Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

Novel Coronavirus Disease 2019 (COVID-19) Current Update: Perspective on Epidemiology, Diagnosis, Drug Targets and Vaccines

Author(s): Sunil L. Harer* and Priyanka A. Sonar

Volume 2, Issue 6, 2021

Published on: 09 November, 2020

Article ID: e020621187754 Pages: 23

DOI: 10.2174/2666796701999201109213553

Abstract

Background: A novel coronavirus disease, 2019-nCoV (COVID-19), was reported first in Wuhan, the capital of Hubei, China, in late December 2019 and subsequently reached pandemic level affecting around 213 countries. As of 24th May 2020, the total number of positive cases confirmed is 5,446,514 and 344,754 death reports worldwide. COVID-19 infection causes pneumonialike severe respiratory infection and acute lung failure. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense single-stranded RNA beta coronavirus that is a confirmed causative agent of COVID-19. SARS-CoV-2 may use angiotensin-converting enzyme 2 (ACE2), unlike the receptor utilized by SARS-CoV (emerged in 2002) to infect humans. People with a history of hypertension, chronic obstructive pulmonary disease, diabetes, cardiovascular disease are more susceptible to SARS-CoV-2.

Objective: The purpose of this review was to help the society to distinguish and deal with SARSCoV- 2, and make available a reference for forthcoming studies.

Methods: Recently, diagnostic primer sets on the SARS-CoV-2 genome have been identified. The receptor-binding domain of SARS-COV-2 highlighted the mode by which beta-CoV recognizes ACE2. Various diagnostic tools are available to differentiate and identify SARS-CoV-2 infection as RT-PCR, antigen detection assay, and antibody detection assay. Different strategies have been employed to control the SARS-CoV-2, considering various drug targets like the main protease (3- CLPro), papain-like protease (PLpro), helicase (NSP13), RNA dependent RNA polymerase (RdRp), and viral envelope (E) protein.

Conclusion: In the present review, we have updated details of transmission, pathogenesis, genome structure, diagnostic criteria, clinical characteristics, therapeutics, and vaccine development of the SARS-CoV-2 infection, which may be significant in the control and response to the COVID-19 outbreak.

Keywords: SARS-CoV-2, COVID-19, 2019-nCoV, coronavirus, genome structure, enzyme targets, vaccines, hmAb.

[1]
Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 2020; 395(10224): 565-74.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[2]
Cavanagh D. Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 1997; 142(3): 629-33.
[PMID: 9349308]
[3]
Tong TR. Drug targets in severe acute respiratory syndrome (SARS) virus and other coronavirus infections. Infect Disord Drug Targets 2009; 9(2): 223-45.
[http://dx.doi.org/10.2174/187152609787847659] [PMID: 19275708]
[4]
Chan JF, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020; 395(10223): 514-23.
[http://dx.doi.org/10.1016/S0140-6736(20)30154-9] [PMID: 31986261]
[5]
Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727-33.
[http://dx.doi.org/10.1056/NEJMoa2001017] [PMID: 31978945]
[6]
World Health Organization. Novel coronavirus - China. Available from: http://www.who.int/csr/don/12- january-2020-novel-coronavirus-china/en/
[7]
World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. 2020. Available from: https://www.who.int/dg/speeches/detail/who-director-general-s-remarks-at-themedia-briefing-on-2019-ncov-on-11-february-2020
[8]
World Health Organization. Corona Virus Disease (COVID 19) situation report 196. Available from: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200803-covid-19-sitrep-196-cleared.pdf?sfvrsn=8a8a3ca4_6
[9]
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2018; 23(2): 130-7.
[http://dx.doi.org/10.1111/resp.13196] [PMID: 29052924]
[10]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[11]
World Health Organization. Novel Coronavirus (2019-nCoV) situation report-1. 2019. Available from: https://www.who.int/docs/default-source/coronaviruse/situationreports/20200121-sitrep-1-2019 cov.pdf?sfvrsn=20a99c10_4
[12]
Giovanetti M, Benvenuto D, Angeletti S, Ciccozzi M. The first two cases of 2019-nCoV in Italy: Where they come from? J Med Virol 2020; 92(5): 518-21.
[http://dx.doi.org/10.1002/jmv.25699] [PMID: 32022275]
[13]
Paraskevis D, Kostaki EG, Magiorkinis G, Panayiotakopoulos G, Sourvinos G, Tsiodras S. Full-genome evolutionary analysis of the novel corona virus (2019-nCoV) rejects the hypothesis of emergence as a result of a recent recombination event. Infect Genet Evol 2020; 79: 104212.
[http://dx.doi.org/10.1016/j.meegid.2020.104212] [PMID: 32004758]
[14]
Hampton T. Bats may be SARS reservoir. JAMA 2005; 294(18): 2291.
[http://dx.doi.org/10.1001/jama.294.18.2291] [PMID: 16278351]
[15]
Banerjee A, Kulcsar K, Misra V, Frieman M, Mossman K. Bats and Coronaviruses. Viruses 2019; 11(1): E41.
[http://dx.doi.org/10.3390/v11010041] [PMID: 30634396]
[16]
Li W, Shi Z, Yu M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005; 310(5748): 676-9.
[http://dx.doi.org/10.1126/science.1118391] [PMID: 16195424]
[17]
Wu F, Zhao S, Yu B, et al. A new coronavirus associated with human respiratory disease in China. Nature 2020; 579(7798): 265-9.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[18]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[19]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[20]
Song Z, Xu Y, Bao L, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Viruses 2019; 11(1): E59.
[http://dx.doi.org/10.3390/v11010059] [PMID: 30646565]
[21]
Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019; 17(3): 181-92.
[http://dx.doi.org/10.1038/s41579-018-0118-9] [PMID: 30531947]
[22]
Wu A, Peng Y, Huang B, et al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 2020; 27(3): 325-8.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[23]
Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S, Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its pathogenesis. J Med Virol 2020; 92(6): 584-8.
[http://dx.doi.org/10.1002/jmv.25719] [PMID: 32083328]
[24]
Zhang L, Shen FM, Chen F, Lin Z. Origin and evolution of the 2019 novel coronavirus. Clin Infect Dis 2020; 71(15): 882-3.
[http://dx.doi.org/10.1093/cid/ciaa112] [PMID: 32011673]
[25]
Wu D, Zou S, Bai T, et al. Poultry farms as a source of avian influenza A (H7N9) virus reassortment and human infection. Sci Rep 2015; 5: 7630.
[http://dx.doi.org/10.1038/srep07630] [PMID: 25591105]
[26]
Tang X, Wu C, Li X, et al. On the origin and continuing evolution of SARS-CoV-2. Natl Sci Rev 2020; 7: 1012-3.
[http://dx.doi.org/10.1093/nsr/nwaa036]
[27]
Kahn JS, McIntosh K. History and recent advances in coronavirus discovery. Pediatr Infect Dis J 2005; 24(11)(Suppl.): S223-7.
[http://dx.doi.org/10.1097/01.inf.0000188166.17324.60] [PMID: 16378050]
[28]
Krempl C, Schultze B, Herrler G. Analysis of cellular receptors for human coronavirus OC43. Adv Exp Med Biol 1995; 380: 371-4.
[http://dx.doi.org/10.1007/978-1-4615-1899-0_60] [PMID: 8830510]
[29]
Weiss SR, Leibowitz JL. Chapter 4-coronavirus pathogenesis. In: Advances in virus research. Maramorosch K, Shatkin AJ, Frederick AM. Academic Press, Amsterdam or Netherlands 2011; p. 85.
[30]
Williams RK, Jiang GS, Holmes KV. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci USA 1991; 88(13): 5533-6.
[http://dx.doi.org/10.1073/pnas.88.13.5533] [PMID: 1648219]
[31]
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4(6): 1011-33.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[32]
Gallagher T, Perlman S. Public health: Broad reception for coronavirus. Nature 2013; 495(7440): 176-7.
[http://dx.doi.org/10.1038/495176a] [PMID: 23486053]
[33]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[34]
Li W, Zhang C, Sui J, et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 2005; 24(8): 1634-43.
[http://dx.doi.org/10.1038/sj.emboj.7600640] [PMID: 15791205]
[35]
Li F, Li W, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005; 309(5742): 1864-8.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[36]
Kenarkoohi A, Maleki M, Safari T, Kafashian M, Saljoughi F, Sohrabipour S. Angiotensin-converting enzyme 2 roles in the pathogenesis of COVID-19. Curr Hypertens Rev 2020; 16: 1.
[http://dx.doi.org/10.2174/1573402116666200810134702] [PMID: 32778033]
[37]
Towler P, Staker B, Prasad SG, et al. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 2004; 279(17): 17996-8007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[38]
Jia HP, Look DC, Shi L, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 2005; 79(23): 14614-21.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[39]
Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS. J Virol 2020; 94(7): e00127-20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[40]
Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med 2020; 46(4): 586-90.
[http://dx.doi.org/10.1007/s00134-020-05985-9] [PMID: 32125455]
[41]
Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res 2019; 105: 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[42]
Zhang N, Jiang S, Du L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev Vaccines 2014; 13(6): 761-74.
[http://dx.doi.org/10.1586/14760584.2014.912134] [PMID: 24766432]
[43]
Xia S, Zhu Y, Liu M, et al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell Mol Immunol 2020; 17(7): 765-7.
[http://dx.doi.org/10.1038/s41423-020-0374-2] [PMID: 32047258]
[44]
Yu F, Du L, Ojcius DM, Pan C, Jiang S. Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. Microbes Infect 2020; 22(2): 74-9.
[http://dx.doi.org/10.1016/j.micinf.2020.01.003] [PMID: 32017984]
[45]
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host factors in coronavirus replication. Curr Top Microbiol Immunol 2018; 419: 1-42.
[PMID: 28643204]
[46]
Sawicki SG, Sawicki DL. Coronavirus transcription: a perspective. Curr Top Microbiol Immunol 2005; 287: 31-55.
[http://dx.doi.org/10.1007/3-540-26765-4_2] [PMID: 15609508]
[47]
Hussain S, Pan J, Chen Y, et al. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J Virol 2005; 79(9): 5288-95.
[http://dx.doi.org/10.1128/JVI.79.9.5288-5295.2005] [PMID: 15827143]
[48]
Perrier A, Bonnin A, Desmarets L, et al. The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. J Biol Chem 2019; 294(39): 14406-21.
[http://dx.doi.org/10.1074/jbc.RA119.008964] [PMID: 31399512]
[49]
Letko M, Marzi A, Munster V. Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 2020; 5(4): 562-9.
[http://dx.doi.org/10.1038/s41564-020-0688-y] [PMID: 32094589]
[50]
Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 2018; 14(8): e1007236.
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[51]
Millet JK, Whittaker GR. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res 2015; 202: 120-34.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[52]
Chan JF, Kok KH, Zhu Z, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 2020; 9(1): 221-36.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[53]
Chowell G, Abdirizak F, Lee S, et al. Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Med 2015; 13: 210-22.
[http://dx.doi.org/10.1186/s12916-015-0450-0] [PMID: 26336062]
[54]
Lu H, Stratton CW, Tang YW. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J Med Virol 2020; 92(4): 401-2.
[http://dx.doi.org/10.1002/jmv.25678] [PMID: 31950516]
[55]
Drosten C, Chiu LL, Panning M, et al. Evaluation of advanced reverse transcription-PCR assays and an alternative PCR target region for detection of severe acute respiratory syndrome-associated coronavirus. J Clin Microbiol 2004; 42(5): 2043-7.
[http://dx.doi.org/10.1128/JCM.42.5.2043-2047.2004] [PMID: 15131168]
[56]
Grant PR, Garson JA, Tedder RS, Chan PK, Tam JS, Sung JJ. Detection of SARS coronavirus in plasma by real-time RT-PCR. N Engl J Med 2003; 349(25): 2468-9.
[http://dx.doi.org/10.1056/NEJM200312183492522] [PMID: 14681520]
[57]
Yam WC, Chan KH, Poon LL, et al. Evaluation of reverse transcription-PCR assays for rapid diagnosis of severe acute respiratory syndrome associated with a novel coronavirus. J Clin Microbiol 2003; 41(10): 4521-4.
[http://dx.doi.org/10.1128/JCM.41.10.4521-4524.2003] [PMID: 14532176]
[58]
Zhai J, Briese T, Dai E, et al. Real-time polymerase chain reaction for detecting SARS coronavirus, Beijing, 2003. Emerg Infect Dis 2004; 10(2): 300-3.
[http://dx.doi.org/10.3201/eid1002.030799] [PMID: 15030701]
[59]
Poon LL, Wong BW, Chan KH, et al. A one step quantitative RT-PCR for detection of SARS coronavirus with an internal control for PCR inhibitors. J Clin Virol 2004; 30(3): 214-7.
[http://dx.doi.org/10.1016/j.jcv.2003.12.007] [PMID: 15135737]
[60]
Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 2003; 361(9371): 1767-72.
[http://dx.doi.org/10.1016/S0140-6736(03)13412-5] [PMID: 12781535]
[61]
Cheng VC, Hung IF, Tang BS, et al. Viral replication in the nasopharynx is associated with diarrhea in patients with severe acute respiratory syndrome. Clin Infect Dis 2004; 38(4): 467-75.
[http://dx.doi.org/10.1086/382681] [PMID: 14765337]
[62]
Chu CM, Cheng VC, Hung IF, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax 2004; 59(3): 252-6.
[http://dx.doi.org/10.1136/thorax.2003.012658] [PMID: 14985565]
[63]
Chu CM, Leung WS, Cheng VC, et al. Duration of RT-PCR positivity in severe acute respiratory syndrome. Eur Respir J 2005; 25(1): 12-4.
[http://dx.doi.org/10.1183/09031936.04.00057804] [PMID: 15640317]
[64]
Che XY, Hao W, Wang Y, et al. Nucleocapsid protein as early diagnostic marker for SARS. Emerg Infect Dis 2004; 10(11): 1947-9.
[http://dx.doi.org/10.3201/eid1011.040516] [PMID: 15550204]
[65]
Lau SK, Che XY, Woo PC, et al. SARS coronavirus detection methods. Emerg Infect Dis 2005; 11(7): 1108-11.
[http://dx.doi.org/10.3201/eid1107.041045] [PMID: 16022791]
[66]
Lau SK, Woo PC, Wong BH, et al. Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in sars patients by enzyme-linked immunosorbent assay. J Clin Microbiol 2004; 42(7): 2884-9.
[http://dx.doi.org/10.1128/JCM.42.7.2884-2889.2004] [PMID: 15243033]
[67]
Chan KH, Cheng VC, Woo PC, et al. Serological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63. Clin Diagn Lab Immunol 2005; 12(11): 1317-21.
[http://dx.doi.org/10.1128/CDLI.12.11.1317-1321.2005] [PMID: 16275947]
[68]
Che XY, Qiu LW, Liao ZY, et al. Antigenic cross-reactivity between severe acute respiratory syndrome-associated coronavirus and human coronaviruses 229E and OC43. J Infect Dis 2005; 191(12): 2033-7.
[http://dx.doi.org/10.1086/430355] [PMID: 15897988]
[69]
Younes N, Al-Sadeq DW, Al-Jighefee H, et al. Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses 2020; 12(6): 582.
[http://dx.doi.org/10.3390/v12060582] [PMID: 32466458]
[70]
Woo PC, Lau SK, Wong BH, et al. False-positive results in a recombinant severe acute respiratory syndrome-associated coronavirus (SARS-CoV) nucleocapsid enzyme-linked immunosorbent assay due to HCoV-OC43 and HCoV-229E rectified by Western blotting with recombinant SARS-CoV spike polypeptide. J Clin Microbiol 2004; 42(12): 5885-8.
[http://dx.doi.org/10.1128/JCM.42.12.5885-5888.2004] [PMID: 15583332]
[71]
Yu F, Le MQ, Inoue S, et al. Recombinant truncated nucleocapsid protein as antigen in a novel immunoglobulin M capture enzyme-linked immunosorbent assay for diagnosis of severe acute respiratory syndrome coronavirus infection. Clin Vaccine Immunol 2007; 14(2): 146-9.
[http://dx.doi.org/10.1128/CVI.00360-06] [PMID: 17202310]
[72]
Zhang L, Zhang F, Yu W, et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J Med Virol 2006; 78(1): 1-8.
[http://dx.doi.org/10.1002/jmv.20499] [PMID: 16299724]
[73]
He Q, Manopo I, Lu L, et al. Novel immunofluorescence assay using recombinant nucleocapsid-spike fusion protein as antigen to detect antibodies against severe acute respiratory syndrome coronavirus. Clin Diagn Lab Immunol 2005; 12(2): 321-8.
[http://dx.doi.org/10.1128/CDLI.12.2.321-328.2005] [PMID: 15699428]
[74]
Manopo I, Lu L, He Q, Chee LL, Chan SW, Kwang J. Evaluation of a safe and sensitive Spike protein-based immunofluorescence assay for the detection of antibody responses to SARS-CoV. J Immunol Methods 2005; 296(1-2): 37-44.
[http://dx.doi.org/10.1016/j.jim.2004.10.012] [PMID: 15680149]
[75]
National Health Commission of the People’s Republic of China. Diagnosis and Treatment of Pneumonia Caused by 2019-nCoV (version 6) 2020. 2020. Available from: http://www.gov.cn/zhengce/zhengceku/2020-02/19/content_5480948.htm
[76]
World Health Organization. Clinical management of severe acute respiratory infection when novel coronavirus (nCoV) infection is suspected. Available from: https://www.who.int/publicationsdetail/clinical-management-of-severe-acute-respiratory-infection-when-novelcoronavirus-(ncov)-infection-is-suspected
[77]
Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis 2020; 20(4): 398-400.
[http://dx.doi.org/10.1016/S1473-3099(20)30141-9] [PMID: 32113510]
[78]
Guo YR, Cao QD, Hong ZS, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res 2020; 7(1): 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[79]
Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 2005; 102(33): 11876-81.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[80]
Yi L, Li Z, Yuan K, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol 2004; 78(20): 11334-9.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[81]
Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun 2004; 323(1): 264-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[82]
Yi AK, Krieg AM. Rapid induction of mitogen-activated protein kinases by immune stimulatory CpG DNA. J Immunol 1998; 161(9): 4493-7.
[PMID: 9794373]
[83]
Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 2003; 300(5626): 1763-7.
[http://dx.doi.org/10.1126/science.1085658] [PMID: 12746549]
[84]
Bacha U, Barrila J, Velazquez-Campoy A, Leavitt SA, Freire E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry 2004; 43(17): 4906-12.
[http://dx.doi.org/10.1021/bi0361766] [PMID: 15109248]
[85]
Lee TW, Cherney MM, Huitema C, et al. Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide. J Mol Biol 2005; 353(5): 1137-51.
[http://dx.doi.org/10.1016/j.jmb.2005.09.004] [PMID: 16219322]
[86]
Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol 2003; 331(5): 991-1004.
[http://dx.doi.org/10.1016/S0022-2836(03)00865-9] [PMID: 12927536]
[87]
Pang YP. Three-dimensional model of a substrate-bound SARS chymotrypsin-like cysteine proteinase predicted by multiple molecular dynamics simulations: catalytic efficiency regulated by substrate binding. Proteins 2004; 57(4): 747-57.
[http://dx.doi.org/10.1002/prot.20249] [PMID: 15690493]
[88]
Kao RY, Tsui WH, Lee TS, et al. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem Biol 2004; 11(9): 1293-9.
[http://dx.doi.org/10.1016/j.chembiol.2004.07.013] [PMID: 15380189]
[89]
Hegyi A, Ziebuhr J. Conservation of substrate specificities among coronavirus main proteases. J Gen Virol 2002; 83(Pt 3): 595-9.
[http://dx.doi.org/10.1099/0022-1317-83-3-595] [PMID: 11842254]
[90]
Blanchard JE, Elowe NH, Huitema C, et al. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem Biol 2004; 11(10): 1445-53.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.011] [PMID: 15489171]
[91]
Jain RP, Pettersson HI, Zhang J, et al. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro. J Med Chem 2004; 47(25): 6113-6.
[http://dx.doi.org/10.1021/jm0494873] [PMID: 15566280]
[92]
Hsu JT, Kuo CJ, Hsieh HP, et al. Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett 2004; 574(1-3): 116-20.
[http://dx.doi.org/10.1016/j.febslet.2004.08.015] [PMID: 15358550]
[93]
Chen L, Gui C, Luo X, et al. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro . J Virol 2005; 79(11): 7095-103.
[http://dx.doi.org/10.1128/JVI.79.11.7095-7103.2005] [PMID: 15890949]
[94]
Liu YC, Huang V, Chao TC, et al. Screening of drugs by FRET analysis identifies inhibitors of SARS-CoV 3CL protease. Biochem Biophys Res Commun 2005; 333(1): 194-9.
[http://dx.doi.org/10.1016/j.bbrc.2005.05.095] [PMID: 15950190]
[95]
Shie JJ, Fang JM, Kuo CJ, et al. Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease. J Med Chem 2005; 48(13): 4469-73.
[http://dx.doi.org/10.1021/jm050184y] [PMID: 15974598]
[96]
Rajnarayanan RV, Dakshanamurthy S, Pattabiraman N. “Teaching old drugs to kill new bugs”: structure-based discovery of anti-SARS drugs. Biochem Biophys Res Commun 2004; 321(2): 370-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.155] [PMID: 15358186]
[97]
Wu CY, King KY, Kuo CJ, et al. Stable benzotriazole esters as mechanism-based inactivators of the severe acute respiratory syndrome 3CL protease. Chem Biol 2006; 13(3): 261-8.
[http://dx.doi.org/10.1016/j.chembiol.2005.12.008] [PMID: 16638531]
[98]
Xue X, Yu H, Yang H, et al. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol 2008; 82(5): 2515-27.
[http://dx.doi.org/10.1128/JVI.02114-07] [PMID: 18094151]
[99]
Ratia K, Saikatendu KS, Santarsiero BD, et al. Severe acute respiratory syndrome coronavirus papain-like protease: structure of a viral deubiquitinating enzyme. Proc Natl Acad Sci USA 2006; 103(15): 5717-22.
[http://dx.doi.org/10.1073/pnas.0510851103] [PMID: 16581910]
[100]
Barnard DL, Hubbard VD, Burton J, et al. Inhibition of severe acute respiratory syndrome-associated coronavirus (SARSCoV) by calpain inhibitors and beta-D-N4-hydroxycytidine. Antivir Chem Chemother 2004; 15(1): 15-22.
[http://dx.doi.org/10.1177/095632020401500102] [PMID: 15074711]
[101]
Barnard DL, Day CW, Bailey K, et al. Evaluation of immunomodulators, interferons and known in vitro SARS-coV inhibitors for inhibition of SARS-coV replication in BALB/c mice. Antivir Chem Chemother 2006; 17(5): 275-84.
[http://dx.doi.org/10.1177/095632020601700505] [PMID: 17176632]
[102]
Bernini A, Spiga O, Ciutti A, et al. Prediction of quaternary assembly of SARS coronavirus peplomer. Biochem Biophys Res Commun 2004; 325(4): 1210-4.
[http://dx.doi.org/10.1016/j.bbrc.2004.10.156] [PMID: 15555555]
[103]
Zhai Y, Sun F, Li X, et al. Insights into SARS-CoV transcription and replication from the structure of the nsp7-nsp8 hexadecamer. Nat Struct Mol Biol 2005; 12(11): 980-6.
[http://dx.doi.org/10.1038/nsmb999] [PMID: 16228002]
[104]
Thiel V, Ivanov KA, Putics Á, et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol 2003; 84(Pt 9): 2305-15.
[http://dx.doi.org/10.1099/vir.0.19424-0] [PMID: 12917450]
[105]
De Clercq E. New inhibitors of human cytomegalovirus (HCMV) on the horizon. J Antimicrob Chemother 2003; 51(5): 1079-83.
[http://dx.doi.org/10.1093/jac/dkg205] [PMID: 12697653]
[106]
Bisht H, Roberts A, Vogel L, Subbarao K, Moss B. Neutralizing antibody and protective immunity to SARS coronavirus infection of mice induced by a soluble recombinant polypeptide containing an N-terminal segment of the spike glycoprotein. Virology 2005; 334(2): 160-5.
[http://dx.doi.org/10.1016/j.virol.2005.01.042] [PMID: 15780866]
[107]
Borowski P, Schalinski S, Schmitz H. Nucleotide triphosphatase/helicase of hepatitis C virus as a target for antiviral therapy. Antiviral Res 2002; 55(3): 397-412.
[http://dx.doi.org/10.1016/S0166-3542(02)00096-7] [PMID: 12206878]
[108]
von Grotthuss M, Wyrwicz LS, Rychlewski L. mRNA cap-1 methyltransferase in the SARS genome. Cell 2003; 113(6): 701-2.
[http://dx.doi.org/10.1016/S0092-8674(03)00424-0] [PMID: 12809601]
[109]
Ivanov KA, Thiel V, Dobbe JC, van der Meer Y, Snijder EJ, Ziebuhr J. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol 2004; 78(11): 5619-32.
[http://dx.doi.org/10.1128/JVI.78.11.5619-5632.2004] [PMID: 15140959]
[110]
Tanner JA, Zheng BJ, Zhou J, et al. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol 2005; 12(3): 303-11.
[http://dx.doi.org/10.1016/j.chembiol.2005.01.006] [PMID: 15797214]
[111]
Fischer F, Stegen CF, Masters PS, Samsonoff WA. Analysis of constructed E gene mutants of mouse hepatitis virus confirms a pivotal role for E protein in coronavirus assembly. J Virol 1998; 72(10): 7885-94.
[http://dx.doi.org/10.1128/JVI.72.10.7885-7894.1998] [PMID: 9733825]
[112]
Wilson L, McKinlay C, Gage P, Ewart G. SARS coronavirus E protein forms cation-selective ion channels. Virology 2004; 330(1): 322-31.
[http://dx.doi.org/10.1016/j.virol.2004.09.033] [PMID: 15527857]
[113]
Ewart GD, Mills K, Cox GB, Gage PW. Amiloride derivatives block ion channel activity and enhancement of virus-like particle budding caused by HIV-1 protein Vpu. Eur Biophys J 2002; 31(1): 26-35.
[http://dx.doi.org/10.1007/s002490100177] [PMID: 12046895]
[114]
Ewart GD, Nasr N, Naif H, Cox GB, Cunningham AL, Gage PW. Potential new anti-human immunodeficiency virus type 1 compounds depress virus replication in cultured human macrophages. Antimicrob Agents Chemother 2004; 48(6): 2325-30.
[http://dx.doi.org/10.1128/AAC.48.6.2325-2330.2004] [PMID: 15155246]
[115]
Wilson L, Gage P, Ewart G. Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication. Virology 2006; 353(2): 294-306.
[http://dx.doi.org/10.1016/j.virol.2006.05.028] [PMID: 16815524]
[116]
Bhatnagar T, Murhekar MV, Soneja M, et al. Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use. Indian J Med Res 2020; 151(2 & 3): 184-9.
[http://dx.doi.org/10.4103/ijmr.IJMR-502-20] [PMID: 32362644]
[117]
Ahn DG, Shin HJ, Kim MH, et al. Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). J Microbiol Biotechnol 2020; 30(3): 313-24.
[http://dx.doi.org/10.4014/jmb.2003.03011] [PMID: 32238757]
[118]
Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro . Antiviral Res 2020; 178: 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[119]
Graham RL, Donaldson EF, Baric RS. A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 2013; 11(12): 836-48.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[120]
Okba NM, Raj VS, Haagmans BL. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr Opin Virol 2017; 23: 49-58.
[http://dx.doi.org/10.1016/j.coviro.2017.03.007] [PMID: 28412285]
[121]
Amanat F, Krammer F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020; 52(4): 583-9.
[http://dx.doi.org/10.1016/j.immuni.2020.03.007] [PMID: 32259480]
[122]
Clover Biopharmaceuticals. Vaccines programs. Available from: https://www.cloverbiopharma.com/
[123]
GSK. CEPI and GSK announce collaboration to strengthen the global effort to develop a vaccine for the 2019-nCoV virus 2019. 2019. Available from: https://www.gsk.com/en-gb/media/pressreleases/ cepi-and-gsk-announce-collaboration-to-strengthenthe-global-effort-to-develop-a-vaccine-for-the-2019-ncov-virus/
[124]
UQ News. ‘Significant step’ in COVID-19 vaccine quest. Available from: https://www.uq.edu.au/news/article/2020/02/significant-step%E2%80%99-covid-19-vaccine-quest
[125]
CEPI. CEPI to fund three programmes to develop vaccines against the novel coronavirus (nCoV-2019). Available from: https:// cepi.net/news_cepi/cepi-to-fund-three-programmes-to-develop
[126]
Yang ZY, Kong WP, Huang Y, et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 2004; 428(6982): 561-4.
[http://dx.doi.org/10.1038/nature02463] [PMID: 15024391]
[127]
Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011; 23(3): 421-9.
[http://dx.doi.org/10.1016/j.coi.2011.03.008] [PMID: 21530212]
[128]
CISION PR Newswire. Inovio accelerates timeline for COVID-19 DNA vaccine INO-4800. Available from: https://www.prnewswire.com/news-releases/inovio-accelerates-timeline-for-covid-19-dna-vaccine-ino-4800-301015031.html
[129]
INOVIO. Inovio’s product pipeline. Available from: https://www.inovio.com/dna-medicines-pipeline/
[130]
Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov 2018; 17(4): 261-79.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[131]
Moderna. Moderna’s pipeline. Available from: https://www.modernatx.com/pipeline
[132]
Moderna. mRNA platform: enabling drug discovery & development. Available from: https://www.modernatx.com/mrna-technology/mrna-platform-enabling-drug-discovery-development
[133]
Burton DR. Antibodies, viruses and vaccines. Nat Rev Immunol 2002; 2(9): 706-13.
[http://dx.doi.org/10.1038/nri891] [PMID: 12209139]
[134]
Hofmann H, Hattermann K, Marzi A, et al. S protein of severe acute respiratory syndrome-associated coronavirus mediates entry into hepatoma cell lines and is targeted by neutralizing antibodies in infected patients. J Virol 2004; 78(12): 6134-42.
[http://dx.doi.org/10.1128/JVI.78.12.6134-6142.2004] [PMID: 15163706]
[135]
Bisht H, Roberts A, Vogel L, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci USA 2004; 101(17): 6641-6.
[http://dx.doi.org/10.1073/pnas.0401939101] [PMID: 15096611]
[136]
Glass WG, Subbarao K, Murphy B, Murphy PM. Mechanisms of host defense following severe acute respiratory syndrome-coronavirus (SARS-CoV) pulmonary infection of mice. J Immunol 2004; 173(6): 4030-9.
[http://dx.doi.org/10.4049/jimmunol.173.6.4030] [PMID: 15356152]
[137]
He Y, Lu H, Siddiqui P, Zhou Y, Jiang S. Receptor-binding domain of severe acute respiratory syndrome coronavirus spike protein contains multiple conformation-dependent epitopes that induce highly potent neutralizing antibodies. J Immunol 2005; 174(8): 4908-15.
[http://dx.doi.org/10.4049/jimmunol.174.8.4908] [PMID: 15814718]
[138]
Buchholz UJ, Bukreyev A, Yang L, et al. Contributions of the structural proteins of severe acute respiratory syndrome coronavirus to protective immunity. Proc Natl Acad Sci USA 2004; 101(26): 9804-9.
[http://dx.doi.org/10.1073/pnas.0403492101] [PMID: 15210961]
[139]
Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24(1): 44-6.
[http://dx.doi.org/10.1007/s10096-004-1271-9] [PMID: 15616839]
[140]
Schmidt SB, Grüter L, Boltzmann M, Rollnik JD. Prevalence of serum IgG antibodies against SARS-CoV-2 among clinic staff. PLoS One 2020; 15(6): e0235417.
[http://dx.doi.org/10.1371/journal.pone.0235417] [PMID: 32584894]
[141]
Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004; 10(12)(Suppl.): S88-97.
[http://dx.doi.org/10.1038/nm1143] [PMID: 15577937]
[142]
Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect 2004; 10(7): 676-8.
[http://dx.doi.org/10.1111/j.1469-0691.2004.00956.x] [PMID: 15214887]
[143]
Subbarao K, McAuliffe J, Vogel L, et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J Virol 2004; 78(7): 3572-7.
[http://dx.doi.org/10.1128/JVI.78.7.3572-3577.2004] [PMID: 15016880]
[144]
Yang ZY, Werner HC, Kong WP, et al. Evasion of antibody neutralization in emerging severe acute respiratory syndrome coronaviruses. Proc Natl Acad Sci USA 2005; 102(3): 797-801.
[http://dx.doi.org/10.1073/pnas.0409065102] [PMID: 15642942]
[145]
Coughlin MM, Prabhakar BS. Neutralizing human monoclonal antibodies to severe acute respiratory syndrome coronavirus: target, mechanism of action, and therapeutic potential. Rev Med Virol 2012; 22(1): 2-17.
[http://dx.doi.org/10.1002/rmv.706] [PMID: 21905149]

© 2024 Bentham Science Publishers | Privacy Policy