Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Review Article

Beneficial Role of Vitexin and Isovitexin Flavonoids in the Vascular Endothelium and Cardiovascular System

Author(s): Sharon O. Azubuike-Osu, Ikenna C. Ohanenye, Claus Jacob, Chukwunonso E.C.C. Ejike* and Chibuike C. Udenigwe*

Volume 2, Issue 2, 2021

Published on: 05 November, 2020

Page: [127 - 134] Pages: 8

DOI: 10.2174/2665978601999201105160405

Abstract

Various medicinal plants contain phenolic compounds, which are useful in the treatment of many diseases. Particularly, vitexin and its isomer, isovitexin, possess many pharmacological effects, including antioxidant, anti-inflammatory, anticancer, antidiabetic, neuroprotective, and antinociceptive activities. Current research has provided evidence for the prospective use of vitexin and isovitexin in the formulation of medicinal products useful in the prevention and treatment of specific ailments. The aim of this review was, therefore, to examine the influence of vitexin and isovitexin on the vascular system as well as the possible mechanisms through which the flavonoids exert their effects. The review also discussed the importance of vitexin and isovitexin in cardiovascular health through the vascular endothelium. In vivo and in vitro studies suggest that vitexin and isovitexin play a cardioprotective role during ischaemia-reperfusion injury and angiogenesis, while isovitexin decreases perfusion pressure and increases the bioavailability of nitric oxide. Taken together, vitexin and isovitexin are promising as therapeutic agents for the formulation of nutraceuticals for the prevention, management, and treatment of cardiovascular diseases.

Keywords: Vitexin, isovitexin, flavonoids, vascular endothelium, cardiovascular system, nitric oxide, functional food, nutraceutical.

Graphical Abstract
[1]
World Health Organisation. Global Health Observatory 2017, World Health Organization. . 2017.https://www.who.int/gho/en/
[2]
Yuyun MF, Sliwa K, Kengne AP, Mocumbi AO, Bukhman G. Cardiovascular diseases in sub-Saharan Africa compared to high-income countries: An epidemiological perspective. Glob Heart 2020; 15(1): 15.
[http://dx.doi.org/10.5334/gh.403] [PMID: 32489788]
[3]
Benjamin EJ, Muntner P, Alonso A, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[4]
Ozawa S, Shankar R, Leopold C, Orubu S. Access to medicines through health systems in low- and middle-income countries. Health Policy Plan., 2019, 34(S3)(Supplement_3), iii1- iii3..
[http://dx.doi.org/10.1093/heapol/czz119] [PMID: 31816069]
[5]
Majewska-Wierzbicka M, Czeczot H. [Flavonoids in the prevention and treatment of cardiovascular diseases Pol Merkuriusz Lek 2012; 32(187): 50-4.
[PMID: 22400181]
[6]
Kesavan R, Chandel S, Upadhyay S, et al. Gentiana lutea exerts anti-atherosclerotic effects by preventing endothelial inflammation and smooth muscle cell migration. Nutr Metab Cardiovasc Dis 2016; 26(4): 293-301.
[http://dx.doi.org/10.1016/j.numecd.2015.12.016] [PMID: 26868432]
[7]
Mudge EM, Liu Y, Lund JA, Brown PN. Single-laboratory validation for the determination of flavonoids in hawthorn leaves and finished products by LC–UV. Planta Med 2016; 82(17): 1487-92.
[http://dx.doi.org/10.1055/s-0042-118463] [PMID: 27776376]
[8]
Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation 2013; 20(3): 239-47.
[http://dx.doi.org/10.1111/micc.12040] [PMID: 23311975]
[9]
Rajendran P, Rengarajan T, Thangavel J, et al. The vascular endothelium and human diseases. Int J Biol Sci 2013; 9(10): 1057-69.
[http://dx.doi.org/10.7150/ijbs.7502] [PMID: 24250251]
[10]
Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis and thrombosis. Acta Clin Belg 2006; 61(5): 213-9.
[http://dx.doi.org/10.1179/acb.2006.036] [PMID: 17240734]
[11]
Shimokawa H. Primary endothelial dysfunction: atherosclerosis. J Mol Cell Cardiol 1999; 31(1): 23-37.
[http://dx.doi.org/10.1006/jmcc.1998.0841] [PMID: 10072713]
[12]
Tomás‐Barberán FA, Clifford MN. Flavanones, chalcones and dihydrochalcones – nature, occurrence and dietary burden. J Agric Food Chem 2000; 80(7): 1073-80.
[http://dx.doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1073:AID-JSFA568>3.0.CO;2-B]
[13]
Tanaka T. Flavonoids for allergic diseases: present evidence and future perspective. Curr Pharm Des 2014; 20(6): 879-85.
[http://dx.doi.org/10.2174/13816128113199990060] [PMID: 23701574]
[14]
Wang L, Zhang XT, Zhang HY, Yao HY, Zhang H. Effect of Vaccinium bracteatum Thunb. leaves extract on blood glucose and plasma lipid levels in streptozotocin-induced diabetic mice. J Ethnopharmacol 2010; 130(3): 465-9.
[http://dx.doi.org/10.1016/j.jep.2010.05.031] [PMID: 20553830]
[15]
Zucolotto SM, Fagundes C, Reginatto FH, et al. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem Anal 2012; 23(3): 232-9.
[http://dx.doi.org/10.1002/pca.1348] [PMID: 21858882]
[16]
He M, Min JW, Kong WL, He XH, Li JX, Peng BW. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 2016; 115: 74-85.
[http://dx.doi.org/10.1016/j.fitote.2016.09.011] [PMID: 27693342]
[17]
Gaitan E, Lindsay RH, Reichert RD, et al. Antithyroid and goitrogenic effects of millet: role of C-glycosylflavones. J Clin Endocrinol Metab 1989; 68(4): 707-14.
[http://dx.doi.org/10.1210/jcem-68-4-707] [PMID: 2921306]
[18]
Hajdú Z, Hohmann J, Forgo P, et al. Diterpenoids and flavonoids from the fruits of Vitex agnus-castus and antioxidant activity of the fruit extracts and their constituents. Phytother Res 2007; 21(4): 391-4.
[http://dx.doi.org/10.1002/ptr.2021] [PMID: 17262892]
[19]
Lee HJ, Kim KA, Kang KD, et al. The compound isolated from the leaves of Phyllostachys nigra protects oxidative stress-induced retinal ganglion cells death. Food Chem Toxicol 2010; 48(6): 1721-7.
[http://dx.doi.org/10.1016/j.fct.2010.03.052] [PMID: 20381571]
[20]
Cao D, Li H, Yi J, et al. Antioxidant properties of the mung bean flavonoids on alleviating heat stress. PLoS One 2011; 6(6), e21071.
[http://dx.doi.org/10.1371/journal.pone.0021071] [PMID: 21695166]
[21]
Moheb A, Ibrahim RK, Roy R, Sarhan F. Changes in wheat leaf phenolome in response to cold acclimation. Phytochemistry 2011; 72(18): 2294-307.
[http://dx.doi.org/10.1016/j.phytochem.2011.08.021] [PMID: 21955620]
[22]
Zhang J, Yuan K, Zhou WL, Zhou J, Yang P. Studies on the active components and antioxidant activities of the extracts of Mimosa pudica Linn. from southern China. Pharmacogn Mag 2011; 7(25): 35-9.
[http://dx.doi.org/10.4103/0973-1296.75899] [PMID: 21472077]
[23]
Ma LY, Liu RH, Xu XD, Yu MQ, Zhang Q, Liu HL. The pharmacokinetics of C-glycosyl flavones of Hawthorn leaf flavonoids in rat after single dose oral administration. Phytomedicine 2010; 17(8-9): 640-5.
[http://dx.doi.org/10.1016/j.phymed.2009.12.010] [PMID: 20096549]
[24]
Ganesan K, Xu B. Molecular targets of vitexin and isovitexin in cancer therapy: a critical review. Ann N Y Acad Sci 2017; 1401(1): 102-13.
[http://dx.doi.org/10.1111/nyas.134] [PMID: 28891090]
[25]
Bieski IGC, Rios Santos F, de Oliveira RM, et al. Ethnopharmacology of medicinal plants of the pantanal region (mato grosso, Brazil). Evid. Based Complement. Alternat. Med., 2012, 2012272749..
[http://dx.doi.org/10.1155/2012/272749] [PMID: 22474496]
[26]
Rosa SIG, Rios-Santos F, Balogun SO, Martins DT. Vitexin reduces neutrophil migration to inflammatory focus by down-regulating pro-inflammatory mediators via inhibition of p38, ERK1/2 and JNK pathway. Phytomedicine 2016; 23(1): 9-17.
[http://dx.doi.org/10.1016/j.phymed.2015.11.003] [PMID: 26902402]
[27]
Dong LY, Li S, Zhen YL, Wang YN, Shao X, Luo ZG. Cardioprotection of vitexin on myocardial ischemia/reperfusion injury in rat via regulating inflammatory cytokines and MAPK pathway. Am J Chin Med 2013; 41(6): 1251-66.
[http://dx.doi.org/10.1142/S0192415X13500845] [PMID: 24228599]
[28]
Dong LY, Chen ZW, Guo Y, Cheng XP, Shao X. Mechanisms of vitexin preconditioning effects on cultured neonatal rat cardiomyocytes with anoxia and reoxygenation. Am J Chin Med 2008; 36(2): 385-97.
[http://dx.doi.org/10.1142/S0192415X08005849] [PMID: 18457368]
[29]
Lu CC, Xu YQ, Wu JC, et al. Vitexin protects against cardiac hypertrophy via inhibiting calcineurin and CaMKII signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2013; 386(8): 747-55.
[http://dx.doi.org/10.1007/s00210-013-0873-0] [PMID: 23624753]
[30]
Je HG, Hong SM, Je HD, et al. The inhibitory effect of vitexin on the agonist-induced regulation of vascular contractility. Pharmazie 2014; 69(3): 224-8.
[PMID: 24716414]
[31]
Mali VR, Mohan V, Bodhankar SL. Antihypertensive and cardioprotective effects of the Lagenaria siceraria fruit in NG-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats. Pharm Biol 2012; 50(11): 1428-35.
[http://dx.doi.org/10.3109/13880209.2012.684064] [PMID: 22994444]
[32]
Afifi FU, Abu-Dahab R. Phytochemical screening and biological activities of Eminium spiculatum (Blume) Kuntze (family Araceae). Nat Prod Res 2012; 26(9): 878-82.
[http://dx.doi.org/10.1080/14786419.2011.565558] [PMID: 21809948]
[33]
Wang Y, Zhen Y, Wu X, et al. Vitexin protects brain against ischemia/reperfusion injury via modulating mitogen-activated protein kinase and apoptosis signaling in mice. Phytomedicine 2015; 22(3): 379-84.
[http://dx.doi.org/10.1016/j.phymed.2015.01.009] [PMID: 25837275]
[34]
Touyz RM, Alves-Lopes R, Rios FJ, et al. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2018; 114(4): 529-39.
[http://dx.doi.org/10.1093/cvr/cvy023] [PMID: 29394331]
[35]
Cui YH, Zhang XQ, Wang ND, Zheng MD, Yan J. Vitexin protects against ischemia/reperfusion-induced brain endothelial permeability. Eur J Pharmacol 2019; 853: 210-9.
[http://dx.doi.org/10.1016/j.ejphar.2019.03.015] [PMID: 30876978]
[36]
Jones SP, Bolli R. The ubiquitous role of nitric oxide in cardioprotection. J Mol Cell Cardiol 2006; 40(1): 16-23.
[http://dx.doi.org/10.1016/j.yjmcc.2005.09.011] [PMID: 16288777]
[37]
Feng J, Chen X, Shen J. Reactive nitrogen species as therapeutic targets for autophagy: implication for ischemic stroke. Expert Opin Ther Targets 2017; 21(3): 305-17.
[http://dx.doi.org/10.1080/14728222.2017.1281250] [PMID: 28081644]
[38]
Jugdutt BI. Nitric oxide and cardioprotection during ischemia-reperfusion. Heart Fail Rev 2002; 7(4): 391-405.
[http://dx.doi.org/10.1023/A:1020718619155] [PMID: 12379824]
[39]
Ying Z, Xie X, Chen M, Yi K, Rajagopalan S. Alpha-lipoic acid activates eNOS through activation of PI3-kinase/Akt signaling pathway. Vascul Pharmacol 2015; 64: 28-35.
[http://dx.doi.org/10.1016/j.vph.2014.11.004] [PMID: 25460366]
[40]
Fitzpatrick DF, Fleming RC, Bing B, Maggi DA, O’Malley RM. Isolation and characterization of endothelium-dependent vasorelaxing compounds from grape seeds. J Agric Food Chem 2000; 48(12): 6384-90.
[http://dx.doi.org/10.1021/jf0009347] [PMID: 11312812]
[41]
Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17(1): 53.
[http://dx.doi.org/10.1186/s12943-018-0793-1] [PMID: 29455669]
[42]
Tirloni CAS, Palozi RAC, Tomazetto TA, et al. Ethnopharmacological approaches to kidney disease-prospecting an indigenous species from Brazilian Pantanal. J Ethnopharmacol 2018; 211: 47-57.
[http://dx.doi.org/10.1016/j.jep.2017.09.020] [PMID: 28942138]
[43]
Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996; 271(5 Pt 1): C1424-37.
[http://dx.doi.org/10.1152/ajpcell.1996.271.5.C1424] [PMID: 8944624]
[44]
Bernhardt J, Zorowitz RD, Becker KJ, et al. Advances in Stroke 2017. Stroke 2018; 49(5): e174-99.
[http://dx.doi.org/10.1161/STROKEAHA.118.021380] [PMID: 29669874]
[45]
World Health Organization; Integrated management of cardiovascular risk Report of a WHO meeting, Geneva, 9-12 July.. 2002.
[46]
Cassella CR, Jagoda A. Ischemic Stroke: Advances in Diagnosis and Management. Emerg Med Clin North Am 2017; 35(4): 911-30.
[http://dx.doi.org/10.1016/j.emc.2017.07.007] [PMID: 28987436]
[47]
Abu Bakar AR, Ripen AM, Merican AF, Mohamad SB. Enzymatic inhibitory activity of Ficus deltoidea leaf extract on matrix metalloproteinase-2, 8 and 9. Nat Prod Res 2019; 33(12): 1765-8.
[http://dx.doi.org/10.1080/14786419.2018.1434631] [PMID: 29394875]
[48]
Tirloni CAS, Palozi RAC, Schaedler MI, et al. Influence of Luehea divaricata Mart. extracts on peripheral vascular resistance and the role of nitric oxide and both Ca+2-sensitive and Kir6.1 ATP-sensitive K+ channels in the vasodilatory effects of isovitexin on isolated perfused mesenteric beds. Phytomedicine 2019; 56: 74-82.
[http://dx.doi.org/10.1016/j.phymed.2018.08.014] [PMID: 30668356]
[49]
Pennacchio M, Syah YM, Alexander E, Ghisalberti EL. Mechanism of action of verbascoside on the isolated rat heart: increases in level of prostacyclin. Phytother Res 1999; 13(3): 254-5.
[http://dx.doi.org/10.1002/(SICI)1099-1573(199905)13:3<254:AID-PTR430>3.0.CO;2-1] [PMID: 10353173]
[50]
Chen W, Jadhav V, Tang J, Zhang JH. HIF-1alpha inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model. Neurobiol Dis 2008; 31(3): 433-41.
[http://dx.doi.org/10.1016/j.nbd.2008.05.020] [PMID: 18602008]
[51]
Min JW, Hu JJ, He M, et al. Vitexin reduces hypoxia-ischemia neonatal brain injury by the inhibition of HIF-1alpha in a rat pup model. Neuropharmacology 2015; 99: 38-50.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.007] [PMID: 26187393]
[52]
Fan C, Yan J, Qian Y, Wo X, Gao L. Regulation of lipoprotein lipase expression by effect of hawthorn flavonoids on peroxisome proliferator response element pathway. J Pharmacol Sci 2006; 100(1): 51-8.
[http://dx.doi.org/10.1254/jphs.FP0050748] [PMID: 16404131]
[53]
Claesson-Welsh L. Vascular permeability--the essentials. Ups J Med Sci 2015; 120(3): 135-43.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[54]
Nör JE, Christensen J, Mooney DJ, Polverini PJ. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 1999; 154(2): 375-84.
[http://dx.doi.org/10.1016/S0002-9440(10)65284-4] [PMID: 10027396]
[55]
Ng CT, Fong LY, Tan JJ, et al. Water extract of Clinacanthus nutans leaves exhibits in vitro, ex vivo and in vivo anti-angiogenic activities in endothelial cell via suppression of cell proliferation. BMC Complement Altern Med 2018; 18(1): 210.
[http://dx.doi.org/10.1186/s12906-018-2270-1] [PMID: 29980198]
[56]
Aloke C, Ezeigbo II, Ohanenye IC, Udenigwe CC, Jacob C, Ejike CECC. A small green red-ox carries a bright medical future for sub-Saharan Africa. Curr Pharmacol Rep 2019; 5: 245-54.
[http://dx.doi.org/10.1007/s40495-019-00182-9]

© 2024 Bentham Science Publishers | Privacy Policy