Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Dexamethasone Reduces Cell Adhesion and Migration of T47D Breast Cancer Cell Line

Author(s): Leila Mohammadi, Bashir Mosayyebi , Mahsa Imani and Mohammad Rahmati *

Volume 22, Issue 13, 2022

Published on: 14 December, 2020

Page: [2494 - 2501] Pages: 8

DOI: 10.2174/1871520621666201214150427

Price: $65

Abstract

Background: Aberrant expression of cell adhesion molecules and matrix metalloproteinase (MMPs) plays a pivotal role in tumor biological processes, including progression and metastasis of cancer cells. Targeting these processes and acquiring a detailed understanding of their underlying molecular mechanism are an essential step in cancer treatment. Dexamethasone (Dex) is a type of synthetic corticosteroid hormone used as adjuvant therapy in combination with current cancer treatments such as chemotherapy in order to alleviate its side effects like acute nausea and vomiting. Recent evidences suggest that Dex may have antitumor characteristics.

Objective: Dex affects the migration and adhesion of T47D breast cancer cells as well as cell adhesion molecules, e.g. cadherin and integrin, and MMPs by regulating the expression levels of associated genes.

Methods: In this study, we evaluated the cytotoxicity of Dex on the T47D breast cancer cell line through MTT assay. Cell adhesion assay and wound healing assay were performed to determine the impact of Dex on cell adhesion and cell migration, respectively. Moreover, real-time PCR was used to measure the levels of α and β integrin, E-cadherin, N-cadherin, MMP-2, and MMP-9.

Results: Dex decreased the viability of T47D cells in a time and dose-dependent manner. Cell adhesion and migration of T47D cells were reduced upon Dex treatment. The expressions of α and β integrin, E-cadherin, Ncadherin, MMP-2, and MMP-9 were altered in response to the Dex treatment.

Conclusion: Our findings demonstrated that Dex may play a role in the prevention of metastasis in this cell line.

Keywords: Breast cancer, dexamethasone, adhesion, migration, cell adhesion molecules, MMP.

« Previous
Graphical Abstract
[1]
Chatterjee, S.J.; McCaffrey, L. Emerging role of cell polarity proteins in breast cancer progression and metastasis. Breast Cancer (Dove Med. Press), 2014, 6, 15-27.
[PMID: 24648766]
[2]
Azamjah, N.; Soltan-Zadeh, Y.; Zayeri, F. Global trend of breast cancer mortality rate: a 25-year study. Asian Pacific journal of cancer prevention. Asian Pac. J. Cancer Prev., 2019, 20(7), 2015-2020.
[http://dx.doi.org/10.31557/APJCP.2019.20.7.2015] [PMID: 31350959]
[3]
Yagawa, Y. Cancer immunity and therapy using hyperthermia with immunotherapy, radiotherapy, chemotherapy, and surgery. J. Cancer Metastasis Treat., 2017, 3(10), 218.
[http://dx.doi.org/10.20517/2394-4722.2017.35]
[4]
Fares, J.; Fares, M.Y.; Khachfe, H.H.; Salhab, H.A.; Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther., 2020, 5(1), 28.
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[5]
Sökeland, G.; Schumacher, U. The functional role of integrins during intra- and extravasation within the metastatic cascade. Mol. Cancer, 2019, 18(1), 12.
[http://dx.doi.org/10.1186/s12943-018-0937-3] [PMID: 30657059]
[6]
Bendas, G.; Borsig, L. Cancer cell adhesion and metastasis: selectins, integrins, and the inhibitory potential of heparins. International journal of cell biology, 2012.
[http://dx.doi.org/10.1155/2012/676731]
[7]
Lotfi, M.; Naceur, M.; Nejib, M. Cell Adhesion to Biomaterials: Concept of Biocompatibility.Advances in Biomaterials Science and Biomedical Applications; INTECH Open Access Publisher, 2013.
[8]
Janiszewska, M.; Primi, M.C.; Izard, T. Cell adhesion in cancer: Beyond the migration of single cells. J. Biol. Chem., 2020, 295(8), 2495-2505.
[http://dx.doi.org/10.1074/jbc.REV119.007759] [PMID: 31937589]
[9]
Kopecki, Z.; Arkell, R.; Powell, B.C.; Cowin, A.J. Flightless I regulates hemidesmosome formation and integrin-mediated cellular adhesion and migration during wound repair. J. Invest. Dermatol., 2009, 129(8), 2031-2045.
[http://dx.doi.org/10.1038/jid.2008.461] [PMID: 19212345]
[10]
Jeanes, A.I.; Wang, P.; Moreno-Layseca, P.; Paul, N.; Cheung, J.; Tsang, R.; Akhtar, N.; Foster, F.M.; Brennan, K.; Streuli, C.H. Specific β-containing integrins exert differential control on proliferation and two-dimensional collective cell migration in mammary epithelial cells. J. Biol. Chem., 2012, 287(29), 24103-24112.
[http://dx.doi.org/10.1074/jbc.M112.360834] [PMID: 22511753]
[11]
Pan, L.; Zhao, Y.; Yuan, Z.; Qin, G. Research advances on structure and biological functions of integrins. Springerplus, 2016, 5(1), 1094.
[http://dx.doi.org/10.1186/s40064-016-2502-0] [PMID: 27468395]
[12]
Huttenlocher, A.; Horwitz, A.R. Integrins in cell migration. Cold Spring Harb. Perspect. Biol., 2011, 3(9)a005074
[http://dx.doi.org/10.1101/cshperspect.a005074] [PMID: 21885598]
[13]
Gronthos, S.; Stewart, K.; Graves, S.E.; Hay, S.; Simmons, P.J. Integrin expression and function on human osteoblast-like cells. J. Bone Miner. Res., 1997, 12(8), 1189-1197.
[http://dx.doi.org/10.1359/jbmr.1997.12.8.1189] [PMID: 9258748]
[14]
Li, Z.H.; Zhou, Y.; Ding, Y.X.; Guo, Q.L.; Zhao, L. Roles of integrin in tumor development and the target inhibitors. Chin. J. Nat. Med., 2019, 17(4), 241-251.
[http://dx.doi.org/10.1016/S1875-5364(19)30028-7] [PMID: 31076128]
[15]
Kren, A.; Baeriswyl, V.; Lehembre, F.; Wunderlin, C.; Strittmatter, K.; Antoniadis, H.; Fässler, R.; Cavallaro, U.; Christofori, G. Increased tumor cell dissemination and cellular senescence in the absence of β1-integrin function. EMBO J., 2007, 26(12), 2832-2842.
[http://dx.doi.org/10.1038/sj.emboj.7601738] [PMID: 17541405]
[16]
Maître, J-L.; Heisenberg, C-P. Three functions of cadherins in cell adhesion. Curr. Biol., 2013, 23(14), R626-R633.
[http://dx.doi.org/10.1016/j.cub.2013.06.019] [PMID: 23885883]
[17]
Saito, M.; Tucker, D.K.; Kohlhorst, D.; Niessen, C.M.; Kowalczyk, A.P. Classical and desmosomal cadherins at a glance. J. Cell Sci., 2012, 125(Pt 11), 2547-2552.
[http://dx.doi.org/10.1242/jcs.066654] [PMID: 22833291]
[18]
Kim, S.A.; Tai, C.Y.; Mok, L.P.; Mosser, E.A.; Schuman, E.M. Calcium-dependent dynamics of cadherin interactions at cell-cell junctions. Proc. Natl. Acad. Sci. USA, 2011, 108(24), 9857-9862.
[http://dx.doi.org/10.1073/pnas.1019003108] [PMID: 21613566]
[19]
Alimperti, S.; Andreadis, S.T. CDH2 and CDH11 act as regulators of stem cell fate decisions. Stem Cell Res. (Amst.), 2015, 14(3), 270-282.
[http://dx.doi.org/10.1016/j.scr.2015.02.002] [PMID: 25771201]
[20]
Tian, X.; Li, Y.; Shen, Y.; Li, Q.; Wang, Q.; Feng, L. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol. Lett., 2015, 10(2), 595-599.
[http://dx.doi.org/10.3892/ol.2015.3273] [PMID: 26622539]
[21]
Loh, C-Y.; Chai, J.Y.; Tang, T.F.; Wong, W.F.; Sethi, G.; Shanmugam, M.K.; Chong, P.P.; Looi, C.Y. The E-cadherin and N-cadherin switch in epithelial-to-mesenchymal transition: signaling, therapeutic implications, and challenges. Cells, 2019, 8(10), 1118.
[http://dx.doi.org/10.3390/cells8101118] [PMID: 31547193]
[22]
Liu, X.; Chu, K-M. E-cadherin and gastric cancer: cause, consequence, and applications. BioMed Res. Int., 2014, 2014(12)637308
[http://dx.doi.org/10.1155/2014/637308] [PMID: 25184143]
[23]
Cao, Z-Q.; Wang, Z.; Leng, P. Aberrant N-cadherin expression in cancer. Biomed. Pharmacother., 2019, 118109320
[http://dx.doi.org/10.1016/j.biopha.2019.109320] [PMID: 31545265]
[24]
Fink, K.; Boratyński, J. The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis. Postepy Hig. Med. Dosw., 2012, 66, 609-628.
[http://dx.doi.org/10.5604/17322693.1009705]
[25]
Talabér, G.; Jondal, M.; Okret, S. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis. Mol. Cell. Endocrinol., 2013, 380(1-2), 89-98.
[http://dx.doi.org/10.1016/j.mce.2013.05.007] [PMID: 23707789]
[26]
Ponticelli, C.; Locatelli, F. Glucocorticoids in the treatment of glomerular diseases: pitfalls and pearls. Clin. J. Am. Soc. Nephrol., 2018, 13(5), 815-822.
[http://dx.doi.org/10.2215/CJN.12991117] [PMID: 29475991]
[27]
Cruz-Topete, D.; Cidlowski, J.A. One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation, 2015, 22(1-2), 20-32.
[http://dx.doi.org/10.1159/000362724] [PMID: 25227506]
[28]
Meng, X-G.; Yue, S-W. Dexamethasone disrupts cytoskeleton organization and migration of T47D Human breast cancer cells by modulating the AKT/mTOR/RhoA pathway. Asian Pac. J. Cancer Prev., 2014, 15(23), 10245-10250.
[http://dx.doi.org/10.7314/APJCP.2014.15.23.10245] [PMID: 25556455]
[29]
Molitoris, J.K.; McColl, K.S.; Distelhorst, C.W. Glucocorticoid-mediated repression of the oncogenic microRNA cluster miR-17~92 contributes to the induction of Bim and initiation of apoptosis. Mol. Endocrinol., 2011, 25(3), 409-420.
[http://dx.doi.org/10.1210/me.2010-0402] [PMID: 21239610]
[30]
Koutsilieris, M.; Mitsiades, C.; Dimopoulos, T.; Vacalicos, J.; Lambou, T.; Tsintavis, A.; Milathianakis, C.; Bogdanos, J.; Karamanolakis, D. Combination of dexamethasone and a somatostatin analogue in the treatment of advanced prostate cancer. Expert Opin. Investig. Drugs, 2002, 11(2), 283-293.
[http://dx.doi.org/10.1517/13543784.11.2.283] [PMID: 11829717]
[31]
Petta, I.; Dejager, L.; Ballegeer, M.; Lievens, S.; Tavernier, J.; De Bosscher, K.; Libert, C. The interactome of the glucocorticoid receptor and its influence on the actions of glucocorticoids in combatting inflammatory and infectious diseases. Microbiol. Mol. Biol. Rev., 2016, 80(2), 495-522.
[http://dx.doi.org/10.1128/MMBR.00064-15] [PMID: 27169854]
[32]
Li, H.; Qian, W.; Weng, X.; Wu, Z.; Li, H.; Zhuang, Q.; Feng, B.; Bian, Y. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One, 2012, 7(6)e37030
[http://dx.doi.org/10.1371/journal.pone.0037030] [PMID: 22719835]
[33]
Yun, S.P.; Ryu, J.M.; Han, H.J. Involvement of β1-integrin via PIP complex and FAK/paxillin in dexamethasone-induced human mesenchymal stem cells migration. J. Cell. Physiol., 2011, 226(3), 683-692.
[http://dx.doi.org/10.1002/jcp.22383] [PMID: 20717960]
[34]
Han, S. Dexamethasone Inhibits TGF-β1-Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61. Cancer research and treatment : official journal of Korean Cancer Association, 2016, 48(3), 1141-1153.
[35]
Zhang, D.; Zhang, Y.; Cai, Z.; Tu, Y.; Hu, Z. Dexamethasone and lenvatinib inhibit migration and invasion of non-small cell lung cancer by regulating EKR/AKT and VEGF signal pathways. Exp. Ther. Med., 2020, 19(1), 762-770.
[PMID: 31853327]
[36]
Guan, Y.; Chen, J.; Zhan, Y.; Lu, H. Effects of dexamethasone on C6 cell proliferation, migration and invasion through the upregulation of AQP1. Oncol. Lett., 2018, 15(5), 7595-7602.
[http://dx.doi.org/10.3892/ol.2018.8269] [PMID: 29740485]
[37]
Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog., 2013, 18(1-2), 43-73.
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[38]
Paduch, R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol. (Dordr.), 2016, 39(5), 397-410.
[http://dx.doi.org/10.1007/s13402-016-0281-9] [PMID: 27126599]
[39]
van Zijl, F.; Krupitza, G.; Mikulits, W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat. Res., 2011, 728(1-2), 23-34.
[http://dx.doi.org/10.1016/j.mrrev.2011.05.002] [PMID: 21605699]
[40]
He, Y.; Yi, W.; Suino-Powell, K.; Zhou, X.E.; Tolbert, W.D.; Tang, X.; Yang, J.; Yang, H.; Shi, J.; Hou, L.; Jiang, H.; Melcher, K.; Xu, H.E. Structures and mechanism for the design of highly potent glucocorticoids. Cell Res., 2014, 24(6), 713-726.
[http://dx.doi.org/10.1038/cr.2014.52] [PMID: 24763108]
[41]
Ho, C-M.; Wu, H.L.; Ho, S.T.; Wang, J.J. Dexamethasone prevents postoperative nausea and vomiting: benefit versus risk. Acta Anaesthesiol. Taiwan., 2011, 49(3), 100-104.
[http://dx.doi.org/10.1016/j.aat.2011.06.002] [PMID: 21982171]
[42]
Liu, H.; Huang, X.; Wang, H.; Shen, A.; Cheng, C. Dexamethasone inhibits proliferation and stimulates SSeCKS expression in C6 rat glioma cell line. Brain Res., 2009, 1265, 1-12.
[http://dx.doi.org/10.1016/j.brainres.2009.01.050] [PMID: 19368818]
[43]
Leskiewicz, M.; Jantas, D.; Regulska, M.; Kaczanowska, J.; Basta-Kaim, A.; Budziszewska, B.; Kubera, M.; Lason, W. Antidepressants attenuate the dexamethasone-induced decrease in viability and proliferation of human neuroblastoma SH-SY5Y cells: a involvement of extracellular regulated kinase (ERK1/2). Neurochem. Int., 2013, 63(5), 354-362.
[http://dx.doi.org/10.1016/j.neuint.2013.07.007] [PMID: 23906970]
[44]
Tazik, S.; Johnson, S.; Lu, D.; Johnson, C.; Youdim, M.B.; Stockmeier, C.A.; Ou, X.M. Comparative neuroprotective effects of rasagiline and aminoindan with selegiline on dexamethasone-induced brain cell apoptosis. Neurotox. Res., 2009, 15(3), 284-290.
[http://dx.doi.org/10.1007/s12640-009-9030-4] [PMID: 19384601]
[45]
Chen, Y-X.; Wang, Y.; Fu, C.C.; Diao, F.; Song, L.N.; Li, Z.B.; Yang, R.; Lu, J. Dexamethasone enhances cell resistance to chemotherapy by increasing adhesion to extracellular matrix in human ovarian cancer cells. Endocr. Relat. Cancer, 2010, 17(1), 39-50.
[http://dx.doi.org/10.1677/ERC-08-0296] [PMID: 19776289]
[46]
Shannon, S.; Vaca, C.; Jia, D.; Entersz, I.; Schaer, A.; Carcione, J.; Weaver, M.; Avidar, Y.; Pettit, R.; Nair, M.; Khan, A.; Foty, R.A. Dexamethasone- mediated activation of fibronectin matrix assembly reduces dispersal of primary human glioblastoma cells. PLoS One, 2015, 10(8)e0135951
[http://dx.doi.org/10.1371/journal.pone.0135951] [PMID: 26284619]
[47]
Huang, G.X.; Qi, M.F.; Li, X.L.; Tang, F.; Zhu, L. Involvement of upregulation of fibronectin in the pro-adhesive and pro-survival effects of glucocorticoid on melanoma cells. Mol. Med. Rep., 2018, 17(2), 3380-3387.
[PMID: 29257300]
[48]
Bischofs, E.; Lubs, D.; Fritzsche, F.; Meyer, A.S.; Bruckner, T.; Sohn, C.; Eichbaum, M.H. In vitro blockade of adhesion of breast cancer cells to endothelial cells using anti-inflammatory drugs. Anticancer Res., 2012, 32(3), 767-771.
[PMID: 22399590]
[49]
Lin, K-T.; Yeh, Y.M.; Chuang, C.M.; Yang, S.Y.; Chang, J.W.; Sun, S.P.; Wang, Y.S.; Chao, K.C.; Wang, L.H. Glucocorticoids mediate induction of microRNA-708 to suppress ovarian cancer metastasis through targeting Rap1B. Nat. Commun., 2015, 6(1), 5917.
[http://dx.doi.org/10.1038/ncomms6917] [PMID: 25569036]
[50]
Han, S. Dexamethasone inhibits TGF-β1–Induced cell migration by regulating the ERK and AKT pathways in human colon cancer cells via CYR61. Cancer Res. Treatment., 2016, 48(3), 1141.
[51]
Guo, J.; Ma, K.; Xia, H.M.; Chen, Q.K.; Li, L.; Deng, J.; Sheng, J.; Hong, Y.Y.; Hu, J.P. Androgen receptor reverts dexamethasone-induced inhibition of prostate cancer cell proliferation and migration. Mol. Med. Rep., 2018, 17(4), 5887-5893.
[http://dx.doi.org/10.3892/mmr.2018.8566] [PMID: 29436611]
[52]
Piette, C.; Deprez, M.; Roger, T.; Noël, A.; Foidart, J.M.; Munaut, C. The dexamethasone-induced inhibition of proliferation, migration, and invasion in glioma cell lines is antagonized by macrophage migration inhibitory factor (MIF) and can be enhanced by specific MIF inhibitors. J. Biol. Chem., 2009, 284(47), 32483-32492.
[http://dx.doi.org/10.1074/jbc.M109.014589] [PMID: 19759012]
[53]
Kostopoulou, O.N.; Mohammad, A.A.; Bartek, J., Jr; Winter, J.; Jung, M.; Stragliotto, G.; Söderberg-Nauclér, C.; Landázuri, N. Glucocorticoids promote a glioma stem cell-like phenotype and resistance to chemotherapy in human glioblastoma primary cells: Biological and prognostic significance. Int. J. Cancer, 2018, 142(6), 1266-1276.
[http://dx.doi.org/10.1002/ijc.31132] [PMID: 29067692]
[54]
Harjunpää, H.; Llort Asens, M.; Guenther, C.; Fagerholm, S.C. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front. Immunol., 2019, 10, 1078.
[http://dx.doi.org/10.3389/fimmu.2019.01078] [PMID: 31231358]
[55]
McNeill, B.; Vulesevic, B.; Ostojic, A.; Ruel, M.; Suuronen, E.J. Collagen matrix-induced expression of integrin αVβ3 in circulating angiogenic cells can be targeted by matricellular protein CCN1 to enhance their function. FASEB J., 2015, 29(4), 1198-1207.
[http://dx.doi.org/10.1096/fj.14-261586] [PMID: 25466895]
[56]
Takayama, S.; Ishii, S.; Ikeda, T.; Masamura, S.; Doi, M.; Kitajima, M. The relationship between bone metastasis from human breast cancer and integrin α(v)β3 expression. Anticancer Res., 2005, 25(1A), 79-83.
[PMID: 15816522]
[57]
Brüning, A.; Runnebaum, I.B. CAR is a cell-cell adhesion protein in human cancer cells and is expressionally modulated by dexamethasone, TNFalpha, and TGFbeta. Gene Ther., 2003, 10(3), 198-205.
[http://dx.doi.org/10.1038/sj.gt.3301887] [PMID: 12571626]
[58]
Faralli, J.A.; Gagen, D.; Filla, M.S.; Crotti, T.N.; Peters, D.M. Dexamethasone increases αvβ3 integrin expression and affinity through a calcineurin/NFAT pathway. Biochim. Biophys. Acta, 2013, 1833(12), 3306-3313.
[http://dx.doi.org/10.1016/j.bbamcr.2013.09.020] [PMID: 24100160]
[59]
Cheng, S.L.; Lai, C.F.; Fausto, A.; Chellaiah, M.; Feng, X.; McHugh, K.P.; Teitelbaum, S.L.; Civitelli, R.; Hruska, K.A.; Ross, F.P.; Avioli, L.V. Regulation of alphaVbeta3 and alphaVbeta5 integrins by dexamethasone in normal human osteoblastic cells. J. Cell. Biochem., 2000, 77(2), 265-276.
[http://dx.doi.org/10.1002/(SICI)1097-4644(20000501)77:2<265::AID-JCB9>3.0.CO;2-6] [PMID: 10723092]
[60]
Wu, D.; Xu, Y.; Ding, T.; Zu, Y.; Yang, C.; Yu, L. Pairing of integrins with ECM proteins determines migrasome formation. Cell Res., 2017, 27(11), 1397-1400.
[http://dx.doi.org/10.1038/cr.2017.108] [PMID: 28829047]
[61]
Jia, Y. Integrin fibronectin receptors in matrix metalloproteinase-1–dependent invasion by breast cancer and mammary epithelial cells. 2004, 64(23), 8674-8681.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0069]
[62]
Maschler, S. Tumor cell invasiveness correlates with changes in integrin expression and localization. 2005, 24(12), 2032-2041.
[http://dx.doi.org/10.1038/sj.onc.1208423]
[63]
Fechter, P.; Cruz Da Silva, E.; Mercier, M.C.; Noulet, F.; Etienne-Seloum, N.; Guenot, D.; Lehmann, M.; Vauchelles, R.; Martin, S.; Lelong-Rebel, I.; Ray, A.M.; Seguin, C.; Dontenwill, M.; Choulier, L. RNA aptamers targeting integrin α5β1 as probes for cyto- and histofluorescence in glioblastoma. Mol. Ther. Nucleic Acids, 2019, 17, 63-77.
[http://dx.doi.org/10.1016/j.omtn.2019.05.006] [PMID: 31226519]
[64]
Yin, L.; Fang, F.; Song, X.; Wang, Y.; Huang, G.; Su, J.; Hui, N.; Lu, J. The pro-adhesive and pro-survival effects of glucocorticoid in human ovarian cancer cells. J. Mol. Endocrinol., 2016, 57(1), 61-72.
[http://dx.doi.org/10.1530/JME-15-0142] [PMID: 27151574]
[65]
Yang, G-Y.; Guo, S.; Dong, C.Y.; Wang, X.Q.; Hu, B.Y.; Liu, Y.F.; Chen, Y.W.; Niu, J.; Dong, J.H. Integrin αvβ6 sustains and promotes tumor invasive growth in colon cancer progression. World J. Gastroenterol., 2015, 21(24), 7457-7467.
[http://dx.doi.org/10.3748/wjg.v21.i24.7457] [PMID: 26139991]
[66]
Ahmed, N.; Pansino, F.; Clyde, R.; Murthi, P.; Quinn, M.A.; Rice, G.E.; Agrez, M.V.; Mok, S.; Baker, M.S. Overexpression of α(v)β6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade. Carcinogenesis, 2002, 23(2), 237-244.
[http://dx.doi.org/10.1093/carcin/23.2.237] [PMID: 11872628]
[67]
Bandyopadhyay, A.; Raghavan, S. Defining the role of integrin alphavbeta6 in cancer. Curr. Drug Targets, 2009, 10(7), 645-652.
[http://dx.doi.org/10.2174/138945009788680374] [PMID: 19601768]
[68]
Kwon, J.; Lee, T.S.; Lee, H.W.; Kang, M.C.; Yoon, H.J.; Kim, J.H.; Park, J.H. Integrin alpha 6: a novel therapeutic target in esophageal squamous cell carcinoma. Int. J. Oncol., 2013, 43(5), 1523-1530.
[http://dx.doi.org/10.3892/ijo.2013.2097] [PMID: 24042193]
[69]
Chen, M.; Sinha, M.; Luxon, B.A.; Bresnick, A.R.; O’Connor, K.L. Integrin α6β4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J. Biol. Chem., 2009, 284(3), 1484-1494.
[http://dx.doi.org/10.1074/jbc.M803997200] [PMID: 19011242]
[70]
Song, Y.; Ye, M.; Zhou, J.; Wang, Z.W.; Zhu, X. Restoring E-cadherin expression by natural compounds for anticancer therapies in genital and urinary cancers. Mol. Ther. Oncolytics, 2019, 14, 130-138.
[http://dx.doi.org/10.1016/j.omto.2019.04.005] [PMID: 31194121]
[71]
Yu, W.; Yang, L.; Li, T.; Zhang, Y. Cadherin Signaling in Cancer: Its Functions and Role as a Therapeutic Target. Front. Oncol., 2019, 9, 989.
[http://dx.doi.org/10.3389/fonc.2019.00989] [PMID: 31637214]
[72]
Mendonsa, A.M.; Na, T-Y.; Gumbiner, B.M. E-cadherin in contact inhibition and cancer. Oncogene, 2018, 37(35), 4769-4780.
[http://dx.doi.org/10.1038/s41388-018-0304-2] [PMID: 29780167]
[73]
Ide, H.; Inoue, S.; Miyamoto, H. The role of glucocorticoid receptor signaling in bladder cancer progression. Cancers (Basel), 2018, 10(12), 484.
[http://dx.doi.org/10.3390/cancers10120484] [PMID: 30518063]
[74]
Melnik, D.; Sahana, J.; Corydon, T.J.; Kopp, S.; Nassef, M.Z.; Wehland, M.; Infanger, M.; Grimm, D.; Krüger, M. Dexamethasone Inhibits Spheroid Formation of Thyroid Cancer Cells Exposed to Simulated Microgravity. Cells, 2020, 9(2), 367.
[http://dx.doi.org/10.3390/cells9020367] [PMID: 32033410]
[75]
Nguyen, T.M.; Zhang, Y.; Pandolfi, P.P. Virus against virus: a potential treatment for 2019-nCov (SARS-CoV-2) and other RNA viruses; Nature Publishing Group, 2020.
[76]
Accogli, A.; Calabretta, S.; St-Onge, J.; Boudrahem-Addour, N.; Dionne-Laporte, A.; Joset, P.; Azzarello-Burri, S.; Rauch, A.; Krier, J.; Fieg, E.; Pallais, J.C.; McConkie-Rosell, A.; McDonald, M.; Freedman, S.F.; Rivière, J.B.; Lafond-Lapalme, J.; Simpson, B.N.; Hopkin, R.J.; Trimouille, A.; Van-Gils, J.; Begtrup, A.; McWalter, K.; Delphine, H.; Keren, B.; Genevieve, D.; Argilli, E.; Sherr, E.H.; Severino, M.; Rouleau, G.A.; Yam, P.T.; Charron, F.; Srour, M. Undiagnosed Diseases Network. De Novo Pathogenic Variants in N-cadherin Cause a Syndromic Neurodevelopmental Disorder with Corpus Collosum, Axon, Cardiac, Ocular, and Genital Defects. Am. J. Hum. Genet., 2019, 105(4), 854-868.
[http://dx.doi.org/10.1016/j.ajhg.2019.09.005] [PMID: 31585109]
[77]
Casal, J.I.; Bartolomé, R.A. Beyond N-cadherin, relevance of cadherins 5, 6 and 17 in cancer progression and metastasis. Int. J. Mol. Sci., 2019, 20(13), 3373.
[http://dx.doi.org/10.3390/ijms20133373] [PMID: 31324051]
[78]
Lecanda, F.; Cheng, S.L.; Shin, C.S.; Davidson, M.K.; Warlow, P.; Avioli, L.V.; Civitelli, R. Differential regulation of cadherins by dexamethasone in human osteoblastic cells. J. Cell. Biochem., 2000, 77(3), 499-506.
[http://dx.doi.org/10.1002/(SICI)1097-4644(20000601)77:3<499::AID-JCB14>3.0.CO;2-0] [PMID: 10760957]
[79]
Said, A.H.; Raufman, J-P.; Xie, G. The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel), 2014, 6(1), 366-375.
[http://dx.doi.org/10.3390/cancers6010366] [PMID: 24518611]
[80]
Yu, C-F.; Chen, F.H.; Lu, M.H.; Hong, J.H.; Chiang, C.S. Dual roles of tumour cells-derived matrix metalloproteinase 2 on brain tumour growth and invasion. Br. J. Cancer, 2017, 117(12), 1828-1836.
[http://dx.doi.org/10.1038/bjc.2017.362] [PMID: 29065106]
[81]
Cai, X.; Zhu, H.; Li, Y. PKCζ, MMP‑2 and MMP‑9 expression in lung adenocarcinoma and association with a metastatic phenotype. Mol. Med. Rep., 2017, 16(6), 8301-8306.
[http://dx.doi.org/10.3892/mmr.2017.7634] [PMID: 28983601]
[82]
Lee, C-S.; Cho, H.J.; Jeong, Y.J.; Shin, J.M.; Park, K.K.; Park, Y.Y.; Bae, Y.S.; Chung, I.K.; Kim, M.; Kim, C.H.; Jin, F.; Chang, H.W.; Chang, Y.C. Isothiocyanates inhibit the invasion and migration of C6 glioma cells by blocking FAK/JNK-mediated MMP-9 expression. Oncol. Rep., 2015, 34(6), 2901-2908.
[http://dx.doi.org/10.3892/or.2015.4292] [PMID: 26397194]
[83]
Hirata, M.; Itoh, M.; Tsuchida, A.; Ooishi, H.; Hanada, K.; Kajiyama, G. Dexamethasone inhibits invasiveness of a human pancreatic cancer cell line. Int. J. Oncol., 1996, 8(2), 327-330.
[http://dx.doi.org/10.3892/ijo.8.2.327] [PMID: 21544363]
[84]
Roomi, M.W.; Kalinovsky, T.; Monterrey, J.; Rath, M.; Niedzwiecki, A. In vitro modulation of MMP-2 and MMP-9 in adult human sarcoma cell lines by cytokines, inducers and inhibitors. Int. J. Oncol., 2013, 43(6), 1787-1798.
[http://dx.doi.org/10.3892/ijo.2013.2113] [PMID: 24085323]
[85]
Vu, H.T.; Hoang, T.X.; Kim, J.Y. All-trans retinoic acid enhances matrix metalloproteinase 2 expression and secretion in human myeloid leukemia THP-1 cells. BioMed Research International, 2018.
[86]
Alexandra, F. Tumor cell and carcinoma-associated fibroblast interaction regulates matrix metalloproteinases and their inhibitors in oral squamous cell carcinoma. 2012.
[87]
Roomi, M.W.; Kalinovsky, T.; Niedzwiecki, A.; Rath, M. Modulation of MMP-2 and -9 secretion by cytokines, inducers and inhibitors in human melanoma A-2058 cells. Oncol. Rep., 2017, 37(6), 3681-3687.
[http://dx.doi.org/10.3892/or.2017.5597] [PMID: 28440509]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy