gupta, V.K.; Keyvanfard, M.; Bagheri, H.; Fouladgar, M. Square wave voltammetric determination of diclofenac in liquid phase using a novel ionic liquid multiwall carbon nanotubes paste electrode. J. Mol. Liq., 2014, 197, 114-119.
[http://dx.doi.org/10.1016/j.molliq.2014.04.037]
[133]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Ensafi, A.A.; Moradi, R.; Mallakpour, S.; Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite/N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosens. Bioelectron., 2014, 60, 1-7.
[http://dx.doi.org/10.1016/j.bios.2014.03.055] [PMID: 24755294]
[134]
Beitollahi, H.; Ebadinejad, F.; Shojaie, F.; Torkzadeh-Mahani, M. A magnetic core–shell Fe3O4@SiO2/MWCNT nanocomposite modified carbon paste electrode for amplified electrochemical sensing of amlodipine and hydrochlorothiazide. Anal. Methods, 2016, 8, 6185-6193.
[http://dx.doi.org/10.1039/C6AY01438K]
[135]
Ghoreishi, S.M.; Behpour, M.; Hajisadeghian, E.; Golestaneh, M. Voltammetric determination of resorcinol on the surface of a glassy carbon electrode modified with multi-walled carbon nanotube. Arab. J. Chem., 2016, 9, S1563-S1568.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.009]
[136]
Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Hamzavi, M.; Parvan, H. Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples. Int. J. Electrochem. Sci., 2014, 9, 2955-2965.
[137]
Si, X.; Wang, T.; Ding, Y.; Liu, B.; Luo, L. Multi-walled carbon nanotubes/vitamin B12 modified glassy carbon electrode for determination of P-hydroxyacetophenone. Curr. Anal. Chem., 2015, 11, 211-216.
[http://dx.doi.org/10.2174/1573411011666150317230348]
[138]
Tajik, S.; Taher, M.A.; Beitollahi, H. Simultaneous determination of droxidopa and carbidopa using a carbon nanotubes paste electrode. Sens. Actuators B Chem., 2013, 188, 923-930.
[http://dx.doi.org/10.1016/j.snb.2013.07.085]
[139]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. Highly sensitive square wave voltammetric sensor employing CdO/SWCNTs and room temperature ionic liquid for analysis of vanillin and folic acid in food samples. J. Food Compos. Anal., 2017, 62, 254-259.
[http://dx.doi.org/10.1016/j.jfca.2017.06.006]
[140]
Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Akbari, A.; Hosseinzadeh, R. Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int. J. Electrochem. Sci., 2014, 9, 8407-4821.
[141]
Annalakshmi, M.; Balasubramanian, P.; Chen, S.M.; Chen, T.W. Amperometric sensing of nitrite at nanomolar concentrations by using carboxylated multiwalled carbon nanotubes modified with titanium nitride nanoparticles. Mikrochim. Acta, 2018, 186(1), 8.
[http://dx.doi.org/10.1007/s00604-018-3136-4] [PMID: 30535857]
[142]
Esfandiari-Baghbamidi, S.; Beitollahi, H.; Tajik, S.; Hosseinzadeh, R. Voltammetric sensor based on 1-benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; detection of hydrochlorothiazide in the presence of propranolol. Int. J. Electrochem. Sci., 2016, 11, 10874-10883.
[http://dx.doi.org/10.20964/2016.12.92]
[143]
Ensafi, A.A.; Karimi-Maleh, H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. J. Electroanal. Chem. (Lausanne Switz.), 2010, 640, 75-83.
[http://dx.doi.org/10.1016/j.jelechem.2010.01.010]
[144]
Soltani, H.; Beitollahi, H.; Hatefi-Mehrjardi, A.H.; Tajik, S.; Torkzadeh-Mahani, M. Nanostructured base electrochemical sensor for voltammetric determination of homocysteine using a modified single-walled carbon nanotubes paste electrode. Ionics, 2014, 20, 1481-1488.
[http://dx.doi.org/10.1007/s11581-014-1099-y]
[145]
Wang, Y.H.; Xia, H.; Huang, K.J.; Wu, X.; Ma, Y.Y.; Deng, R.; Lu, Y.F.; Han, Z.W. Ultrasensitive determination of thrombin by using an electrode modified with WSe2 and gold nanoparticles, aptamer-thrombin-aptamer sandwiching, redox cycling, and signal enhancement by alkaline phosphatase. Mikrochim. Acta, 2018, 185(11), 502-512.
[http://dx.doi.org/10.1007/s00604-018-3028-7] [PMID: 30302569]
[146]
Salimian, R.; Kékedy‐Nagy, L.; Ferapontova, E.E. Specific picomolar detection of a breast cancer biomarker HER‐2/neu protein in serum: Electrocatalytically amplified electroanalysis by the Aptamer/PEG‐modified electrode. ChemElectroChem, 2017, 4, 872-879.
[http://dx.doi.org/10.1002/celc.201700025]
[147]
Santharaman, P.; Venkatesh, K.A.; Vairamani, K.; Benjamin, A.R.; Sethy, N.K.; Bhargava, K.; Karunakaran, C. ARM-microcontroller based portable nitrite electrochemical analyzer using cytochrome c reductase biofunctionalized onto screen printed carbon electrode. Biosens. Bioelectron., 2017, 90, 410-417.
[http://dx.doi.org/10.1016/j.bios.2016.10.039] [PMID: 27836596]
[148]
Akbari Hasanjani, H.R.; Zarei, K. An electrochemical sensor for attomolar determination of mercury(II) using DNA/poly-L-methionine-gold nanoparticles/pencil graphite electrode. Biosens. Bioelectron., 2019, 128, 1-8.
[http://dx.doi.org/10.1016/j.bios.2018.12.039] [PMID: 30616212]
[149]
Álvarez-Martos, I.; Møller, A.; Ferapontova, E.E. Dopamine binding and analysis in undiluted human serum and blood by the RNA-aptamer electrode. ACS Chem. Neurosci., 2019, 10(3), 1706-1715.
[http://dx.doi.org/10.1021/acschemneuro.8b00616] [PMID: 30605601]
[150]
Safaei, M.; Beitollahi, H.; Shishehbore, M.R.; Tajik, S. Electrocatalytic determination of captopril using a carbon paste electrode modified with N-(ferrocenyl-methylidene) fluorene-2-amine and graphene/ZnO nanocomposite. J. Serb. Chem. Soc., 2019, 84, 175-185.
[http://dx.doi.org/10.2298/JSC180414095S]
[151]
Radecki, J.; Szymańska, I.; Bulgariu, L.; Pietraszkiewicz, M. Covalent and embedment immobilization of macrocyclic polyamines on gold electrodes and their voltammetric responses towards ethene dicarboxylic acids. Electrochim. Acta, 2006, 51, 2289-2297.
[http://dx.doi.org/10.1016/j.electacta.2005.02.153]
[152]
Wen, Z.H.; Kang, T.F. Determination of nitrite using sensors based on nickel phthalocyanine polymer modified electrodes. Talanta, 2004, 62(2), 351-355.
[http://dx.doi.org/10.1016/j.talanta.2003.08.003] [PMID: 18969302]
[153]
Upadhyay, A.K.; Ting, T.W.; Chen, S.M. Amperometric biosensor for hydrogen peroxide based on coimmobilized horseradish peroxidase and methylene green in ormosils matrix with multiwalled carbon nanotubes. Talanta, 2009, 79(1), 38-45.
[http://dx.doi.org/10.1016/j.talanta.2009.03.010] [PMID: 19376341]
[154]
Jiang, Z.; Shangguan, Y.; Zheng, Q. Ferrocene-modified polyelectrolyte film-coated electrode and its application in glucose detection. Polymers (Basel), 2019, 11(3), 551-560.
[http://dx.doi.org/10.3390/polym11030551] [PMID: 30960536]
[155]
Salem, W.M. Sensitive determination of paracetamol using ferrocene nanoparticles by chitosan-functionalized-modified carbon past electrode.‏. Egypt. J. Chem., 2019, 62, 679-690.
[156]
Devendiran, M.; Kumar, K.K.; Narayanan, S.S. Amperometric determination of ascorbic acid and riboflavin using ferrocene/thionin bimediator modified electrode.‏. Sci. Technol., 2018, 4, 628-634.
[157]
Tajik, S.; Taher, M.A.; Beitollahi, H. Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sens. Actuators B Chem., 2014, 197, 228-236.
[http://dx.doi.org/10.1016/j.snb.2014.02.096]
[158]
Shahmiri, M.R.; Bahari, A.; Karimi-Maleh, H.; Hosseinzadeh, R.; Mirnia, N. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sens. Actuators B Chem., 2013, 177, 70-77.
[http://dx.doi.org/10.1016/j.snb.2012.10.098]
[159]
Beitollahi, H.; Tajik, S.; Mohammadi, S.Z.; Baghayeri, M. Voltammetric determination of hydroxylamine in water samples using a 1-benzyl-4-ferrocenyl-1H-[1, 2, 3]-triazole/carbon nanotube-modified glassy carbon electrode. Ionics, 2014, 20, 571-579.
[http://dx.doi.org/10.1007/s11581-013-1004-0]
[160]
Karimi-Maleh, H.; Ahanjan, K.; Taghavi, M.; Ghaemy, M. A novel voltammetric sensor employing zinc oxide nanoparticles and a new ferrocene-derivative modified carbon paste electrode for determination of captopril in drug samples. Anal. Methods, 2016, 8, 1780-1788.
[http://dx.doi.org/10.1039/C5AY03284A]
[161]
Beitollahi, H.; Tajik, S.; Maleh, H.K.; Hosseinzadeh, R. Application of a 1‐benzyl‐4‐ferrocenyl‐1H‐[1, 2, 3]‐triazole/carbon nanotube modified glassy carbon electrode for voltammetric determination of hydrazine in water samples. Appl. Organomet. Chem., 2013, 27, 444-450.
[http://dx.doi.org/10.1002/aoc.3001]
[162]
Zuo, X.; Zhang, H.; Li, N. An electrochemical biosensor for determination of ascorbic acid by cobalt (II) phthalocyanine–multi-walled carbon nanotubes modified glassy carbon electrode. Sens. Actuators B Chem., 2012, 161, 1074-1079.
[http://dx.doi.org/10.1016/j.snb.2011.12.013]
[163]
Zhao, H.; Zhang, Y.; Zhao, B.; Chang, Y.; Li, Z. Electrochemical reduction of carbon dioxide in an MFC-MEC system with a layer-by-layer self-assembly carbon nanotube/cobalt phthalocyanine modified electrode. Environ. Sci. Technol., 2012, 46(9), 5198-5204.
[http://dx.doi.org/10.1021/es300186f] [PMID: 22475021]
[164]
Liu, L.; Guo, L.P.; Bo, X.J.; Bai, J.; Cui, X.J. Electrochemical sensors based on binuclear cobalt phthalocyanine/surfactant/ordered mesoporous carbon composite electrode. Anal. Chim. Acta, 2010, 673(1), 88-94.
[http://dx.doi.org/10.1016/j.aca.2010.05.019] [PMID: 20630182]
[165]
Lourenço, A.S.; Nascimento, R.F.; Silva, A.C.; Ribeiro, W.F.; Araujo, M.C.U.; Oliveira, S.C.B.; Nascimento, V.B. Voltammetric determination of tartaric acid in wines by electrocatalytic oxidation on a cobalt(II)-phthalocyanine-modified electrode associated with multiway calibration. Anal. Chim. Acta, 2018, 1008, 29-37.
[http://dx.doi.org/10.1016/j.aca.2018.01.005] [PMID: 29420941]
[166]
Nantaphol, S.; Jesadabundit, W.; Chailapakul, O.; Siangproh, W. A new electrochemical paper platform for detection of 8-hydroxyquinoline in cosmetics using a cobalt phthalocyanine-modified screen-printed carbon electrode. J. Electroanal. Chem. (Lausanne Switz.), 2019, 832, 480-485.
[http://dx.doi.org/10.1016/j.jelechem.2018.11.055]
[167]
Koyun, O.; Gorduk, S.; Gencten, M.; Sahin, Y. A novel copper (ıı) phthalocyanine-modified multiwalled carbon nanotube-based electrode for sensitive electrochemical detection of bisphenol A. New J. Chem., 2019, 43, 85-92.
[http://dx.doi.org/10.1039/C8NJ03721C]
[168]
Fredj, Z.; Ben Ali, M.; Abbas, M.N.; Dempsey, E. Determination of prostate cancer biomarker acid phosphatase at a copper phthalocyanine-modified screen printed gold transducer. Anal. Chim. Acta, 2019, 1057, 98-105.
[http://dx.doi.org/10.1016/j.aca.2018.12.058] [PMID: 30832923]
[169]
Mashhadizadeh, M.H.; Yousefi, T.; Golikand, A.N. A nickel hexacyanoferrate and poly (1-naphthol) hybrid film modified electrode used in the selective electroanalysis of dopamine. Electrochim. Acta, 2012, 59, 321-328.
[http://dx.doi.org/10.1016/j.electacta.2011.10.070]
[170]
Magdić, K.; Horvat-Radošević, V.; Kvastek, K. Impedance aspect of charge storage at graphite and glassy carbon electrodes in potassium hexacyanoferrate (II) redox active electrolyte. J. Electrochem. Sci. Eng., 2016, 6, 37-45.
[http://dx.doi.org/10.5599/jese.230]
[171]
Yan, X.; Pan, D.; Wang, H.; Bo, X.; Guo, L. Electrochemical determination of L-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2011, 663, 36-42.
[http://dx.doi.org/10.1016/j.jelechem.2011.09.024]
[172]
Li, X.; Chen, Z.; Zhong, Y.; Yang, F.; Pan, J.; Liang, Y. Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip. Anal. Chim. Acta, 2012, 710, 118-124.
[http://dx.doi.org/10.1016/j.aca.2011.10.035] [PMID: 22123120]
[173]
Sharma, V.V.; Guadagnini, L.; Giorgetti, M.; Tonelli, D. Electrocatalytic determination of thiols using hybrid copper cobalt hexacyanoferrate modified glassy carbon electrode. Sens. Actuators B Chem., 2016, 228, 16-24.
[http://dx.doi.org/10.1016/j.snb.2015.12.067]
[174]
Zhang, H.; Gao, Q.; Li, H. A novel photoelectrochemical hydrogen peroxide sensor based on nickel (II)-potassium hexacyanoferrate-graphene hybrid materials modified n-silicon electrode. J. Solid State Electrochem., 2016, 20, 1565-1573.
[http://dx.doi.org/10.1007/s10008-016-3156-0]
[175]
M., Aboul-Enein, H., Rabee, E., Alhassan Abd Elshafi, A. A voltammetric sensor based on stannic hexacyanoferrate modified carbon paste electrode for simultaneous determination of some anions. Anal. Chem. Lett., 2016, 6, 644-656.
[http://dx.doi.org/10.1080/22297928.2016.1249953]
[176]
Van Nguyen, Q.; Lafolet, F.; Martin, P.; Lacroix, J.C. Ultrathin molecular layer junctions based on cyclometalated ruthenium complexes. J. Phys. Chem. C, 2018, 122, 29069-29074.
[http://dx.doi.org/10.1021/acs.jpcc.8b10766]
[177]
Over, H. Surface chemistry of ruthenium dioxide in heterogeneous catalysis and electrocatalysis: from fundamental to applied research. Chem. Rev., 2012, 112(6), 3356-3426.
[http://dx.doi.org/10.1021/cr200247n] [PMID: 22423981]
[178]
Wohnrath, K.; Pessoa, C.A.; Dos Santos, P.M.; Garcia, J.R.; Batista, A.A.; Oliveira, O.N., Jr Electrochemical properties of a ruthenium complex immobilized as thin films and in carbon paste electrodes. Prog. Solid State Chem., 2005, 33, 243-252.
[http://dx.doi.org/10.1016/j.progsolidstchem.2005.11.026]
[179]
Mazloum-Ardakani, M.; Sheikh-Mohseni, M.A.; Salavati-Niasari, M. A ruthenium complex/carbon nanotube based electrode as the first electrochemical sensor for simultaneous sensing of d-penicillamine, 6-thioguanine and catecholamines. Electroanalysis, 2016, 28, 1370-1376.
[http://dx.doi.org/10.1002/elan.201500597]
[180]
Shaidarova, L.G.; Gedmina, A.V.; Zhaldak, É.R.; Chelnokova, I.A.; Demina, V.D.; Budnikov, G.K. Selective voltammetric determination of sulfur-containing amino acids in drugs and vitamin complexes on an electrode modified by a ruthenium-hexachloroplatinate Film. Pharm. Chem. J., 2018, 52, 145-150.
[http://dx.doi.org/10.1007/s11094-018-1780-y]
[181]
Fang, C.S.; Oh, K.H.; Park, J.K.; Yang, H. Rapid and sensitive electrochemical detection of carbaryl based on enzyme inhibition and thiocholine oxidation mediated by a ruthenium (III) complex. Electroanalysis, 2017, 29, 339-344.
[http://dx.doi.org/10.1002/elan.201600308]
[182]
Rezaei, B.; Khosropour, H.; Ensafi, A.A.; Hadadzadeh, H.; Farrokhpour, H. A differential pulse voltammetric sensor for determination of glutathione in real samples using a Trichloro (terpyridine) ruthenium (III)/Multiwall carbon nanotubes modified paste electrode. IEEE Sens. J., 2014, 15, 483-490.
[http://dx.doi.org/10.1109/JSEN.2014.2343152]
[183]
Guo, C.X.; Lei, Y.; Li, C.M. Porphyrin functionalized graphene for sensitive electrochemical detection of ultratrace explosives. Electroanalysis, 2011, 23, 885-893.
[http://dx.doi.org/10.1002/elan.201000522]
[184]
van Staden, J.F.; Stefan-van Staden, R.I. Application of porphyrins in flow-injection analysis: a review. Talanta, 2010, 80(5), 1598-1605.
[http://dx.doi.org/10.1016/j.talanta.2009.10.016] [PMID: 20152383]
[185]
Kemmegne-Mbouguen, J.C.; Angnes, L. Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode. Sens. Actuators B Chem., 2015, 212, 464-471.
[http://dx.doi.org/10.1016/j.snb.2015.02.046]
[186]
Wang, Y.; Wang, L.; Chen, H.; Hu, X.; Ma, S. Fabrication of highly sensitive and stable hydroxylamine electrochemical sensor based on gold nanoparticles and metal–metalloporphyrin framework modified electrode. ACS Appl. Mater. Interfaces, 2016, 8(28), 18173-18181.
[http://dx.doi.org/10.1021/acsami.6b04819] [PMID: 27351460]
[187]
Kubendhiran, S.; Sakthinathan, S.; Chen, S.M.; Tamizhdurai, P.; Shanthi, K.; Karuppiah, C. Green reduction of reduced graphene oxide with nickel tetraphenyl porphyrin nanocomposite modified electrode for enhanced electrochemical determination of environmentally pollutant nitrobenzene. J. Colloid Interface Sci., 2017, 497, 207-216.
[http://dx.doi.org/10.1016/j.jcis.2017.03.003] [PMID: 28285048]
[188]
Fan, Z.; Sun, L.; Wu, S.; Liu, C.; Wang, M.; Xu, J.; Tong, Z. Preparation of manganese porphyrin/niobium tungstate nanocomposites for enhanced electrochemical detection of nitrite. J. Mater. Sci., 2019, 54, 10204-10216.
[http://dx.doi.org/10.1007/s10853-019-03526-4]
[189]
Wu, Y. Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron (III)-porphyrin modified glassy carbon electrodes. Food Chem., 2010, 121, 580-584.
[http://dx.doi.org/10.1016/j.foodchem.2009.12.051]
[190]
Liu, W.; Shen, X.; Han, Y.; Liu, Z.; Dai, W.; Dutta, A.; Kumar, A.; Liu, J. Selective adsorption and removal of drug contaminants by using an extremely stable Cu(II)-based 3D metal-organic framework. Chemosphere, 2019, 215, 524-531.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.075] [PMID: 30342397]
[191]
Wu, X.X.; Fu, H.R.; Han, M.L.; Zhou, Z.; Ma, L.F. Tetraphenylethylene immobilized metal–organic frameworks: highly sensitive fluorescent sensor for the detection of Cr2O72–and nitroaromatic explosives. Cryst. Growth Des., 2017, 17, 6041-6048.
[http://dx.doi.org/10.1021/acs.cgd.7b01155]
[192]
Banerjee, D.; Hu, Z.; Li, J. Luminescent metal-organic frameworks as explosive sensors. Dalton Trans., 2014, 43(28), 10668-10685.
[http://dx.doi.org/10.1039/C4DT01196A] [PMID: 24921188]
[193]
Qin, J.H.; Huang, Y.D.; Shi, M.Y.; Wang, H.R.; Han, M.L.; Yang, X.G.; Ma, L.F. Aqueous-phase detection of antibiotics and nitroaromatic explosives by an alkali-resistant Zn-MOF directed by an ionic liquid. RSC Advances, 2020, 10, 1439-1446.
[http://dx.doi.org/10.1039/C9RA08733H]
[194]
Wen, G.X.; Han, M.L.; Wu, X.Q.; Wu, Y.P.; Dong, W.W.; Zhao, J.; Li, D.S.; Ma, L.F. A multi-responsive luminescent sensor based on a super-stable sandwich-type terbium(iii)-organic framework. Dalton Trans., 2016, 45(39), 15492-15499.
[http://dx.doi.org/10.1039/C6DT03057B] [PMID: 27711861]
[195]
Fu, H.R.; Yan, L.B.; Wu, N.T.; Ma, L.F.; Zang, S.Q. Dual-emission MOF⊃ dye sensor for ratiometric fluorescence recognition of RDX and detection of a broad class of nitro-compounds. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6, 9183-9191.
[http://dx.doi.org/10.1039/C8TA02857E]
[196]
Qin, J.; Ma, B.; Liu, X.F.; Lu, H.L.; Dong, X.Y.; Zang, S.Q.; Hou, H. Aqueous-and vapor-phase detection of nitroaromatic explosives by a water-stable fluorescent microporous MOF directed by an ionic liquid. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 12690-12697.
[http://dx.doi.org/10.1039/C5TA00322A]
[197]
Yang, X.; Ma, L.F.; Yan, D. Facile synthesis of 1D organic-inorganic perovskite micro-belts with high water stability for sensing and photonic applications. Chem. Sci. (Camb.), 2019, 10(17), 4567-4572.
[http://dx.doi.org/10.1039/C9SC00162J] [PMID: 31123566]
[198]
Liu, J.Q.; Luo, Z.D.; Pan, Y.; Singh, A.K.; Trivedi, M.; Kumar, A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord. Chem. Rev., 2020.406213145
[http://dx.doi.org/10.1016/j.ccr.2019.213145]
[199]
Chen, Q.; Li, X.; Min, X.; Cheng, D.; Zhou, J.; Li, Y.; Zhang, C. Determination of catechol and hydroquinone with high sensitivity using MOF-graphene composites modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2017, 789, 114-122.
[http://dx.doi.org/10.1016/j.jelechem.2017.02.033]
[200]
Arul, P.; John, S.A. Silver nanoparticles built-in zinc metal organic framework modified electrode for the selective non-enzymatic determination of H2O2. Electrochim. Acta, 2017, 235, 680-689.
[http://dx.doi.org/10.1016/j.electacta.2017.03.097]
[201]
Wen, Y.; Meng, W.; Li, C.; Dai, L.; He, Z.; Wang, L.; Li, M.; Zhu, J. Enhanced glucose sensing based on a novel composite CoII-MOF/Acb modified electrode. Dalton Trans., 2018, 47(11), 3872-3879.
[http://dx.doi.org/10.1039/C8DT00296G] [PMID: 29451291]
[202]
Wang, Y.; Wu, Y.; Xie, J.; Hu, X. Metal–organic framework modified carbon paste electrode for lead sensor. Sens. Actuators B Chem., 2013, 177, 1161-1166.
[http://dx.doi.org/10.1016/j.snb.2012.12.048]
[203]
Jirimali, H.D.; Nagarale, R.K.; Saravanakumar, D.; Lee, J.M.; Shin, W. Hydroquinone modified chitosan/carbon film electrode for the selective detection of ascorbic acid. Carbohydr. Polym., 2013, 92(1), 641-644.
[http://dx.doi.org/10.1016/j.carbpol.2012.09.024] [PMID: 23218347]
[204]
Beitollahi, H.; Karimi-Maleh, H.; Khabazzadeh, H. Nanomolar and selective determination of epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-oxo-3-phenyl-3,4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal. Chem., 2008, 80(24), 9848-9851.
[http://dx.doi.org/10.1021/ac801854j] [PMID: 19072278]
[205]
Xianguang, C.; Ren, W.; Guofang, Z.; Xiaoyong, Z. Electrocatalytic oxidation and determination of ascorbic acid on polymer hydroquinone modified electrode. Chin. J. Anal. Chem., 2006, 34, 1063-1066.
[http://dx.doi.org/10.1016/S1872-2040(06)60049-2]
[206]
Tezerjani, M.D.; Benvidi, A.; Firouzabadi, A.D.; Mazloum-Ardakani, M.; Akbari, A. Epinephrine electrochemical sensor based on a carbon paste electrode modified with hydroquinone derivative and graphene oxide nano-sheets: Simultaneous determination of epinephrine, acetaminophen and dopamine. Measurement, 2017, 101, 183-189.
[http://dx.doi.org/10.1016/j.measurement.2017.01.029]
[207]
Mazloum-Ardakani, M.; Taleat, Z.; Beitollahi, H.; Naeimi, H. Electrocatalytic oxidation of dopamine on 2, 2′-[3, 6-dioxa-1, 8-octanediylbis (nitriloethylidyne)]-bis-hydroquinone modified carbon paste electrode. Anal. Methods, 2010, 2, 149-153.
[http://dx.doi.org/10.1039/B9AY00217K]
[208]
Koochana, P.K.; Mohanty, A.; Subhadarshanee, B.; Satpati, S.; Naskar, R.; Dixit, A.; Behera, R.K. Phenothiazines and phenoxazines: as electron transfer mediators for ferritin iron release. Dalton Trans., 2019, 48(10), 3314-3326.
[http://dx.doi.org/10.1039/C8DT04383C] [PMID: 30778450]
[209]
Pauliukaite, R.; Ghica, M.E.; Barsan, M.M.; Brett, C.M. Phenazines and polyphenazines in electrochemical sensors and biosensors. Anal. Lett., 2010, 43, 1588-1608.
[http://dx.doi.org/10.1080/00032711003653791]
[210]
Kulys, J.; Krikstopaitis, K.; Scheller, F.W.; Wollenberger, U. Electrochemical parameters of phenoxazine derivatives in solution and at monolayer-modified gold electrodes. Electroanalysis, 2004, 16, 183-189.
[http://dx.doi.org/10.1002/elan.200302795]
[211]
Titoiu, A.M.; Lapauw, M.; Necula‐Petrareanu, G.; Purcarea, C.; Fanjul‐Bolado, P.; Marty, J.L.; Vasilescu, A. Carbon nanofiber and meldola blue based electrochemical sensor for nadh: Application to the detection of benzaldehyde. Electroanalysis, 2018, 30, 2676-2688.
[http://dx.doi.org/10.1002/elan.201800472]
[212]
Chakkarapani, L.D.; Sangilimuthu, S.N.; Arumugam, S. New electrochemical sensor for the detection of biological analytes using poly (amido amine) dendrimer and poly (Nile blue)-modified electrode. J. Electroanal. Chem. (Lausanne Switz.), 2019, 555113486
[http://dx.doi.org/10.1016/j.jelechem.2019.113486]
[213]
Jin, H.; Zhao, C.; Gui, R.; Gao, X.; Wang, Z. Reduced graphene oxide/nile blue/gold nanoparticles complex-modified glassy carbon electrode used as a sensitive and label-free aptasensor for ratiometric electrochemical sensing of dopamine. Anal. Chim. Acta, 2018, 1025, 154-162.
[http://dx.doi.org/10.1016/j.aca.2018.03.036] [PMID: 29801604]
[214]
Mayer, L.; May, L.; Müller, T.J. The interplay of conformations and electronic properties in N-aryl phenothiazines. Org. Chem. Front., 2020, 7, 1206-1217.
[http://dx.doi.org/10.1039/D0QO00182A]
[215]
Liu, X.; Deng, K.; Wang, H.; Li, C.; Zhang, S.; Huang, H. Aptamer based ratiometric electrochemical sensing of 17β-estradiol using an electrode modified with gold nanoparticles, thionine, and multiwalled carbon nanotubes. Mikrochim. Acta, 2019, 186(6), 347.
[http://dx.doi.org/10.1007/s00604-019-3465-y] [PMID: 31079210]
[216]
Fan, Y.; Shi, S.; Ma, J.; Guo, Y. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosens. Bioelectron., 2019, 135, 1-7.
[http://dx.doi.org/10.1016/j.bios.2019.03.063] [PMID: 30981027]
[217]
Yu, Z.; Luan, Y.; Li, H.; Wang, W.; Wang, X.; Zhang, Q. A disposable electrochemical aptasensor using single-stranded DNA–methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol A. Sens. Actuators B Chem., 2019, 284, 73-80.
[http://dx.doi.org/10.1016/j.snb.2018.12.126]
[218]
Rafiee-Pour, H.A.; Behpour, M.; Keshavarz, M. A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21. Biosens. Bioelectron., 2016, 77, 202-207.
[http://dx.doi.org/10.1016/j.bios.2015.09.025] [PMID: 26409019]
[219]
Xu, X.; Zhao, J.; Jiang, D.; Kong, J.; Liu, B.; Deng, J. TiO2 sol-gel derived amperometric biosensor for H2O2 on the electropolymerized phenazine methosulfate modified electrode. Anal. Bioanal. Chem., 2002, 374(7-8), 1261-1266.
[http://dx.doi.org/10.1007/s00216-002-1616-0] [PMID: 12474095]
[220]
Surya, A.; Murthy, N. Anita, Tetracyanoquinodimethane (TCNQ) modified electrode for NADH oxidation. Bioelectrochem. Bioenerg., 1994, 33, 71-73.
[http://dx.doi.org/10.1016/0302-4598(94)87035-7]
[221]
Day, R.W.; Inzelt, G.; Kinstle, J.F.; Chambers, J.Q. Tetracyanoquinodimethane-modified electrodes. J. Am. Chem. Soc., 1982, 104, 6804-6805.
[http://dx.doi.org/10.1021/ja00388a065]
[222]
Zamfir, L.G.; Rotariu, L.; Bala, C. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane/ionic liquid conductive gels. Biosens. Bioelectron., 2013, 46, 61-67.
[http://dx.doi.org/10.1016/j.bios.2013.02.018] [PMID: 23500478]
[223]
Zheng, Z.; Feng, Q.; Zhu, M.; Shang, J.; Li, M.; Li, C.; Kou, L.; Zheng, J.; Wang, C. Electrochemical sensor for the discrimination of bilirubin in real human blood based on Au nanoparticles/tetrathiafulvalene -carboxylate functionalized reduced graphene oxide 0D-2D heterojunction. Anal. Chim. Acta, 2019, 1072, 46-53.
[http://dx.doi.org/10.1016/j.aca.2019.04.040] [PMID: 31146864]
[224]
Yuan, B.; Xu, C.; Zhang, R.; Lv, D.; Li, S.; Zhang, D.; Liu, L.; Fernandez, C. Glassy carbon electrode modified with 7,7,8,8-tetracyanoquinodimethane and graphene oxide triggered a synergistic effect: Low-potential amperometric detection of reduced glutathione. Biosens. Bioelectron., 2017, 96, 1-7.
[http://dx.doi.org/10.1016/j.bios.2017.04.026] [PMID: 28448855]
[225]
Dalkıran, B.; Esra Erden, P.; Kılıç, E. Amperometric biosensors based on carboxylated multiwalled carbon nanotubes-metal oxide nanoparticles-7,7,8,8-tetracyanoquinodimethane composite for the determination of xanthine. Talanta, 2017, 167, 286-295.
[http://dx.doi.org/10.1016/j.talanta.2017.02.021] [PMID: 28340722]
[226]
Amani, J.; Maleki, M.; Khoshroo, A.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M. An electrochemical immunosensor based on poly p-phenylenediamine and graphene nanocomposite for detection of neuron-specific enolase via electrochemically amplified detection. Anal. Biochem., 2018, 548, 53-59.
[http://dx.doi.org/10.1016/j.ab.2018.02.024] [PMID: 29486202]
[227]
Rezaei, B.; Boroujeni, M.K.; Ensafi, A.A. Development of Sudan II sensor based on modified treated pencil graphite electrode with DNA, o-phenylenediamine, and gold nanoparticle bioimprinted polymer. Sens. Actuators B Chem., 2016, 222, 849-856.
[http://dx.doi.org/10.1016/j.snb.2015.09.017]
[228]
Buffon, E.; Stradiotto, N.R. Electrochemical sensor based on molecularly imprinted poly (ortho-phenylenediamine) for determination of hexahydrofarnesol in aviation biokerosene. Sens. Actuators B Chem., 2019, 287, 371-379.
[http://dx.doi.org/10.1016/j.snb.2019.02.059]
[229]
Ping, J.; Wu, J.; Fan, K.; Ying, Y. An amperometric sensor based on Prussian blue and poly(o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages. Food Chem., 2011, 126(4), 2005-2009.
[http://dx.doi.org/10.1016/j.foodchem.2010.12.073] [PMID: 25213990]
[230]
Orooji, Y.; Haddad, I.M.; Hassandoost, R.; Khataee, A.; Rahim, P.S.; Woo, J.S. Cerium doped magnetite nanoparticles for highly sensitive detection of metronidazole via chemiluminescence assay. Spectrochim. Acta A, 2020, 234118272
[http://dx.doi.org/10.1016/j.saa.2020.118272]
[231]
Sisi, A.J.; Fathinia, M.; Khataee, A.; Orooji, Y. Systematic activation of potassium peroxydisulfate with ZIF-8 via sono-assisted catalytic process: Mechanism and ecotoxicological analysis. J. Mol. Liq., 2020, 308113018
[http://dx.doi.org/10.1016/j.molliq.2020.113018]
[232]
Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separ. Purif. Tech., 2018, 205, 273-283.
[http://dx.doi.org/10.1016/j.seppur.2018.05.006]
[233]
Ghasemi, M.; Khataee, A.; Gholami, P.; Soltani, R.D.C.; Hassani, A.; Orooji, Y. In-situ electro-generation and activation of hydrogen peroxide using a CuFeNLDH-CNTs modified graphite cathode for degradation of cefazolin. J. Environ. Manage., 2020.267110629
[http://dx.doi.org/10.1016/j.jenvman.2020.110629] [PMID: 32349954]
[234]
Mehdizadeh, P.; Orooji, Y.; Amiri, O.; Salavati-Niasari, M.; Moayedi, H. J. Clean. Prod., 2020, 252119765
[http://dx.doi.org/10.1016/j.jclepro.2019.119765]
[235]
Orooji, Y.; Ghasali, E.; Moradi, M.; Derakhshandeh, M.R.; Alizadeh, M.; Shahedi Asl, M.; Ebadzadeh, T. Preparation of mullite-TiB2-CNTs hybrid composite through spark plasma sintering. Ceram. Int., 2019, 45(13), 16288-16296.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.154]
[236]
Orooji, Y.; Derakhshandeh, M.R.; Ghasali, E.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Effects of ZrB2 reinforcement on microstructure and mechanical properties of a spark plasma sintered mullite-CNT composite. Ceram. Int., 2019, 45(13), 16015-16021.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.113]
[237]
Karimi-Maleh, H.; Shafieizadeh, M.; Taher, M.A.; Opoku, F.; Kiarii, E.M.; Govender, P.P.; Ranjbari, S.; Rezapour, M.; Orooji, Y. The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J. Mol. Liq., 2020, 298112040
[http://dx.doi.org/10.1016/j.molliq.2019.112040]
[238]
Orooji, Y.; Alizadeh, A.; Ghasali, E.; Derakhshandeh, M.R.; Alizadeh, M.; Asl, M.S.; Ebadzadeh, T. Co-reinforcing of mullite-TiN-CNT composites with ZrB2 and TiB2 compounds. Ceram. Int., 2019, 45, 20844-20854.
[http://dx.doi.org/10.1016/j.ceramint.2019.07.072]
[239]
Hassandoost, R.; Pouran, S.R.; Khataee, A.; Orooji, Y.; Joo, S.W. Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J. Hazard. Mater., 2019, 376, 200-211.
[http://dx.doi.org/10.1016/j.jhazmat.2019.05.035] [PMID: 31128399]
[240]
Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.S.; Durgalakshmi, S.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq., 2020, 341113588
[http://dx.doi.org/10.1016/j.molliq.2020.113588]
[241]
Malekmohammadi, S.; Hadadzadeh, H.; Farrokhpour, H.; Amirghofran, Z. Immobilization of gold nanoparticles on folate-conjugated dendritic mesoporous silica-coated reduced graphene oxide nanosheets: a new nanoplatform for curcumin pH-controlled and targeted delivery. Soft Matter, 2018, 14(12), 2400-2410.
[http://dx.doi.org/10.1039/C7SM02248D] [PMID: 29512668]
[242]
Malekmohammadi, S.; Hadadzadeh, H.; Rezakhani, S.; Amirghofran, Z. Design and synthesis of gatekeeper coated dendritic silica/titania mesoporous nanoparticles with sustained and controlled drug release properties for targeted synergetic chemo-sonodynamic therapy. ACS Biomater. Sci. Eng., 2019, 5, 4405-4415.
[http://dx.doi.org/10.1021/acsbiomaterials.9b00237]
[243]
Rayati, S.; Malekmohammadi, S. Catalytic activity of multi-wall carbon nanotube supported manganese (III) porphyrin: an efficient, selective and reusable catalyst for oxidation of alkenes and alkanes with urea–hydrogen peroxide. J. Exp. Nanosci., 2016, 11(11), 872-883.
[http://dx.doi.org/10.1080/17458080.2016.1179802]
[244]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[245]
Karimi-Maleh, H.; Amini, F.; Akbari, A.; Shojaei, M. Amplified electrochemical sensor employing CuO/SWCNTs and 1-butyl-3-methylimidazolium hexafluorophosphate for selective analysis of sulfisoxazole in the presence of folic acid. J. Colloid Interface Sci., 2017, 495, 61-67.
[http://dx.doi.org/10.1016/j.jcis.2017.01.119] [PMID: 28189110]
[246]
Karimi-Maleh, H.; Moazampour, M.; Ahmar, H.; Beitollahi, H.; Ensafi, A.A. Measurement, 2014, 51, 91-99.
[http://dx.doi.org/10.1016/j.measurement.2014.01.028]
[247]
Ensafi, A.A.; Izadi, M.; Karimi-Maleh, H. Sensitive voltammetric determination of diclofenac using room-temperature ionic liquid-modified carbon nanotubes paste electrode. Ionics, 2013, 19(1), 137-144.
[http://dx.doi.org/10.1007/s11581-012-0705-0]
[248]
Beitollahi, H.; Raoof, J.B.; Karimi-Maleh, H.; Hosseinzadeh, R. Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2,7-bis(ferrocenyl ethyl)fluoren-9-one and carbon nanotubes. J. Solid State Electrochem., 2012, 16(4), 1701-1707.
[http://dx.doi.org/10.1007/s10008-011-1578-2]
[249]
Ensafi, A.A.; Karimi-Maleh, H. Voltammetric determination of isoproterenol using multiwall carbon nanotubes-ionic liquid paste electrode. Drug Test. Anal., 2011, 3(5), 325-330.
[http://dx.doi.org/10.1002/dta.232] [PMID: 21309002]
[250]
Ensafi, A.A.; Maleh, H.K. A multiwall carbon nanotubes paste electrode as a sensor and ferrocenemonocarboxylic acid as a mediator for electrocatalytic determination of isoproterenol. Int. J. Electrochem. Sci., 2010, 5, 1484-1495.
[251]
Ensafi, A.A.; Karimi-Maleh, H. A voltammetric sensor based on modified multiwall carbon nanotubes for cysteamine determination in the presence of tryptophan using p-aminophenol as a mediator. Electroanalysis, 2010, 22(21), 2558-2568.
[http://dx.doi.org/10.1002/elan.201000270]
[252]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S. Electroanalysis, 2011, 23, 1478-1487.
[http://dx.doi.org/10.1002/elan.201000741]
[253]
Bavandpour, R.; Rajabi, M.; Karimi-Maleh, H. Ultrasensitive electroanalytical sulfisoxazole sensors amplified with Pd-doped ZnO nanoparticles and modified with 1-hexyl-3-methyl imidazolium bis (trifluoromethylsulfonyl) imide. New J. Chem., 2020, 44(26), 11125-11130.
[http://dx.doi.org/10.1039/D0NJ01461C]
[254]
Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt-Pd-doped NiO nanoparticle decorated at single-wall carbon nanotubes: An excellent, powerful electrocatalyst for the fabrication of An electrochemical sensor to determine nalbuphine in the presence of tramadol as two opioid analgesic drugs. J. Pharm. Biomed. Anal., 2020.189113397
[http://dx.doi.org/10.1016/j.jpba.2020.113397] [PMID: 32563934]
[255]
Afshar, S.; Zamani, H.A.; Karimi-Maleh, H. NiO/SWCNTs coupled with an ionic liquid composite for amplified carbon paste electrode; A feasible approach for improving sensing ability of adrenalone and folic acid in dosage form. J. Pharm. Biomed. Anal., 2020.188113393
[http://dx.doi.org/10.1016/j.jpba.2020.113393] [PMID: 32504973]
[256]
Tavana, T.; Rezvani, A.R.; Karimi-Maleh, H. Pt‐doped NiO Nanoparticle-ionic liquid modified electrochemical sensor: A powerful approach for determination of epinine in the presence of phenylephrine as two blood pressure raising drugs. Electroanalysis, 2020, 32, 1828-1833.
[http://dx.doi.org/10.1002/elan.202060006]
[257]
Faridbod, F.; Sanati, A.L. Graphene quantum dots in electrochemical sensors/biosensors. Curr. Anal. Chem., 2019, 15(2), 103-123.
[http://dx.doi.org/10.2174/1573411014666180319145506]
[258]
Sanati, A.L.; Faridbod, F.; Ganjali, M.R. Synergic effect of graphene quantum dots and room temperature ionic liquid for the fabrication of highly sensitive voltammetric sensor for levodopa determination in the presence of serotonin. J. Mol. Liq., 2017, 241, 316-320.
[http://dx.doi.org/10.1016/j.molliq.2017.04.123]
[259]
Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci., 2017, 12(9), 7997-8005.
[http://dx.doi.org/10.20964/2017.09.71]
[260]
Akhgar, M.R.; Beitollahi, H.; Salari, M.; Karimi-Maleh, H.; Zamani, H. Fabrication of a sensor for simultaneous determination of norepinephrine, acetaminophen and tryptophan using a modified carbon nanotube paste electrode. Anal. Methods, 2012, 4(1), 259-264.
[http://dx.doi.org/10.1039/C1AY05503H]
[261]
Gupta, V.K.; Karimi-Maleh, H.; Sadegh, R. Simultaneous determination of hydroxylamine, phenol and sulfite in water and waste water samples using a voltammetric nanosensor. Int. J. Electrochem. Sci., 2015, 10, 303-316.
[262]
Ghanei-Motlagh, M.; Taher, M.A.; Fayazi, M.; Baghayeri, M.; Hosseinifar, A.R. Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J. Electrochem. Soc., 2019, 166(6), B367.
[http://dx.doi.org/10.1149/2.0521906jes]
[263]
Hemmati, S.; Baghayeri, M.; Kazemi, S.; Veisi, H. Biosynthesis of silver nanoparticles using oak leaf extract and their application for electrochemical sensing of hydrogen peroxide. Appl. Organomet. Chem., 2018, 32(11)e4537
[http://dx.doi.org/10.1002/aoc.4537]
[264]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Razavipanah, I.; Veisi, H. Label-free electrochemical bisphenol a aptasensor based on designing and fabrication of a magnetic gold nanocomposite. Electroanalysis, 2018, 30(9), 2160-2166.
[http://dx.doi.org/10.1002/elan.201800158]
[265]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Razavipanah, I.; Veisi, H. Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Mikrochim. Acta, 2018, 185(7), 320.
[http://dx.doi.org/10.1007/s00604-018-2838-y] [PMID: 29881880]
[266]
Baghayeri, M.; Veisi, H.; Ghanei-Motlagh, M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B Chem., 2017, 249, 321-330.
[http://dx.doi.org/10.1016/j.snb.2017.04.100]
[267]
Baghayeri, M.; Sedrpoushan, A.; Mohammadi, A.; Heidari, M. A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA15/MWCNT-modified carbon paste electrode. Ionics, 2017, 23(6), 1553-1562.
[http://dx.doi.org/10.1007/s11581-016-1964-y]
[268]
Baghayeri, M. Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: application to determination of droxidopa in presence of phenobarbital. Sens. Actuators B Chem., 2017, 240, 255-263.
[http://dx.doi.org/10.1016/j.snb.2016.08.161]
[269]
Baghayeri, M.; Rouhi, M.; Lakouraj, M.M.; Amiri-Aref, M. Bioelectrocatalysis of hydrogen peroxide based on immobilized hemoglobin onto glassy carbon electrode modified with magnetic poly(indole-co-thiophene) nanocomposite. J. Electroanal. Chem., 2017, 784, 69-76.
[http://dx.doi.org/10.1016/j.jelechem.2016.12.006]
[270]
Zabihpour, T.; Shahidi, S.A.; Karimi-Maleh, H. Ghorbani-HasanSaraei, A., A sensitive electroanalytical sensor amplified with Pd-ZnO nanoparticle for determination of Sunset Yellow in real samples. Eurasian Chem. Commun., 2020, 2, 362-373.
[271]
Karimi-Maleh, h.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movagharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310113185
[272]
Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci., 2020, 566, 463-472.
[http://dx.doi.org/10.1016/j.jcis.2020.01.089] [PMID: 32032811]
[273]
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
[274]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing.2020, 250, 1-1,
[275]
Ensafi, A.A.; Karimi-Maleh, H.; Mallakpour, S. A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloids Surf. B Biointerfaces, 2013, 104, 186-193.
[http://dx.doi.org/10.1016/j.colsurfb.2012.12.011] [PMID: 23314609]
[276]
Raoof, J.B.; Ojani, R.; Karimi-Maleh, H.; Hajmohamadi, M.R.; Biparva, P. Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. 2011. Anal. Methods, 2011, 3, 2637-2643.
[http://dx.doi.org/10.1039/c1ay05031a]
[277]
Mirmomtaz, E.; Ensafi, A.A.; Karimi-Maleh, H. Electrocatalytic Determination of 6-Tioguanine at a p-Aminophenol Modified Carbon Paste Electrode. Electroanalysis, 2008, 20, 1973-1979.
[http://dx.doi.org/10.1002/elan.200804273]
[278]
Ensafi, A.A.; Dadkhah-Tehrani, S.; Karimi-Maleh, H. A voltammetric sensor for the simultaneous determination of L-cysteine and tryptophan using a p-aminophenol-multiwall carbon nanotube paste electrode. Anal. Sci., 2011, 27(4), 409-409.
[http://dx.doi.org/10.2116/analsci.27.409] [PMID: 21478617]
[279]
Khalilzadeh, M.A.; Karimi-Maleh, H.; Amiri, A.; Gholami, F. Determination of captopril in patient human urine using ferrocenemonocarboxylic acid modified carbon nanotubes paste electrode. Chin. Chem. Lett., 2010, 21, 1467-1470.
[http://dx.doi.org/10.1016/j.cclet.2010.06.020]
[280]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H. A novel strategy for determination of paracetamol in the presence of morphine using a carbon paste electrode modified with CdO nanoparticles and ionic liquids. Electroanalysis, 2016, 28, 366-371.
[http://dx.doi.org/10.1002/elan.201500357]
[281]
Ghanei-Motlagh, M.; Baghayeri, M. Determination of Trace Tl (I) by Differential Pulse Anodic Stripping Voltammetry Using a Novel Modified Carbon Paste Electrode. J. Electrochem. Soc., 2020, 167(6)066508
[http://dx.doi.org/10.1149/1945-7111/ab823c]
[282]
Nodehi, M.; Baghayeri, M.; Ansari, R.; Veisi, H. Electrochemical quantification of 17α–Ethinylestradiol in biological samples using a Au/Fe3O4@ TA/MWNT/GCE sensor. Mater. Chem. Phys., 2020.244122687
[http://dx.doi.org/10.1016/j.matchemphys.2020.122687]
[283]
Baghayeri, M.; Ghanei-Motlagh, M.; Tayebee, R.; Fayazi, M.; Narenji, F. Application of graphene/zinc-based metal-organic framework nanocomposite for electrochemical sensing of As(III) in water resources. Anal. Chim. Acta, 2020, 1099, 60-67.
[http://dx.doi.org/10.1016/j.aca.2019.11.045] [PMID: 31986278]
[284]
Baghayeri, M.; Nodehi, M.; Veisi, H.; Tehrani, M.B.; Maleki, B.; Mehmandost, M. The role of pramipexole functionalized MWCNTs to the fabrication of Pd nanoparticles modified GCE for electrochemical detection of dopamine. Daru, 2019, 27(2), 593-603.
[http://dx.doi.org/10.1007/s40199-019-00287-y] [PMID: 31317442]
[285]
Baghayeri, M.; Alinezhad, H.; Tarahomi, M.; Fayazi, M.; Ghanei-Motlagh, M.; Maleki, B. A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl. Surf. Sci., 2019, 478, 87-93.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.201]
[286]
Baghayeri, M.; Namadchian, M.; Karimi-Maleh, H.; Beitollahi, H. Determination of nifedipine using nanostructured electrochemical sensor based on simple synthesis of Ag nanoparticles at the surface of glassy carbon electrode: Application to the analysis of some real samples. J. Electroanal. Chem. (Lausanne Switz.), 2013, 697, 53-59.
[http://dx.doi.org/10.1016/j.jelechem.2013.03.011]
[287]
Karimi-Maleh, H.; Tahernejad-Javazmi, F.; Daryanavard, M.; Hadadzadeh, H.; Ensafi, A.A.; Abbasghorbani, M. Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at Ruthenium(II) Complex-ZnO/CNTs nanocomposite modified carbon paste electrode. Electroanalysis, 2014, 26, 962-970.
[http://dx.doi.org/10.1002/elan.201400013]
[288]
Baghayeri, M.; Veisi, H.; Veisi, H.; Maleki, B.; Karimi-Maleh, H.; Beitollahi, H. RSC Advances, 2014, 4(91), 49595-49604.
[http://dx.doi.org/10.1039/C4RA08536A]
[289]
Sadeghi, R.; Karimi-Maleh, H.; Bahari, A.; Taghavi, M. A novel biosensor based on ZnO nanoparticle/1, 3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys. Chem. Liquids, 2013, 51(6), 704-714.
[http://dx.doi.org/10.1080/00319104.2013.782547]
[290]
Ensafi, A.A.; Taei, M.; Khayamian, T.; Karimi-Maleh, H.; Hasanpour, F. J. Solid State Electrochem., 2010, 14(8), 1415-1423.
[http://dx.doi.org/10.1007/s10008-009-0978-z]
[291]
Karimi-Maleh, H.; Sanati, A.L.; Gupta, V.K.; Yoosefian, M.; Asif, M.; Bahari, A. Sens. Actuators B Chem., 2014, 204, 647-654.
[http://dx.doi.org/10.1016/j.snb.2014.08.037]
[292]
Karimi-Maleh, H.; Keyvanfard, M.; Alizad, K.; Fouladgar, M.; Beitollahi, H.; Mokhtari, A.; Gholami-Orimi, F. Voltammetric determination of N-actylcysteine using modified multiwall carbon nanotubes paste electrode. Int. J. Electrochem. Sci., 2011, 6(12), 6141-6150.
[293]
Arshadi, M.; Ghiaci, M.; Ensafi, A.A.; Karimi-Maleh, H.; Suib, S.L. Oxidation of ethylbenzene using some recyclable cobalt nanocatalysts: The role of linker and electrochemical study. J. Mol. Catal. Chem., 2011, 338(1-2), 71-83.
[http://dx.doi.org/10.1016/j.molcata.2011.01.027]
[294]
Ensafi, A.A.; Khoddami, E.; Rezaei, B.; Karimi-Maleh, H. p-Aminophenol-multiwall carbon nanotubes-TiO2 electrode as a sensor for simultaneous determination of penicillamine and uric acid. Colloids Surf. B Biointerfaces, 2010, 81(1), 42-49.
[http://dx.doi.org/10.1016/j.colsurfb.2010.06.020] [PMID: 20655185]
[295]
Ensafi, A.A.; Karimi-Maleh, H. Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int. J. Electrochem. Sci., 2010, 5(3), 392-406.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy