Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Review Article

Melittin: A Natural Peptide with Expanded Therapeutic Applications

Author(s): Ruchi Tiwari*, Gaurav Tiwari, Akanksha Lahiri, Vadivelan Ramachandran and Awani Rai

Volume 12, Issue 2, 2022

Published on: 10 December, 2020

Article ID: e160921188997 Pages: 17

DOI: 10.2174/2210315510999201210143035

Price: $65

Abstract

Background: Apis mellifera, European honey bee venom (BV), is a complex combination of chemical compounds comprising proteins, peptides, enzymes, and other small molecules. Melittin (MEL), which is the key component of BV, is considered as an alternative for the treatment of various infections. MEL is an amphipathic, cell-penetrating, 26-residue, a-helical anti-hepatoma peptide derived from BV. However, owing to its initial conformational strength and poor stability, the use of melittin is constrained as a medication.

Objectives: The study focused on collective data of therapeutic activities of Bee venom component, MEL.

Methods: Regardless of its broad variety of biological and possible therapeutic uses, there has been increasing concern regarding the use of MEL. According to the literature, MEL revealed a variety of activities ranging from anti-cancer, antimicrobial, anti-viral, anti-inflammatory to anti-diabetic activity. The present review article summarizes the therapeutic applications of MEL, their mechanism of action along with recent research progress in the field of its delivery.

Conclusion: It could be concluded that MEL exerts multiple effects on the cellular functions of infected cells.

Keywords: BV, Melittin, anti-cancer activity, anti-microbial activity, anti-viral activity, anti-inflammatory activity, anti-diabetic activity, mechanism of action.

Graphical Abstract
[1]
Jallouk, A.P.; Palekar, R.U.; Pan, H.; Schlesinger, P.H.; Wickline, S.A. Modifications of natural peptides for nanoparticle and drug design. Adv. Protein Chem. Struct. Biol., 2015, 98, 57-91.
[http://dx.doi.org/10.1016/bs.apcsb.2014.12.001] [PMID: 25819276]
[2]
Engel, M.S. The taxonomy of recent and fossil honey bees (Hymenoptera: Apidae: Apis). J. Hymenopt. Res., 1999, 8, 165-196.
[3]
Lo, N.; Gloag, R.S.; Anderson, D.L.; Oldroyd, B.P. A molecular phylogeny of the genus Apis suggests that the giant honey bee of the philippines, A. breviligula Maa, and the plains honey bee of southern india, A. indica Fabricius, are valid species. Syst. Entomol., 2010, 35(2), 226-233.
[http://dx.doi.org/10.1111/j.1365-3113.2009.00504.x]
[4]
Banks, B.E.C.; Shipolini, R.A. Chemistry and pharmacology of honey bee venoms. Venoms of Hymenoptera: Biochemical, Pharmacological and Behavioral Aspects; Piek, T., Ed.; Academic Press: Cambridge, 1986. 329-416.
[http://dx.doi.org/10.1016/B978-0-12-554770-3.50011-5]
[5]
Drake, A.F.; Hider, R.C. The structure of melittin in lipid bilayer membranes. Biochim. Biophys. Acta, 1979, 555(2), 371-373.
[http://dx.doi.org/10.1016/0005-2736(79)90178-0] [PMID: 476111]
[6]
Mingomataj, E.Ç.; Bakiri, A.H. Episodic hemorrhage during honeybee venom anaphylaxis: Potential mechanisms. J. Investig. Allergol. Clin. Immunol., 2012, 22(4), 237-244.
[PMID: 22812191]
[7]
Moreno, M.; Giralt, E. Three valuable peptides from bee and wasp venoms for therapeutic and biotechnological use: melittin, apamin and mastoparan. Toxins (Basel), 2015, 7(4), 1126-1150.
[http://dx.doi.org/10.3390/toxins7041126] [PMID: 25835385]
[8]
Chen, L.Y.; Cheng, C.W.; Lin, J.J.; Chen, W.Y. Exploring the effect of cholesterol in lipid bilayer membrane on the melittin penetration mechanism. Anal. Biochem., 2007, 367(1), 49-55.
[http://dx.doi.org/10.1016/j.ab.2007.04.039] [PMID: 17570332]
[9]
Bellik, Y. Bee Venom: Its potential use in alternative medicine. Anti-Infect. Agents, 2015, 13, 13-16.
[10]
Rady, I.; Siddiqui, I.A.; Rady, M.; Mukhtar, H. Melittin, a major peptide component of bee venom, and its conjugates in cancer therapy. Cancer Lett., 2017, 402, 16-31.
[11]
Kim, W.H.; An, H.J.; Kim, J.Y.; Gwon, M.G.; Gu, H.; Jeon, M.; Kim, M.K.; Han, S.M.; Park, K.K. Anti-inflammatory effect of melittin on Porphyromonas gingivalis LPS-stimulated human keratinocytes. Molecules, 2018, 23(2), 332.
[http://dx.doi.org/10.3390/molecules23020332] [PMID: 29401750]
[12]
Shimpi, R.; Chaudhari, P.; Deshmukh, R.; Devare, S.; Bagad, Y.; Bhurat, M.A. Review: Pharmacotherapeutics of BV. World J. Pharm. Pharm. Sci., 2016, 5, 656-667.
[13]
Krell, R. Value-added products from beekeeping; Food & Agriculture Org, 1996.
[14]
Park, J.S.; Lee, M.J.; Chung, K.H.; Ko, D.K.; Chung, H. Live bee acupuncture (Bong-Chim) dermatitis: Dermatitis due to live bee acupuncture therapy in korea. Int. J. Dermatol., 2013, 52(12), 1519-1524.
[http://dx.doi.org/10.1111/ijd.12161] [PMID: 24134690]
[15]
Wesselius, T.; Heersema, D.J.; Mostert, J.P.; Heerings, M.; Admiraal-Behloul, F.; Talebian, A.; van Buchem, M.A.; De Keyser, J. A randomized crossover study of bee sting therapy for multiple sclerosis. Neurology, 2005, 65(11), 1764-1768.
[http://dx.doi.org/10.1212/01.wnl.0000184442.02551.4b] [PMID: 16221950]
[16]
Lee, M.S.; Pittler, M.H.; Shin, B.C.; Kong, J.C.; Ernst, E. Bee venom acupuncture for musculoskeletal pain: a review. J. Pain, 2008, 9(4), 289-297.
[http://dx.doi.org/10.1016/j.jpain.2007.11.012] [PMID: 18226968]
[17]
Dempsey, C.E. The actions of melittin on membranes. Biochim. Biophys. Acta, 1990, 1031(2), 143-161.
[http://dx.doi.org/10.1016/0304-4157(90)90006-X] [PMID: 2187536]
[18]
Terwilliger, T.C.; Eisenberg, D. The structure of melittin. II. Interpretation of the structure. J. Biol. Chem., 1982, 257(11), 6016-6022.
[PMID: 7076662]
[19]
Bagyalakshmi, B.; Lalitha, P.S.; Balamurugan, A. Anticancer activity of bee venom against lung cancer cell line (A549 Cells) enhanced by iron oxide nanoparticles synthesized from Syzygium Aromaticum. J. Drug Deliv. Ther., 2020, 9(3-s), 248-254.
[20]
Zhou, J.; Zhao, J.; Zhang, S.; Shen, J.; Qi, Y.; Xue, X.; Li, Y.; Wu, L.; Zhang, J.; Chen, F.; Chen, L. Quantification of melittin and apamin in bee venom lyophilized powder from Apis mellifera by liquid chromatography-diode array detector-tandem mass spectrometry. Anal. Biochem., 2010, 404(2), 171-178.
[http://dx.doi.org/10.1016/j.ab.2010.05.014] [PMID: 20580685]
[21]
Lee, S.H.; Kang, Y.Y.; Jang, H.E.; Mok, H. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Adv. Drug Deliv. Rev., 2016, 104, 78-92.
[http://dx.doi.org/10.1016/j.addr.2015.10.009] [PMID: 26514375]
[22]
Qin, G.; Chen, Y.; Li, H.; Xu, S.; Li, Y.; Sun, J.; Rao, W.; Chen, C.; Du, M.; He, K.; Ye, Y. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model. Mol. Med. Rep., 2016, 14(1), 57-68.
[http://dx.doi.org/10.3892/mmr.2016.5215] [PMID: 27177128]
[23]
Kong, G.M.; Tao, W.H.; Diao, Y.L.; Fang, P.H.; Wang, J.J.; Bo, P.; Qian, F. Melittin induces human gastric cancer cell apoptosis via activation of mitochondrial pathway. World J. Gastroenterol., 2016, 22(11), 3186-3195.
[http://dx.doi.org/10.3748/wjg.v22.i11.3186] [PMID: 27003995]
[24]
Wu, X.; Zhao, B.; Cheng, Y.; Yang, Y.; Huang, C.; Meng, X.; Wu, B.; Zhang, L.; Lv, X.; Li, J. Melittin induces PTCH1 expression by down-regulating MeCP2 in human hepatocellular carcinoma SMMC-7721 cells. Toxicol. Appl. Pharmacol., 2015, 288(1), 74-83.
[http://dx.doi.org/10.1016/j.taap.2015.07.010] [PMID: 26189965]
[25]
Liu, S.; Yu, M.; He, Y.; Xiao, L.; Wang, F.; Song, C.; Sun, S.; Ling, C.; Xu, Z. Melittin prevents liver cancer cell metastasis through inhibition of the Rac1-dependent pathway. Hepatology, 2008, 47(6), 1964-1973.
[http://dx.doi.org/10.1002/hep.22240] [PMID: 18506888]
[26]
Yang, L.; Cui, F.; Shi, K.; Cun, D.; Wang, R. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique. Drug Dev. Ind. Pharm., 2009, 35(8), 959-968.
[http://dx.doi.org/10.1080/03639040902718039] [PMID: 19274512]
[27]
Popplewell, J.F.; Swann, M.J.; Freeman, N.J.; McDonnell, C.; Ford, R.C. Quantifying the effects of melittin on liposomes. Biochim. Biophys. Acta, 2007, 1768(1), 13-20.
[http://dx.doi.org/10.1016/j.bbamem.2006.05.016] [PMID: 17092481]
[28]
Soman, N.R.; Lanza, G.M.; Heuser, J.M.; Schlesinger, P.H.; Wickline, S.A. Synthesis and characterization of stable fluorocarbon nanostructures as drug delivery vehicles for cytolytic peptides. Nano Lett., 2008, 8(4), 1131-1136.
[http://dx.doi.org/10.1021/nl073290r] [PMID: 18302330]
[29]
Pan, H.; Soman, N.R.; Schlesinger, P.H.; Lanza, G.M.; Wickline, S.A. Cytolytic peptide nanoparticles (‘NanoBees’) for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(3), 318-327.
[http://dx.doi.org/10.1002/wnan.126] [PMID: 21225660]
[30]
Soman, N.R.; Baldwin, S.L.; Hu, G.; Marsh, J.N.; Lanza, G.M.; Heuser, J.E.; Arbeit, J.M.; Wickline, S.A.; Schlesinger, P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest., 2009, 119(9), 2830-2842.
[http://dx.doi.org/10.1172/JCI38842] [PMID: 19726870]
[31]
Hait, W.N.; Grais, L.; Benz, C.; Cadman, E.C. Inhibition of growth of leukemic cells by inhibitors of calmodulin: Phenothiazines and melittin. Cancer Chemother. Pharmacol., 1985, 14(3), 202-205.
[http://dx.doi.org/10.1007/BF00258116] [PMID: 3995682]
[32]
Hait, W.N.; Lee, G.L. Characteristics of the cytotoxic effects of the phenothiazine class of calmodulin antagonists. Biochem. Pharmacol., 1985, 34(22), 3973-3978.
[http://dx.doi.org/10.1016/0006-2952(85)90374-0] [PMID: 4062971]
[33]
Cho, H.J.; Jeong, Y.J.; Park, K.K.; Park, Y.Y.; Chung, I.K.; Lee, K.G.; Yeo, J.H.; Han, S.M.; Bae, Y.S.; Chang, Y.C. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-kappaB-dependent mechanisms. J. Ethnopharmacol., 2010, 127(3), 662-668.
[http://dx.doi.org/10.1016/j.jep.2009.12.007] [PMID: 19969058]
[34]
Sharma, S.V. Melittin-induced hyperactivation of phospholipase A2 activity and calcium influx in ras-transformed cells. Oncogene, 1993, 8(4), 939-947.
[PMID: 8455945]
[35]
Moon, D.O.; Park, S.Y.; Heo, M.S.; Kim, K.C.; Park, C.; Ko, W.S.; Choi, Y.H.; Kim, G.Y. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int. Immunopharmacol., 2006, 6(12), 1796-1807.
[http://dx.doi.org/10.1016/j.intimp.2006.07.027] [PMID: 17052670]
[36]
Leuschner, C.; Hansel, W. Membrane disrupting lytic peptides for cancer treatments. Curr. Pharm. Des., 2004, 10(19), 2299-2310.
[http://dx.doi.org/10.2174/1381612043383971] [PMID: 15279610]
[37]
Choi, J.H.; Jang, A.Y.; Lin, S.; Lim, S.; Kim, D.; Park, K.; Han, S.M.; Yeo, J.H.; Seo, H.S. Melittin, a honeybee venom‑derived antimicrobial peptide, may target methicillin‑resistant Staphylococcus aureus. Mol. Med. Rep., 2015, 12(5), 6483-6490.
[http://dx.doi.org/10.3892/mmr.2015.4275] [PMID: 26330195]
[38]
Luo, L.; Wu, W.; Sun, D.; Dai, H.B.; Wang, Y.; Zhong, Y.; Wang, J.X.; Maruf, A.; Nurhidayah, D.; Zhang, X.J.; Wang, Y.; Wang, G.X. Acid-activated Melittin for targeted and safe antitumor therapy. Bioconjug. Chem., 2018, 29(9), 2936-2944.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00352] [PMID: 30148623]
[39]
Han, Z.; Li, Y.; Roelle, S.; Zhou, Z.; Liu, Y.; Sabatelle, R.; DeSanto, A.; Yu, X.; Zhu, H.; Magi-Galluzzi, C.; Lu, Z.R. Targeted contrast agent specific to an oncoprotein in tumor microenvironment with the potential for detection and risk stratification of prostate cancer with MRI. Bioconjug. Chem., 2017, 28(4), 1031-1040.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00719] [PMID: 28201871]
[40]
Ge, Z.; Liu, S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem. Soc. Rev., 2013, 42(17), 7289-7325.
[http://dx.doi.org/10.1039/c3cs60048c] [PMID: 23549663]
[41]
Li, H.J.; Du, J.Z.; Du, X.J.; Xu, C.F.; Sun, C.Y.; Wang, H.X.; Cao, Z.T.; Yang, X.Z.; Zhu, Y.H.; Nie, S.; Wang, J. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 4164-4169.
[http://dx.doi.org/10.1073/pnas.1522080113] [PMID: 27035960]
[42]
Gerweck, L.E.; Seetharaman, K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer. Cancer Res., 1996, 56(6), 1194-1198.
[PMID: 8640796]
[43]
Zhao, T.; Huang, G.; Li, Y.; Yang, S.; Ramezani, S.; Lin, Z.; Wang, Y.; Ma, X.; Zeng, Z.; Luo, M.; de Boer, E.; Xie, X.J.; Thibodeaux, J.; Brekken, R.A.; Sun, X.; Sumer, B.D.; Gao, J. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng., 2016, 1(1), 1-8.
[PMID: 28966871]
[44]
Lee, Y.; Kataoka, K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter, 2009, 5(20), 3810-3817.
[http://dx.doi.org/10.1039/b909934d]
[45]
Roy, D.; Cambre, J.N.; Sumerlin, B.S. Future perspectives and recent advances in stimuli- responsive materials. Prog. Polym. Sci., 2010, 35(1-2), 278-301.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.10.008]
[46]
Lee, E.S.; Na, K.; Bae, Y.H. Polymeric micelle for tumor pH and folate-mediated targeting. J. Control. Release, 2003, 91(1-2), 103-113.
[http://dx.doi.org/10.1016/S0168-3659(03)00239-6] [PMID: 12932642]
[47]
Son, D.J.; Lee, J.W.; Lee, Y.H.; Song, H.S.; Lee, C.K.; Hong, J.T. Therapeutic application of anti-arthritis, pain-releasing, and anti- cancer effects of bee venom and its constituent compounds. Pharmacol. Ther., 2007, 115(2), 246-270.
[http://dx.doi.org/10.1016/j.pharmthera.2007.04.004] [PMID: 17555825]
[48]
Zarrinnahad, H.; Mahmoodzadeh, A.; Hamidi, M.P.; Mahdavi, M.; Moradi, A.; Bagheri, K.P.; Shahbazzadeh, D. Apoptotic effect of melittin purified from iranian honey bee venom on human cervical cancer hela cell line. Int. J. Pept. Res. Ther., 2018, 24(4), 563-570.
[http://dx.doi.org/10.1007/s10989-017-9641-1] [PMID: 30416405]
[49]
Saini, S.S.; Chopra, A.K.; Peterson, J.W. Melittin activates endogenous phospholipase D during cytolysis of human monocytic leukemia cells. Toxicon, 1999, 37(11), 1605-1619.
[http://dx.doi.org/10.1016/S0041-0101(99)00110-5] [PMID: 10482394]
[50]
Park, J.H.; Jeong, Y.J.; Park, K.K.; Cho, H.J.; Chung, I.K.; Min, K.S.; Kim, M.; Lee, K.G.; Yeo, J.H.; Park, K.K.; Chang, Y.C. Melittin suppresses PMA-induced tumor cell invasion by inhibiting NF-kappaB and AP-1-dependent MMP-9 expression. Mol. Cells, 2010, 29(2), 209-215.
[http://dx.doi.org/10.1007/s10059-010-0028-9] [PMID: 20082219]
[51]
Lee, G.L.; Hait, W.N. Inhibition of growth of C6 astrocytoma cells by inhibitors of calmodulin. Life Sci., 1985, 36(4), 347-354.
[http://dx.doi.org/10.1016/0024-3205(85)90120-1] [PMID: 2981390]
[52]
Yang, Z.L.; Ke, Y.Q.; Xu, R.X.; Peng, P. Melittin inhibits proliferation and induces apoptosis of malignant human glioma cells. J of South Med Uni, 2007, 27(11), 1775-1777.
[PMID: 18024312]
[53]
Oršolić, N. Bee venom in cancer therapy. Cancer Metastasis Rev., 2012, 31(1-2), 173-194.
[http://dx.doi.org/10.1007/s10555-011-9339-3] [PMID: 22109081]
[54]
Raghuraman, H.; Chattopadhyay, A. Melittin: a membrane-active peptide with diverse functions. Biosci. Rep., 2007, 27(4-5), 189-223.
[http://dx.doi.org/10.1007/s10540-006-9030-z] [PMID: 17139559]
[55]
Moon, D.O.; Park, S.Y.; Choi, Y.H.; Kim, N.D.; Lee, C.; Kim, G.Y. Melittin induces Bcl-2 and caspase-3-dependent apoptosis through downregulation of Akt phosphorylation in human leukemic U937 cells. Toxicon, 2008, 51(1), 112-120.
[http://dx.doi.org/10.1016/j.toxicon.2007.08.015] [PMID: 17936321]
[56]
Park, M.H.; Choi, M.S.; Kwak, D.H.; Oh, K.W.; Yoon, D.Y.; Han, S.B.; Song, H.S.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate, 2011, 71(8), 801-812.
[http://dx.doi.org/10.1002/pros.21296] [PMID: 21456063]
[57]
Kikuchi, Y.; Iwano, I.; Kato, K. Effects of calmodulin antagonists on human ovarian cancer cell proliferation in vitro. Biochem. Biophys. Res. Commun., 1984, 123(1), 385-392.
[http://dx.doi.org/10.1016/0006-291X(84)90425-X] [PMID: 6541042]
[58]
Jo, M.; Park, M.H.; Kollipara, P.S.; An, B.J.; Song, H.S.; Han, S.B.; Kim, J.H.; Song, M.J.; Hong, J.T. Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol. Appl. Pharmacol., 2012, 258(1), 72-81.
[http://dx.doi.org/10.1016/j.taap.2011.10.009] [PMID: 22027265]
[59]
Shin, J. Melittin suppresses HIF-1alpha/VEGF expression through inhibition of ERK and mTOR/p70S6K pathway in human cervical carcinoma cells. PLoS One, 2013, 8(7)
[60]
Jeong, Y.J.; Choi, Y.; Shin, J.M.; Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Bae, Y.S.; Han, S.M.; Kim, C.H.; Chang, H.W.; Chang, Y.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol., 2014, 68, 218-225.
[http://dx.doi.org/10.1016/j.fct.2014.03.022] [PMID: 24675423]
[61]
Drechsler, S.; Andrä, J. Online monitoring of metabolism and morphology of peptide-treated neuroblastoma cancer cells and keratinocytes. J. Bioenerg. Biomembr., 2011, 43(3), 275-285.
[http://dx.doi.org/10.1007/s10863-011-9350-y] [PMID: 21643697]
[62]
Yang, X.; Zhu, H.; Ge, Y.; Liu, J.; Cai, J.; Qin, Q.; Zhan, L.; Zhang, C.; Xu, L.; Liu, Z.; Yang, Y.; Yang, Y.; Ma, J.; Cheng, H.; Sun, X. Melittin enhances radiosensitivity of hypoxic head and neck squamous cell carcinoma by suppressing HIF-1α. Tumour Biol., 2014, 35(10), 10443-10448.
[http://dx.doi.org/10.1007/s13277-014-2218-0] [PMID: 25053591]
[63]
Zhu, H.G.; Tayeh, I.; Israel, L.; Castagna, M. Different susceptibility of lung cell lines to inhibitors of tumor promotion and inducers of differentiation. J. Biol. Regul. Homeost. Agents, 1991, 5(2), 52-58.
[PMID: 1910248]
[64]
Chen, Y.Q.; Zhu, Z.A.; Hao, Y.Q.; Dai, K.R.; Zhang, C. Effect of melittin on apoptosis and necrosis of U2 OS cells. J. Chin. Integr. Med., 2004, 2(3), 208-209.
[http://dx.doi.org/10.3736/jcim20040317] [PMID: 15339447]
[65]
Chu, S.T.; Cheng, H.H.; Huang, C.J.; Chang, H.C.; Chi, C.C.; Su, H.H.; Hsu, S.S.; Wang, J.L.; Chen, I.S.; Liu, S.I.; Lu, Y.C.; Huang, J.K.; Ho, C.M.; Jan, C.R. Phospholipase A2-independent Ca2+ entry and subsequent apoptosis induced by melittin in human MG63 osteosarcoma cells. Life Sci., 2007, 80(4), 364-369.
[http://dx.doi.org/10.1016/j.lfs.2006.09.024] [PMID: 17054998]
[66]
Zhu, H.; Yang, X.; Liu, J.; Ge, Y.; Qin, Q.; Lu, J.; Zhan, L.; Liu, Z.; Zhang, H.; Chen, X.; Zhang, C.; Xu, L.; Cheng, H.; Sun, X. Melittin radiosensitizes esophageal squamous cell carcinoma with induction of apoptosis in vitro and in vivo. Tumour Biol., 2014, 35(9), 8699-8705.
[http://dx.doi.org/10.1007/s13277-014-2146-z] [PMID: 24870598]
[67]
Wang, R.P.; Huang, S.R.; Zhou, J.Y.; Zou, X. Synergistic interaction between melittin and chemotherapeutic agents and their possible mechanisms: an experimental research. Chin. J. Integr. Trad.West. Med., 2014, 34(2), 224-229.
[PMID: 24672950]
[68]
Arora, A.S.; de Groen, P.C.; Croall, D.E.; Emori, Y.; Gores, G.J. Hepatocellular carcinoma cells resist necrosis during anoxia by preventing phospholipase-mediated calpain activation. J. Cell. Physiol., 1996, 167(3), 434-442.
[http://dx.doi.org/10.1002/(SICI)1097-4652(199606)167:3<434::AID-JCP7>3.0.CO;2-Q] [PMID: 8655597]
[69]
Zhang, H.; Zhao, B.; Huang, C.; Meng, X.M.; Bian, E.B.; Li, J. Melittin restores PTEN expression by down-regulating HDAC2 in human hepatocelluar carcinoma HepG2 cells. PLoS One, 2014, 9(5), e95520.
[http://dx.doi.org/10.1371/journal.pone.0095520] [PMID: 24788349]
[70]
Li, B.; Gu, W.; Zhang, C.; Huang, X.Q.; Han, K.Q.; Ling, C.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie, 2006, 29(8-9), 367-371.
[PMID: 16974113]
[71]
Li, B.; Ling, C.Q.; Zhang, C.; Gu, W.; Li, S.X.; Huang, X.Q.; Zhang, Y.N.; Yu, C.Q. The induced apoptosis of recombinant adenovirus carrying melittin gene for hepatocellular carcinoma cell. Chin. J. Hepatol, 2004, 12(8), 453-455.
[PMID: 15329201]
[72]
Zhang, C.; Li, B.; Lu, S.Q.; Li, Y.; Su, Y.H.; Ling, C.Q. [Effects of melittin on expressions of mitochondria membrane protein 7A6, cell apoptosis-related gene products Fas and Fas ligand in hepatocarcinoma cells]. J. Chin. Integr. Med., 2007, 5(5), 559-563.
[http://dx.doi.org/10.3736/jcim20070517] [PMID: 17854560]
[73]
El Bakary, N.M.; Alsharkawy, A.Z.; Shouaib, Z.A.; Barakat, E.M.S. Role of bee venom and melittin on restraining angiogenesis and metastasis in γ-irradiated solid ehrlich carcinoma-bearing mice. Integr. Cancer Ther., 2020, 19, 1534735420944476.
[http://dx.doi.org/10.1177/1534735420944476] [PMID: 32735464]
[74]
Md, S.H.; Siew, H.G.; Md, I.K. Melittin, a potential natural toxin of crude bee venom: Probable future arsenal in the treatment of diabetes mellitus. J. Chem., 2017, 7, 1-7.
[75]
Leandro, L.F.; Mendes, C.A.; Casemiro, L.A.; Vinholis, A.H.; Cunha, W.R.; de Almeida, R.; Martins, C.H. Antimicrobial activity of apitoxin, melittin and phospholipase A₂ of honey bee (Apis mellifera) venom against oral pathogens. An. Acad. Bras. Cienc., 2015, 87(1), 147-155.
[http://dx.doi.org/10.1590/0001-3765201520130511] [PMID: 25806982]
[76]
Wang, C.; Chen, T.; Zhang, N.; Yang, M.; Li, B.; Lü, X.; Cao, X.; Ling, C. Melittin, a major component of bee venom, sensitizes human hepatocellular carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis by activating CaMKII-TAK1-JNK/p38 and inhibiting Ikappa Balpha kinase-NFkappaB. J. Biol. Chem., 2009, 284(6), 3804-3813.
[http://dx.doi.org/10.1074/jbc.M807191200] [PMID: 19074436]
[77]
Song, C.C.; Lu, X.; Cheng, B.B.; Du, J.; Li, B.; Ling, C.Q. Effects of melittin on growth and angiogenesis of human hepatocellular carcinoma BEL-7402 cell xenografts in nude mice. Chin. J. Cancer, 2007, 26(12), 1315-1322.
[PMID: 18076793]
[78]
Tu, W.C.; Wu, C.C.; Hsieh, H.L.; Chen, C.Y.; Hsu, S.L. Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon, 2008, 52(2), 318-329.
[http://dx.doi.org/10.1016/j.toxicon.2008.06.007] [PMID: 18602939]
[79]
Do, N.; Weindl, G.; Grohmann, L.; Salwiczek, M.; Koksch, B.; Korting, H.C.; Schäfer-Korting, M. Cationic membrane-active peptides - anticancer and antifungal activity as well as penetration into human skin. Exp. Dermatol., 2014, 23(5), 326-331.
[http://dx.doi.org/10.1111/exd.12384] [PMID: 24661024]
[80]
Wachinger, M.; Saermark, T.; Erfle, V. Influence of amphipathic peptides on the HIV-1 production in persistently infected T lymphoma cells. FEBS Lett., 1992, 309(3), 235-241.
[http://dx.doi.org/10.1016/0014-5793(92)80780-K] [PMID: 1516693]
[81]
Uddin, M.B.; Lee, B.H.; Nikapitiya, C.; Kim, J.H.; Kim, T.H.; Lee, H.C.; Kim, C.G.; Lee, J.S.; Kim, C.J. Inhibitory effects of bee venom and its components against viruses in vitro and in vivo. J. Microbiol., 2016, 54(12), 853-866.
[http://dx.doi.org/10.1007/s12275-016-6376-1] [PMID: 27888461]
[82]
Vowels, B.R.; Yang, S.; Leyden, J.J. Induction of pro inflammatory cytokines by a soluble factor of Propioni bacterium acnes: Implications for chronic inflammatory acne. Infect. Immun., 1995, 63(8), 3158-3165.
[http://dx.doi.org/10.1128/IAI.63.8.3158-3165.1995] [PMID: 7542639]
[83]
Kim, J. Review of the innate immune response in acne vulgaris: Activation of Toll-like receptor 2 in acne triggers inflammatory cytokine responses. Dermatology, 2005, 211(3), 193-198.
[http://dx.doi.org/10.1159/000087011] [PMID: 16205063]
[84]
Aslam, I.; Fleischer, A.; Feldman, S. Emerging drugs for the treatment of acne. Expert Opin. Emerg. Drugs, 2015, 20(1), 91-101.
[http://dx.doi.org/10.1517/14728214.2015.990373] [PMID: 25474485]
[85]
Moon, D.O.; Park, S.Y.; Lee, K.J.; Heo, M.S.; Kim, K.C.; Kim, M.O.; Lee, J.D.; Choi, Y.H.; Kim, G.Y. Bee venom and melittin reduce pro inflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol., 2007, 7(8), 1092-1101.
[http://dx.doi.org/10.1016/j.intimp.2007.04.005] [PMID: 17570326]
[86]
Yang, E.J.; Kim, S.H.; Yang, S.C.; Lee, S.M.; Choi, S.M. Melittin restores proteasome function in an animal model of ALS. J. Neuro. inflamm, 2011, 8(1), 69.
[http://dx.doi.org/10.1186/1742-2094-8-69] [PMID: 21682930]
[87]
Kucharczak, J.; Simmons, M.J.; Fan, Y.; Gélinas, C. To be, or not to be: NF-kappaB is the answer- role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene, 2003, 22(56), 8961-8982.
[http://dx.doi.org/10.1038/sj.onc.1207230] [PMID: 14663476]
[88]
Pamukcu, B.; Lip, G.Y.; Shantsila, E. The nuclear factor- kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb. Res., 2011, 128(2), 117-123.
[http://dx.doi.org/10.1016/j.thromres.2011.03.025] [PMID: 21636112]
[89]
Son, D.J.; Kang, J.; Kim, T.J.; Song, H.S.; Sung, K.J.; Yun, D.Y.; Hong, J.T. Melittin, a major bioactive component of bee venom toxin, inhibits PDGF receptor beta-tyrosine phosphorylation and downstream intracellular signal transduction in rat aortic vascular smooth muscle cells. J. Toxicol. Environ. Health A, 2007, 70(15-16), 1350-1355.
[http://dx.doi.org/10.1080/15287390701428689] [PMID: 17654254]
[90]
Son, D.J.; Ha, S.J.; Song, H.S.; Lim, Y.; Yun, Y.P.; Lee, J.W.; Moon, D.C.; Park, Y.H.; Park, B.S.; Song, M.J.; Hong, J.T. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappaB and Akt activation and enhancement of apoptotic protein expression. J. Pharmacol. Exp. Ther., 2006, 317(2), 627-634.
[http://dx.doi.org/10.1124/jpet.105.095901] [PMID: 16401728]
[91]
Kim, S.J.; Park, J.H.; Kim, K.H.; Lee, W.R.; Kim, K.S.; Park, K.K. Melittin inhibits atherosclerosis in LPS/high-fat treated mice through athero protective actions. J. Atheroscler. Thromb., 2011, 18(12), 1117-1126.
[http://dx.doi.org/10.5551/jat.8474] [PMID: 22008474]
[92]
Park, H.J.; Son, D.J.; Lee, C.W.; Choi, M.S.; Lee, U.S.; Song, H.S.; Lee, J.M.; Hong, J.T. Melittin inhibits inflammatory target gene expression and mediator generation via interaction with IkappaB kinase. Biochem. Pharmacol., 2007, 73(2), 237-247.
[http://dx.doi.org/10.1016/j.bcp.2006.09.023] [PMID: 17067557]
[93]
Park, J.H.; Kim, K.H.; Lee, W.R.; Han, S.M.; Park, K.K. Protective effect of melittin on inflammation and apoptosis in acute liver failure. Apoptosis, 2012, 17(1), 61-69.
[http://dx.doi.org/10.1007/s10495-011-0659-0] [PMID: 21928088]
[94]
Nathan, C. Points of control in inflammation. Nature, 2002, 420(6917), 846-852.
[http://dx.doi.org/10.1038/nature01320] [PMID: 12490957]
[95]
Jamie, S. M.; David, W.H. Cationic antimicrobial peptides as novel cytotoxic agents for cancer treatment. Expert Opin Investig Drugs, 2015, 8, 933-946.
[96]
Adamski, Z.; Bufo, S.A.; Chowański, S.; Falabella, P.; Lubawy, J.; Marciniak, P.; Pacholska-Bogalska, J.; Salvia, R.; Scrano, L.; Słocińska, M.; Spochacz, M.; Szymczak, M.; Urbański, A.; Walkowiak-Nowicka, K.; Rosiński, G. Beetles as model organisms in physiological, biomedical and environmental studies - A review. Front. Physiol., 2019, 10, 319.
[http://dx.doi.org/10.3389/fphys.2019.00319] [PMID: 30984018]
[97]
Bkaily, G.; Simaan, M.; Jaalouk, D.; Pothier, P. Effect of apamin and Melittin on ion channels and intracellular calcium of heart cells. Bee Products; Springer: Boston, MA, 1997, pp. 203-211.
[http://dx.doi.org/10.1007/978-1-4757-9371-0_24]
[98]
Brovkovich, V.M.; Moibenko, A.A. Effect of Melittin on the contractility of rat papillary muscle. Bull. Exp. Biol. Med., 1997, 124(1), 642-644.
[http://dx.doi.org/10.1007/BF02445049]
[99]
Yang, S.; Liu, J.E.; Zhang, A.Z.; Jiang, M.H. Biphasic manner of melittin on isolated guinea pig atria. Acta Pharmacol. Sin., 2000, 21(3), 221-224.
[PMID: 11324419]
[100]
Bogdanov, S. Bee Venom: composition, health, medicine: a review. Peptides, 2015, 1, 1-20.
[101]
Mousavi, S.M.; Imani, S.; Haghighi, S.; Mousavi, S.E.; Karimi, A. Effect of iranian honey bee (Apis mellifera) venom on blood glucose and insulin in diabetic rats. J. Arthropod Borne Dis., 2012, 6(2), 136-143.
[PMID: 23378971]
[102]
Prakash, S.; Bhargava, H.R. Apis cerana Bee Venom: It’s antidiabetic and anti-dandruff activity against Malassezia furfur. World Appl. Sci. J., 2014, 32(3), 343-348.
[103]
Khulan, T.S.; Ambaga, M.; Chimedragcha, C.H. Effect of honey bee venom (Apis mellifera) on hyperglycemia and hyperlipidemia in alloxan induced diabetic rabbits. J. Diabetes Metab., 2015, 6(3), 507.
[104]
Simonsson, E.; Karlsson, S.; Ahrén, B. Islet phospholipase A(2) activation is potentiated in insulin resistant mice. Biochem. Biophys. Res. Commun., 2000, 272(2), 539-543.
[http://dx.doi.org/10.1006/bbrc.2000.2820] [PMID: 10833448]
[105]
Heisler, S. Phospholipase A2 activation by melittin causes amylase release from exocrine pancreas. Can. J. Physiol. Pharmacol., 1989, 67(5), 411-416.
[http://dx.doi.org/10.1139/y89-065] [PMID: 2475235]
[106]
Park, H.J.; Lee, H.J.; Choi, M.S.; Son, D.J.; Song, H.S.; Song, M.J.; Lee, J.M.; Han, S.B.; Kim, Y.; Hong, J.T. JNK pathway is involved in the inhibition of inflammatory target gene expression and NF-kappaB activation by melittin. J. Inflamm. (Lond.), 2008, 5(1), 7.
[http://dx.doi.org/10.1186/1476-9255-5-7] [PMID: 18507870]
[107]
Morgan, N.G.; Montague, W. Stimulation of insulin secretion from isolated rat islets of Langerhans by melittin. Biosci. Rep., 1984, 4(8), 665-671.
[http://dx.doi.org/10.1007/BF01121020] [PMID: 6388655]
[108]
Melo da Cunha, J.D.S.; Alfredo, T.M.; Dos Santos, J.M.; Alves Junior, V.V.; Rabelo, L.A.; Lima, E.S.; Boleti, A.P.A.; Carollo, C.A.; Dos Santos, E.L.; de Picoli Souza, K. Antioxidant, antihyperglycemic, and antidiabetic activity of Apis mellifera bee tea. PLoS One, 2018, 13(6), e0197071.
[http://dx.doi.org/10.1371/journal.pone.0197071] [PMID: 29870561]
[109]
Fujimoto, W.Y.; Metz, S.A. Phasic effects of glucose, phospholipase A2, and lysophospholipids on insulin secretion. Endocrinology, 1987, 120(5), 1750-1757.
[http://dx.doi.org/10.1210/endo-120-5-1750] [PMID: 3552622]
[110]
Maiden, M.M.; Zachos, M.P.; Waters, C.M. Hydrogels embedded with melittin and tobramycin are effective against Pseudomonas aeruginosa biofilms in an animal wound model. Front. Microbiol., 2019, 10, 1348.
[http://dx.doi.org/10.3389/fmicb.2019.01348] [PMID: 31293530]
[111]
Gui, Z.; Zhu, J.; Ye, S.; Ye, J.; Chen, J.; Ling, Y.; Cai, X.; Cao, P.; He, Z.; Hu, C. Prolonged melittin release from polyelectrolyte-based nanocomplexes decreases acute toxicity and improves blood glycemic control in a mouse model of type II diabetes. Int. J. Pharm., 2020, 577, 119071.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119071] [PMID: 31991184]
[112]
Lee, W.R.; Kim, K.H.; An, H.J.; Kim, J.Y.; Han, S.M.; Lee, K.G.; Park, K.K. Protective effect of melittin against inflammation and apoptosis on Propioni bacterium acnes-induced human THP-1 monocytic cell. Eur. J. Pharmacol., 2014, 740, 218-226.
[http://dx.doi.org/10.1016/j.ejphar.2014.06.058] [PMID: 25062791]
[113]
Lee, W.R.; Kim, K.H.; An, H.J.; Kim, J.Y.; Chang, Y.C.; Chung, H.; Park, Y.Y.; Lee, M.L.; Park, K.K. The protective effects of melittin on Propioni bacterium acnes-induced inflammatory responses in vitro and in vivo. J. Invest. Dermatol., 2014, 134(7), 1922-1930.
[http://dx.doi.org/10.1038/jid.2014.75] [PMID: 24496237]
[114]
Lyu, C.; Fang, F.; Li, B. Anti-tumor effects of melittin and iIts potential applications in clinic. Curr. Protein Pept. Sci., 2019, 20(3), 240-250.
[http://dx.doi.org/10.2174/1389203719666180612084615] [PMID: 29895240]
[115]
Han, S.M.; Kim, J.M.; Park, K.K.; Chang, Y.C.; Pak, S.C. Neuroprotective effects of melittin on hydrogen peroxide-induced apoptotic cell death in neuroblastoma SH-SY5Y cells. BMC Complement. Altern. Med., 2014, 14(1), 286.
[http://dx.doi.org/10.1186/1472-6882-14-286] [PMID: 25091565]
[116]
Lee, S.H.; Choi, S.M.; Yang, E.J. Melittin ameliorates the inflammation of organs in an amyotrophic lateral sclerosis animal model. Exp. Neurobiol., 2014, 23(1), 86-92.
[http://dx.doi.org/10.5607/en.2014.23.1.86] [PMID: 24737943]
[117]
Cho, H.J.; Kang, J.H.; Park, K.K.; Choe, J.Y.; Park, Y.Y.; Moon, Y.S.; Chung, I.K.; Chang, H.W.; Kim, C.H.; Choi, Y.H.; Kim, W.J.; Moon, S.K.; Chang, Y.C. Comparative proteome analysis of tumor necrosis factor α-stimulated human vascular smooth muscle cells in response to melittin. Proteome Sci., 2013, 11(1), 20.
[http://dx.doi.org/10.1186/1477-5956-11-20] [PMID: 23651618]
[118]
Moga, M.A.; Dimienescu, O.G.; Arvătescu, C.A.; Ifteni, P.; Pleş, L. Anticancer activity of toxins from bee and snake venom: An overview on ovarian cancer. Molecules, 2018, 23(3), 692.
[http://dx.doi.org/10.3390/molecules23030692] [PMID: 29562696]
[119]
Gajski, G.; Garaj-Vrhovac, V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol., 2013, 36(2), 697-705.
[http://dx.doi.org/10.1016/j.etap.2013.06.009] [PMID: 23892471]
[120]
Park, J.H.; Kum, Y.S.; Lee, T.I.; Kim, S.J.; Lee, W.R.; Kim, B.I.; Kim, H.S.; Kim, K.H.; Park, K.K. Melittin attenuates liver injury in thioacetamide-treated mice through modulating inflammation and fibrogenesis. Exp. Biol. Med. (Maywood), 2011, 236(11), 1306-1313.
[http://dx.doi.org/10.1258/ebm.2011.011127] [PMID: 21969711]
[121]
Park, J.H.; Lee, W.R.; Kim, H.S.; Han, S.M.; Chang, Y.C.; Park, K.K. Protective effects of melittin on tumor necrosis factor-α induced hepatic damage through suppression of apoptotic pathway and nuclear factor-kappa B activation. Exp. Biol. Med. (Maywood), 2014, 239(12), 1705-1714.
[http://dx.doi.org/10.1177/1535370214533880] [PMID: 24872433]
[122]
Kim, K.H.; Sung, H.J.; Lee, W.R.; An, H.J.; Kim, J.Y.; Pak, S.C.; Han, S.M.; Park, K.K. Effects of Melittin treatment in cholangitis and biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxins (Basel), 2015, 7(9), 3372-3387.
[http://dx.doi.org/10.3390/toxins7093372] [PMID: 26308055]
[123]
An, H.J.; Kim, J.Y.; Kim, W.H.; Gwon, M.G.; Gu, H.M.; Jeon, M.J.; Han, S.M.; Pak, S.C.; Lee, C.K.; Park, I.S.; Park, K.K. Therapeutic effects of bee venom and its major component, melittin, on atopic dermatitis in vivo and in vitro. Br. J. Pharmacol., 2018, 175(23), 4310-4324.
[http://dx.doi.org/10.1111/bph.14487] [PMID: 30187459]
[124]
Mao, J.; Liu, S.; Ai, M.; Wang, Z.; Wang, D.; Li, X.; Hu, K.; Gao, X.; Yang, Y. A novel melittin nano-liposome exerted excellent anti-hepatocellular carcinoma efficacy with better biological safety. J. Hematol. Oncol., 2017, 10(1), 71.
[http://dx.doi.org/10.1186/s13045-017-0442-y] [PMID: 28320480]
[125]
Hassan, A.K.; El-kotby, D.A.; Tawfik, M.M. Antidiabetic effect of the (Egyptian honey bee Apis mellifera) venom in alloxan-induced diabetic rats. J. of Basic Appl Zoology, 2019, 80, 58.
[126]
Khulan, T.S.; Ambaga, M; Chimedragcha, C.H. Effect of honey BV (Apis mellifera) on hyperglycemia and hyperlipidemia in alloxan induced diabetic rabbits. J. Diabetes Metab., 2015, 6(3), 1-4.
[127]
Albiol Matanic, V.C.; Castilla, V. Antiviral activity of antimicrobial cationic peptides against Junin virus and herpes simplex virus. Int. J. Antimicrob. Agents, 2004, 23(4), 382-389.
[http://dx.doi.org/10.1016/j.ijantimicag.2003.07.022] [PMID: 15081088]
[128]
Picoli, T.; Cristina, M.P.; Gilberto, D.V.; Silvia, O.H. Marcelo, de, L; Geferson. F. Antiviral and virucidal potential of Melittin and apamin against bovine herpesvirus type 1 and bovine viral diarrhoea virus. Pesqui. Vet. Bras., 2018, 38(4), 595-604.
[http://dx.doi.org/10.1590/1678-5150-pvb-4758]
[129]
Baghian, A.; Kousoulas, K.G. Role of the Na+,K+ pump in herpes simplex type 1-induced cell fusion: Melittin causes specific reversion of syncytial mutants with the syn1 mutation to Syn+ (wild- type) phenotype. Virology, 1993, 196(2), 548-556.
[http://dx.doi.org/10.1006/viro.1993.1510] [PMID: 8396802]
[130]
Yasin, B.; Pang, M.; Turner, J.S.; Cho, Y.; Dinh, N.N.; Waring, A.J.; Lehrer, R.I.; Wagar, E.A. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides. Eur. J. Clin. Microbiol. Infect. Dis., 2000, 19(3), 187-194.
[http://dx.doi.org/10.1007/s100960050457] [PMID: 10795591]
[131]
Falco, A.; Barrajón-Catalán, E.; Menéndez-Gutiérrez, M.P.; Coll, J.; Micol, V.; Estepa, A. Melittin-loaded immunoliposomes against viral surface proteins, a new approach to antiviral therapy. Antiviral Res., 2013, 97(2), 218-221.
[http://dx.doi.org/10.1016/j.antiviral.2012.12.004] [PMID: 23261846]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy