Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

C-Myc Signaling Pathway in Treatment and Prevention of Brain Tumors

Author(s): Milad Ashrafizadeh, Ali Zarabi, Kiavash Hushmandi, Ebrahim Rahmani Moghadam, Farid Hashemi, Salman Daneshi, Fardin Hashemi, Shima Tavakol, Reza Mohammadinejad, Masoud Najafi*, Namrata Dudha and Manoj Garg*

Volume 21, Issue 1, 2021

Published on: 16 October, 2020

Page: [2 - 20] Pages: 19

DOI: 10.2174/1568009620666201016121005

Price: $65

Abstract

Brain tumors are responsible for high morbidity and mortality worldwide. Several factors such as the presence of blood-brain barrier (BBB), sensitive location in the brain, and unique biological features challenge the treatment of brain tumors. The conventional drugs are no longer effective in the treatment of brain tumors, and scientists are trying to find novel therapeutics for brain tumors. In this way, identification of molecular pathways can facilitate finding an effective treatment. c-Myc is an oncogene signaling pathway capable of regulation of biological processes such as apoptotic cell death, proliferation, survival, differentiation, and so on. These pleiotropic effects of c-Myc have resulted in much fascination with its role in different cancers, particularly brain tumors. In the present review, we aim to demonstrate the upstream and down-stream mediators of c-Myc in brain tumors such as glioma, glioblastoma, astrocytoma, and medulloblastoma. The capacity of c-Myc as a prognostic factor in brain tumors will be investigated. Our goal is to define an axis in which the c-Myc signaling pathway plays a crucial role and to provide direction for therapeutic targeting in these signaling networks in brain tumors.

Keywords: Brain tumor, c-Myc, signaling pathway, glioma, glioblastoma, medulloblastoma, astrocytoma.

Graphical Abstract
[1]
Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Emerging roles of C-Myc in cancer stem cell-related signaling and resistance to cancer chemotherapy: A potential therapeutic target against colorectal cancer. Int. J. Mol. Sci., 2019, 20(9), 2340.
[http://dx.doi.org/10.3390/ijms20092340] [PMID: 31083525]
[2]
Chanvorachote, P.; Sriratanasak, N.; Nonpanya, N. C-myc contributes to malignancy of lung cancer: A potential anticancer drug target. Anticancer Res., 2020, 40(2), 609-618.
[PMID: 32014901]
[3]
Xu, G.; Chen, Y.; Fu, M.; Zang, X.; Cang, M.; Niu, Y.; Zhang, W.; Zhang, Y.; Mao, Z.; Shao, M.; Qian, H.; Xu, W.; Cai, H.; Jiang, P.; Zhang, X.; Circular, R.N.A. Circular RNA CCDC66 promotes gastric cancer progression by regulating c-Myc and TGF-β signaling pathways. J. Cancer, 2020, 11(10), 2759-2768.
[PMID: 32226494]
[4]
Zhang, M.Y.; Liu, S.L.; Huang, W.L.; Tang, D.B.; Zheng, W.W.; Zhou, N.; Zhou, H.; Abudureheman, T.; Tang, Z.H.; Zhou, B.S.; Duan, C.W. Bromodomains and extra-terminal (BET) inhibitor JQ1 suppresses proliferation of acute lymphocytic leukemia by inhibiting c-Myc-mediated glycolysis. Med. Sci. Monit., 2020, 26, e923411.
[PMID: 32266878]
[5]
Conacci-Sorrell, M.; McFerrin, L.; Eisenman, R.N. An overview of MYC and its interactome. Cold Spring Harb. Perspect. Med., 2014, 4(1), a014357.
[PMID: 24384812]
[6]
Massó-Vallés, D.; Soucek, L. Blocking Myc to treat cancer: Reflecting on two decades of omomyc. Cells, 2020, 9(4), 883.
[http://dx.doi.org/10.3390/cells9040883] [PMID: 32260326]
[7]
Wang, Y.; Sun, L.; Qiu, W.; Qi, W.; Qi, Y.; Liu, Z.; Liu, S.; Lv, J. Inhibiting Forkhead box K1 induces autophagy to reverse epithelial-mesenchymal transition and metastasis in gastric cancer by regulating Myc-associated zinc finger protein in an acidic microenvironment. Aging (Albany NY), 2020, 12(7), 6129-6150.
[http://dx.doi.org/10.18632/aging.103013] [PMID: 32268297]
[8]
Sheiness, D.; Fanshier, L.; Bishop, J.M. Identification of nucleotide sequences which may encode the oncogenic capacity of avian retrovirus MC29. J. Virol., 1978, 28(2), 600-610.
[http://dx.doi.org/10.1128/JVI.28.2.600-610.1978] [PMID: 214581]
[9]
Roussel, M.; Saule, S.; Lagrou, C.; Rommens, C.; Beug, H.; Graf, T.; Stehelin, D. Three new types of viral oncogene of cellular origin specific for haematopoietic cell transformation. Nature, 1979, 281(5731), 452-455.
[http://dx.doi.org/10.1038/281452a0] [PMID: 226888]
[10]
Nau, M.M.; Brooks, B.J.; Battey, J.; Sausville, E.; Gazdar, A.F.; Kirsch, I.R.; McBride, O.W.; Bertness, V.; Hollis, G.F.; Minna, J.D. L-myc, a new myc-related gene amplified and expressed in human small cell lung cancer. Nature, 1985, 318(6041), 69-73.
[http://dx.doi.org/10.1038/318069a0] [PMID: 2997622]
[11]
Schwab, M.; Alitalo, K.; Klempnauer, K-H.; Varmus, H.E.; Bishop, J.M.; Gilbert, F.; Brodeur, G.; Goldstein, M.; Trent, J. Amplified DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour. Nature, 1983, 305(5931), 245-248.
[http://dx.doi.org/10.1038/305245a0] [PMID: 6888561]
[12]
Watt, R.; Nishikura, K.; Sorrentino, J.; ar-Rushdi, A.; Croce, C.M.; Rovera, G. The structure and nucleotide sequence of the 5′ end of the human c-myc oncogene. Proc. Natl. Acad. Sci. USA, 1983, 80(20), 6307-6311.
[http://dx.doi.org/10.1073/pnas.80.20.6307] [PMID: 6578511]
[13]
Berg, T. In Small-Molecule Inhibitors of Protein-Protein Interactions. Springer; , 2010, pp. pp. 139-149.
[http://dx.doi.org/10.1007/82_2010_90]
[14]
Cashman, D.J.; Buscaglia, R.; Freyer, M.W.; Dettler, J.; Hurley, L.H.; Lewis, E.A. Molecular modeling and biophysical analysis of the c-MYC NHE-III1 silencer element. J. Mol. Model., 2008, 14(2), 93-101.
[http://dx.doi.org/10.1007/s00894-007-0254-z] [PMID: 18087730]
[15]
Huang, H.; Weng, H.; Zhou, H.; Qu, L. Attacking c-Myc: targeted and combined therapies for cancer. Curr. Pharm. Des., 2014, 20(42), 6543-6554.
[http://dx.doi.org/10.2174/1381612820666140826153203] [PMID: 25341931]
[16]
Amati, B.; Alevizopoulos, K.; Vlach, J. Myc and the cell cycle. Front. Biosci., 1998, 3(3), d250-d268.
[http://dx.doi.org/10.2741/A239] [PMID: 9468463]
[17]
Eisenman, R.N. The Myc/Max/Mad Transcription Factor Network. Springer Science & Business Media; , 2006.
[http://dx.doi.org/10.1007/3-540-32952-8]
[18]
Johnston, L.A.; Gallant, P. Control of growth and organ size in Drosophila. BioEssays, 2002, 24(1), 54-64.
[http://dx.doi.org/10.1002/bies.10021] [PMID: 11782950]
[19]
Zimmerman, K.A.; Yancopoulos, G.D.; Collum, R.G.; Smith, R.K.; Kohl, N.E.; Denis, K.A.; Nau, M.M.; Witte, O.N.; Toran-Allerand, D.; Gee, C.E. Differential expression of myc family genes during murine development. Nature, 1986, 319(6056), 780-783.
[http://dx.doi.org/10.1038/319780a0] [PMID: 2419762]
[20]
Caforio, M.; Sorino, C.; Iacovelli, S.; Fanciulli, M.; Locatelli, F.; Folgiero, V. Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis. J. Exp. Clin. Cancer Res., 2018, 37(1), 239.
[http://dx.doi.org/10.1186/s13046-018-0912-2] [PMID: 30261904]
[21]
Kumar, D.; Sharma, N.; Giri, R. Therapeutic interventions of cancers using intrinsically disordered proteins as drug targets: c-Myc as model system. Cancer Inform., 2017, 16, 1176935117699408.
[http://dx.doi.org/10.1177/1176935117699408] [PMID: 28469390]
[22]
Mahani, A.; Henriksson, J.; Wright, A.P. Origins of Myc proteins--using intrinsic protein disorder to trace distant relatives. PLoS One, 2013, 8(9), e75057.
[http://dx.doi.org/10.1371/journal.pone.0075057] [PMID: 24086436]
[23]
Cole, M.D.; McMahon, S.B. The Myc oncoprotein: A critical evaluation of transactivation and target gene regulation. Oncogene, 1999, 18(19), 2916-2924.
[http://dx.doi.org/10.1038/sj.onc.1202748] [PMID: 10378688]
[24]
Fladvad, M.; Zhou, K.; Moshref, A.; Pursglove, S.; Säfsten, P.; Sunnerhagen, M. N and C-terminal sub-regions in the c-Myc transactivation region and their joint role in creating versatility in folding and binding. J. Mol. Biol., 2005, 346(1), 175-189.
[http://dx.doi.org/10.1016/j.jmb.2004.11.029] [PMID: 15663936]
[25]
Eilers, M.; Eisenman, R.N. Myc’s broad reach. Genes Dev., 2008, 22(20), 2755-2766.
[http://dx.doi.org/10.1101/gad.1712408] [PMID: 18923074]
[26]
Hann, S.R. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb. Perspect. Med., 2014, 4(9), a014399.
[http://dx.doi.org/10.1101/cshperspect.a014399] [PMID: 24939054]
[27]
Lin, C.Y.; Lovén, J.; Rahl, P.B.; Paranal, R.M.; Burge, C.B.; Bradner, J.E.; Lee, T.I.; Young, R.A. Transcriptional amplification in tumor cells with elevated c-Myc. Cell, 2012, 151(1), 56-67.
[http://dx.doi.org/10.1016/j.cell.2012.08.026] [PMID: 23021215]
[28]
Nie, Z.; Hu, G.; Wei, G.; Cui, K.; Yamane, A.; Resch, W.; Wang, R.; Green, D.R.; Tessarollo, L.; Casellas, R.; Zhao, K.; Levens, D. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell, 2012, 151(1), 68-79.
[http://dx.doi.org/10.1016/j.cell.2012.08.033] [PMID: 23021216]
[29]
McKeown, M.R.; Bradner, J.E. Therapeutic strategies to inhibit MYC. Cold Spring Harb. Perspect. Med., 2014, 4(10), a014266.
[http://dx.doi.org/10.1101/cshperspect.a014266] [PMID: 25274755]
[30]
Yap, C-S.; Peterson, A.L.; Castellani, G.; Sedivy, J.M.; Neretti, N. Kinetic profiling of the c-Myc transcriptome and bioinformatic analysis of repressed gene promoters. Cell Cycle, 2011, 10(13), 2184-2196.
[http://dx.doi.org/10.4161/cc.10.13.16249] [PMID: 21623162]
[31]
Hann, S.R.; King, M.W.; Bentley, D.L.; Anderson, C.W.; Eisenman, R.N. A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas. Cell, 1988, 52(2), 185-195.
[http://dx.doi.org/10.1016/0092-8674(88)90507-7] [PMID: 3277717]
[32]
Sabò, A.; Kress, T.R.; Pelizzola, M.; de Pretis, S.; Gorski, M.M.; Tesi, A.; Morelli, M.J.; Bora, P.; Doni, M.; Verrecchia, A.; Tonelli, C.; Fagà, G.; Bianchi, V.; Ronchi, A.; Low, D.; Müller, H.; Guccione, E.; Campaner, S.; Amati, B. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature, 2014, 511(7510), 488-492.
[http://dx.doi.org/10.1038/nature13537] [PMID: 25043028]
[33]
Kress, T.R.; Sabò, A.; Amati, B. MYC: connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer, 2015, 15(10), 593-607.
[http://dx.doi.org/10.1038/nrc3984] [PMID: 26383138]
[34]
Liang, M.Q.; Yu, F.Q.; Chen, C. C-Myc regulates PD-L1 expression in esophageal squamous cell carcinoma. Am. J. Transl. Res., 2020, 12(2), 379-388.
[PMID: 32194890]
[35]
Nakamura, M.; Hayashi, M.; Konishi, H.; Nunode, M.; Ashihara, K.; Sasaki, H.; Terai, Y.; Ohmichi, M. MicroRNA-22 enhances radiosensitivity in cervical cancer cell lines via direct inhibition of c-Myc binding protein, and the subsequent reduction in hTERT expression. Oncol. Lett., 2020, 19(3), 2213-2222.
[http://dx.doi.org/10.3892/ol.2020.11344] [PMID: 32194719]
[36]
Inoue, C.; Sobue, S.; Kawamoto, Y.; Nishizawa, Y.; Ichihara, M.; Abe, A.; Hayakawa, F.; Suzuki, M.; Nozawa, Y.; Murate, T. Involvement of MCL1, c-myc, and cyclin D2 protein degradation in ponatinib-induced cytotoxicity against T315I(+) Ph+leukemia cells. Biochem. Biophys. Res. Commun., 2020, 525(4), 1074-1080.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.165] [PMID: 32184020]
[37]
Chen, Z.; Wu, L.; Zhou, J.; Lin, X.; Peng, Y.; Ge, L.; Chiang, C.M.; Huang, H.; Wang, H.; He, W. N6-methyladenosine-induced ERRγ triggers chemoresistance of cancer cells through upregulation of ABCB1 and metabolic reprogramming. Theranostics, 2020, 10(8), 3382-3396.
[http://dx.doi.org/10.7150/thno.40144] [PMID: 32206097]
[38]
Hong, X.; Liu, N.; Liang, Y.; He, Q.; Yang, X.; Lei, Y.; Zhang, P.; Zhao, Y.; He, S.; Wang, Y.; Li, J.; Li, Q.; Ma, J.; Li, Y.; Circular, R.N.A. Circular RNA CRIM1 functions as a ceRNA to promote nasopharyngeal carcinoma metastasis and docetaxel chemoresistance through upregulating FOXQ1. Mol. Cancer, 2020, 19(1), 33.
[http://dx.doi.org/10.1186/s12943-020-01149-x] [PMID: 32061262]
[39]
Yang, J.; Wu, S.P.; Wang, W.J.; Jin, Z.R.; Miao, X.B.; Wu, Y.; Gou, D.M.; Liu, Q.Z.; Yao, K.T. A novel miR-200c/c-myc negative regulatory feedback loop is essential to the EMT process, CSC biology and drug sensitivity in nasopharyngeal cancer. Exp. Cell Res., 2020, 391(2), 111817.
[http://dx.doi.org/10.1016/j.yexcr.2020.111817] [PMID: 32179097]
[40]
Jiang, Q.; Feng, W.; Xiong, C.; Lv, Y. Integrated bioinformatics analysis of the association between apolipoprotein E expression and patient prognosis in papillary thyroid carcinoma. Oncol. Lett., 2020, 19(3), 2295-2305.
[http://dx.doi.org/10.3892/ol.2020.11316] [PMID: 32194729]
[41]
Du, S.; Wang, H.; Cai, J.; Ren, R.; Zhang, W.; Wei, W.; Shen, X. Apolipoprotein E2 modulates cell cycle function to promote proliferation in pancreatic cancer cells via regulation of the c-Myc-p21(Waf1) signalling pathway. Biochemistry and cell biology = Biochimie et biologie cellulaire, 2020, 98(2), 191-202.
[42]
Strippoli, A.; Cocomazzi, A.; Basso, M.; Cenci, T.; Ricci, R.; Pierconti, F.; Cassano, A.; Fiorentino, V.; Barone, C.; Bria, E.; Ricci-Vitiani, L.; Tortora, G.; Larocca, L.M.; Martini, M. c-MYC Expression Is a Possible Keystone in the Colorectal Cancer Resistance to EGFR Inhibitors. Cancers (Basel), 2020, 12(3), E638.
[http://dx.doi.org/10.3390/cancers12030638] [PMID: 32164324]
[43]
Du, J.; Zhang, G.; Qiu, H.; Yu, H.; Yuan, W. A novel positive feedback loop of linc02042 and c-Myc mediated by YBX1 promotes tumorigenesis and metastasis in esophageal squamous cell carcinoma. Cancer Cell Int., 2020, 20, 75.
[http://dx.doi.org/10.1186/s12935-020-1154-x] [PMID: 32161513]
[44]
Febres-Aldana, C.A.; Mejia-Mejia, O.; Krishnamurthy, K.; Mesko, T.; Poppiti, R. Malignant transformation in a breast adenomyoepithelioma caused by amplification of c-MYC: A common pathway to cancer in a rare entity. J. Breast Cancer, 2019, 23(1), 93-99.
[http://dx.doi.org/10.4048/jbc.2020.23.e2] [PMID: 32140273]
[45]
Lu, W.; Yang, C.; He, H.; Liu, H. The CARM1-p300-c-Myc-Max (CPCM) transcriptional complex regulates the expression of CUL4A/4B and affects the stability of CRL4 E3 ligases in colorectal cancer. Int. J. Biol. Sci., 2020, 16(6), 1071-1085.
[http://dx.doi.org/10.7150/ijbs.41230] [PMID: 32140074]
[46]
Ronca, R.; Ghedini, G.C.; Maccarinelli, F.; Sacco, A.; Locatelli, S.L.; Foglio, E.; Taranto, S.; Grillo, E.; Matarazzo, S.; Castelli, R.; Paganini, G.; Desantis, V.; Cattane, N.; Cattaneo, A.; Mor, M.; Carlo-Stella, C.; Belotti, A.; Roccaro, A.M.; Presta, M.; Giacomini, A. FGF trapping inhibits multiple myeloma growth through c-Myc degradation-induced mitochondrial oxidative stress. Cancer Res., 2020, 80(11), 2340-2354.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-2714] [PMID: 32094301]
[47]
Sun, Y.; Fan, J.; Wang, B.; Meng, Z.; Ren, D.; Zhao, J.; Liu, Z.; Li, D.; Jin, X.; Wu, H. The aberrant expression of ADAR1 promotes resistance to BET inhibitors in pancreatic cancer by stabilizing c-Myc. Am. J. Cancer Res., 2020, 10(1), 148-163.
[PMID: 32064158]
[48]
Wei, D.; Yiyuan, C.; Qian, L.; Jianhua, L.; Yazhuo, Z.; Hua, G. The absence of PRDM2 involved the tumorigenesis of somatotroph adenomas through regulating c-Myc. Gene, 2020, 737, 144456.
[http://dx.doi.org/10.1016/j.gene.2020.144456] [PMID: 32044406]
[49]
Liu, F.; Wan, L.; Zou, H.; Pan, Z.; Zhou, W.; Lu, X. PRMT7 promotes the growth of renal cell carcinoma through modulating the β-catenin/C-MYC axis. Int. J. Biochem. Cell Biol., 2020, 120, 105686.
[http://dx.doi.org/10.1016/j.biocel.2020.105686] [PMID: 31926310]
[50]
Zhang, Z.; Liu, M.; Hu, Q.; Xu, W.; Liu, W.; Sun, Q.; Ye, Z.; Fan, G.; Xu, X.; Yu, X.; Ji, S.; Qin, Y. FGFBP1, a downstream target of the FBW7/c-Myc axis, promotes cell proliferation and migration in pancreatic cancer. Am. J. Cancer Res., 2019, 9(12), 2650-2664.
[PMID: 31911852]
[51]
Zhang, L.; Fu, Y.; Guo, H. c-Myc-induced long non-coding RNA small nucleolar RNA host gene 7 regulates glycolysis in breast cancer. J. Breast Cancer, 2019, 22(4), 533-547.
[http://dx.doi.org/10.4048/jbc.2019.22.e54] [PMID: 31897328]
[52]
Hu, J.; Duan, W.; Liu, Y. Ketamine inhibits aerobic glycolysis in colorectal cancer cells by blocking the NMDA receptor-CaMK II-c-Myc pathway. Clin. Exp. Pharmacol. Physiol., 2020, 47(5), 848-856.
[http://dx.doi.org/10.1111/1440-1681.13248] [PMID: 31889340]
[53]
Yang, L.; Lei, Q.; Li, L.; Yang, J.; Dong, Z.; Cui, H. Silencing or inhibition of H3K79 methyltransferase DOT1L induces cell cycle arrest by epigenetically modulating c-Myc expression in colorectal cancer. Clin. Epigenetics, 2019, 11(1), 199.
[http://dx.doi.org/10.1186/s13148-019-0778-y] [PMID: 31888761]
[54]
Shen, Z.; Li, Y.; Fang, Y.; Lin, M.; Feng, X.; Li, Z.; Zhan, Y.; Liu, Y.; Mou, T.; Lan, X.; Wang, Y.; Li, G.; Wang, J.; Deng, H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol. Oncol., 2020, 14(2), 387-406.
[http://dx.doi.org/10.1002/1878-0261.12626] [PMID: 31876369]
[55]
Min, J.; Hu, J.; Luo, C.; Zhu, J.; Zhao, J.; Zhu, Z.; Wu, L.; Yuan, R. IFITM3 upregulates c-myc expression to promote hepatocellular carcinoma proliferation via the ERK1/2 signalling pathway. Biosci. Trends, 2020, 13(6), 523-529.
[http://dx.doi.org/10.5582/bst.2019.01289] [PMID: 31852866]
[56]
Liu, Y.; Song, H.; Yu, S.; Huang, K.H.; Ma, X.; Zhou, Y.; Yu, S.; Zhang, J.; Chen, L. Protein Kinase D3 promotes the cell proliferation by activating the ERK1/c-MYC axis in breast cancer. J. Cell. Mol. Med., 2020, 24(3), 2135-2144.
[http://dx.doi.org/10.1111/jcmm.14772] [PMID: 31944568]
[57]
Wang, C.; Zou, H.; Chen, A.; Yang, H.; Yu, X.; Yu, X.; Wang, Y. C-Myc-activated long non-coding RNA PVT1 enhances the proliferation of cervical cancer cells by sponging miR-486-3p. J. Biochem., 2020, 167(6), 565-575.
[http://dx.doi.org/10.1093/jb/mvaa005] [PMID: 31943014]
[58]
Luo, Q.; Wu, X.; Chang, W.; Zhao, P.; Nan, Y.; Zhu, X.; Katz, J.P.; Su, D.; Liu, Z. ARID1A prevents squamous cell carcinoma initiation and chemoresistance by antagonizing pRb/E2F1/c-Myc-mediated cancer stemness. Cell Death Differ., 2019.
[PMID: 31831874]
[59]
Lim, S.C.; Hwang, H.; Han, S.I. Ellagic acid inhibits cxtracellular acidity-induced invasiveness and expression of COX1, COX2, snail, twist 1, and c-myc in gastric carcinoma cells. Nutrients, 2019, 11(12), E3023.
[http://dx.doi.org/10.3390/nu11123023] [PMID: 31835645]
[60]
Wang, C.; Chen, F.; Fan, Z.; Yao, C.; Xiao, L. lncRNA CCAT1/miR-490-3p/MAPK1/c-Myc positive feedback loop drives progression of acute myeloid leukaemia. J. Biochem., 2020, 167(4), 379-388.
[http://dx.doi.org/10.1093/jb/mvz107] [PMID: 31790145]
[61]
Lin, C.Y.; Wang, B.J.; Chen, B.C.; Tseng, J.C.; Jiang, S.S.; Tsai, K.K.; Shen, Y.Y.; Yuh, C.H.; Sie, Z.L.; Wang, W.C.; Kung, H.J.; Chuu, C.P. Histone demethylase KDM4C stimulates the proliferation of prostate cancer cells via activation of AKT and c-Myc. Cancers (Basel), 2019, 11(11), E1785.
[http://dx.doi.org/10.3390/cancers11111785] [PMID: 31766290]
[62]
Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; Jones, D.T.W.; Joyce, J.A.; Kearns, P.; Kieran, M.W.; Mellinghoff, I.K.; Merchant, M.; Pfister, S.M.; Pollard, S.M.; Ramaswamy, V.; Rich, J.N.; Robinson, G.W.; Rowitch, D.H.; Sampson, J.H.; Taylor, M.D.; Workman, P.; Gilbertson, R.J. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol., 2019, 16(8), 509-520.
[http://dx.doi.org/10.1038/s41571-019-0177-5] [PMID: 30733593]
[63]
Chinot, O.L.; Wick, W.; Mason, W.; Henriksson, R.; Saran, F.; Nishikawa, R.; Carpentier, A.F.; Hoang-Xuan, K.; Kavan, P.; Cernea, D.; Brandes, A.A.; Hilton, M.; Abrey, L.; Cloughesy, T. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N. Engl. J. Med., 2014, 370(8), 709-722.
[http://dx.doi.org/10.1056/NEJMoa1308345] [PMID: 24552318]
[64]
Smith, M.A.; Reaman, G.H. Remaining challenges in childhood cancer and newer targeted therapeutics. Pediatr. Clin. North Am., 2015, 62(1), 301-312.
[http://dx.doi.org/10.1016/j.pcl.2014.09.018] [PMID: 25435124]
[65]
Brinkman, T.M.; Krasin, M.J.; Liu, W.; Armstrong, G.T.; Ojha, R.P.; Sadighi, Z.S.; Gupta, P.; Kimberg, C.; Srivastava, D.; Merchant, T.E.; Gajjar, A.; Robison, L.L.; Hudson, M.M.; Krull, K.R. Long-term neurocognitive functioning and social attainment in adult survivors of pediatric CNS tumors: results from the St Jude Lifetime Cohort Study. J. Clin. Oncol., 2016, 34(12), 1358-1367.
[http://dx.doi.org/10.1200/JCO.2015.62.2589] [PMID: 26834063]
[66]
Chemaitilly, W.; Armstrong, G.T.; Gajjar, A.; Hudson, M.M. Hypothalamic-pituitary axis dysfunction in survivors of childhood CNS tumors: importance of systematic follow-up and early endocrine consultation. J. Clin. Oncol., 2016, 34(36), 4315-4319.
[http://dx.doi.org/10.1200/JCO.2016.70.1847] [PMID: 27998231]
[67]
Phoenix, T.N.; Patmore, D.M.; Boop, S.; Boulos, N.; Jacus, M.O.; Patel, Y.T.; Roussel, M.F.; Finkelstein, D.; Goumnerova, L.; Perreault, S.; Wadhwa, E.; Cho, Y.J.; Stewart, C.F.; Gilbertson, R.J. Medulloblastoma genotype dictates blood brain barrier phenotype. Cancer Cell, 2016, 29(4), 508-522.
[http://dx.doi.org/10.1016/j.ccell.2016.03.002] [PMID: 27050100]
[68]
Gerstner, E.R.; Fine, R.L. Increased permeability of the blood-brain barrier to chemotherapy in metastatic brain tumors: establishing a treatment paradigm. J. Clin. Oncol., 2007, 25(16), 2306-2312.
[http://dx.doi.org/10.1200/JCO.2006.10.0677] [PMID: 17538177]
[69]
Mackay, A.; Burford, A.; Carvalho, D.; Izquierdo, E.; Fazal-Salom, J.; Taylor, K.R.; Bjerke, L.; Clarke, M.; Vinci, M.; Nandhabalan, M. Integrated molecular meta-analysis of 1,000 pediatric high-grade and diffuse intrinsic pontine glioma. Cancer cell, 2017, 32(4), 520-537.
[70]
Quail, D.F.; Joyce, J.A. The microenvironmental landscape of brain tumors. Cancer Cell, 2017, 31(3), 326-341.
[http://dx.doi.org/10.1016/j.ccell.2017.02.009] [PMID: 28292436]
[71]
Gilbertson, R.J. Mapping cancer origins. Cell, 2011, 145(1), 25-29.
[http://dx.doi.org/10.1016/j.cell.2011.03.019] [PMID: 21458665]
[72]
Azzarelli, R.; Simons, B.D.; Philpott, A. The developmental origin of brain tumours: a cellular and molecular framework. Development, 2018, 145(10), dev162693.
[http://dx.doi.org/10.1242/dev.162693] [PMID: 29759978]
[73]
Vescovi, A.L.; Galli, R.; Reynolds, B.A. Brain tumour stem cells. Nat. Rev. Cancer, 2006, 6(6), 425-436.
[http://dx.doi.org/10.1038/nrc1889] [PMID: 16723989]
[74]
Vienne-Jumeau, A.; Tafani, C.; Ricard, D. Environmental risk factors of primary brain tumors: A review. Rev. Neurol. (Paris), 2019, 175(10), 664-678.
[http://dx.doi.org/10.1016/j.neurol.2019.08.004] [PMID: 31526552]
[75]
Moliterno, J.A.; Patel, T.R.; Piepmeier, J.M. Neurosurgical approach. Cancer J., 2012, 18(1), 20-25.
[http://dx.doi.org/10.1097/PPO.0b013e3183243f6e3] [PMID: 22290253]
[76]
Weller, M.; Stupp, R.; Hegi, M.; Wick, W. Individualized targeted therapy for glioblastoma: Fact or fiction? Cancer J., 2012, 18(1), 40-44.
[http://dx.doi.org/10.1097/PPO.0b013e318243f6c9] [PMID: 22290256]
[77]
Radke, J.; Bortolussi, G.; Pagenstecher, A. Akt and c-Myc induce stem-cell markers in mature primary p53-/- astrocytes and render these cells gliomagenic in the brain of immunocompetent mice. PLoS One, 2013, 8(2), e56691.
[http://dx.doi.org/10.1371/journal.pone.0056691] [PMID: 23424671]
[78]
Faria, M.H.; Gonçalves, B.P.; do Patrocínio, R.M.; de Moraes-Filho, M.O.; Rabenhorst, S.H. Expression of Ki-67, topoisomerase IIalpha and c-MYC in astrocytic tumors: Correlation with the histopathological grade and proliferative status. Neuropathology, 2006, 26(6), 519-527.
[http://dx.doi.org/10.1111/j.1440-1789.2006.00724.x] [PMID: 17203587]
[79]
Hayashi, S.; Yamamoto, M.; Ueno, Y.; Ikeda, K.; Ohshima, K.; Soma, G.; Fukushima, T. Expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1, and c-Myc in human astrocytomas. Neurol. Med. Chir. (Tokyo), 2001, 41(4), 187-195.
[http://dx.doi.org/10.2176/nmc.41.187] [PMID: 11381677]
[80]
Yamamoto, M.; Fukushima, T.; Hayashi, S.; Ikeda, K.; Tsugu, H.; Kimura, H.; Soma, G.; Tomonaga, M. Correlation of the expression of nuclear factor-kappa B, tumor necrosis factor receptor type 1 (TNFR 1) and c-Myc with the clinical course in the treatment of malignant astrocytomas with recombinant mutant human tumor necrosis factor-alpha (TNF-SAM2). Anticancer Res., 2000, 20(1C), 611-618.
[PMID: 10769704]
[81]
Banerjee, M.; Dinda, A.K.; Sinha, S.; Sarkar, C.; Mathur, M. c-myc oncogene expression and cell proliferation in mixed oligo-astrocytoma. Int. J. Cancer, 1996, 65(6), 730-733.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19960315)65:6<730::AID-IJC3>3.0.CO;2-#] [PMID: 8631582]
[82]
Chattopadhyay, P.; Banerjee, M.; Sarkar, C.; Mathur, M.; Mohapatra, A.K.; Sinha, S. Infrequent alteration of the c-myc gene in human glial tumours associated with increased numbers of c-myc positive cells. Oncogene, 1995, 11(12), 2711-2714.
[PMID: 8545130]
[83]
Nakajima, Y.; Yoshimine, T.; Hayakawa, T.; Maruno, M.; Mushiroi, T.; Nakagawa, H.; Mogami, H. Immunohistochemical study of c-myc oncogene product in human brain tumors. No To Shinkei, 1989, 41(6), 617-621.
[PMID: 2679824]
[84]
Jackson, C.M.; Choi, J.; Lim, M. Mechanisms of immunotherapy resistance: lessons from glioblastoma. Nat. Immunol., 2019, 20(9), 1100-1109.
[http://dx.doi.org/10.1038/s41590-019-0433-y] [PMID: 31358997]
[85]
Altman, B.J.; Stine, Z.E.; Dang, C.V. From Krebs to clinic: glutamine metabolism to cancer therapy. Nat. Rev. Cancer, 2016, 16(10), 619-634.
[http://dx.doi.org/10.1038/nrc.2016.71] [PMID: 27492215]
[86]
Wise, D.R.; Thompson, C.B. Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci., 2010, 35(8), 427-433.
[http://dx.doi.org/10.1016/j.tibs.2010.05.003] [PMID: 20570523]
[87]
Yang, C.; Peng, P.; Li, L.; Shao, M.; Zhao, J.; Wang, L.; Duan, F.; Song, S.; Wu, H.; Zhang, J.; Zhao, R.; Jia, D.; Zhang, M.; Wu, W.; Li, C.; Rong, Y.; Zhang, L.; Ruan, Y.; Gu, J. High expression of GFAT1 predicts poor prognosis in patients with pancreatic cancer. Sci. Rep., 2016, 6, 39044.
[http://dx.doi.org/10.1038/srep39044] [PMID: 27996048]
[88]
Tanaka, K.; Babic, I.; Nathanson, D.; Akhavan, D.; Guo, D.; Gini, B.; Dang, J.; Zhu, S.; Yang, H.; De Jesus, J.; Amzajerdi, A.N.; Zhang, Y.; Dibble, C.C.; Dan, H.; Rinkenbaugh, A.; Yong, W.H.; Vinters, H.V.; Gera, J.F.; Cavenee, W.K.; Cloughesy, T.F.; Manning, B.D.; Baldwin, A.S.; Mischel, P.S. Oncogenic EGFR signaling activates an mTORC2-NF-κB pathway that promotes chemotherapy resistance. Cancer Discov., 2011, 1(6), 524-538.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0124] [PMID: 22145100]
[89]
Niimi, M.; Ogawara, T.; Yamashita, T.; Yamamoto, Y.; Ueyama, A.; Kambe, T.; Okamoto, T.; Ban, T.; Tamanoi, H.; Ozaki, K.; Fujiwara, T.; Fukui, H.; Takahashi, E.I.; Kyushiki, H.; Tanigami, A. Identification of GFAT1-L, a novel splice variant of human glutamine: fructose-6-phosphate amidotransferase (GFAT1) that is expressed abundantly in skeletal muscle. J. Hum. Genet., 2001, 46(10), 566-571.
[http://dx.doi.org/10.1007/s100380170022] [PMID: 11587069]
[90]
DeHaven, J.E.; Robinson, K.A.; Nelson, B.A.; Buse, M.G. A novel variant of glutamine: fructose-6-phosphate amidotransferase-1 (GFAT1) mRNA is selectively expressed in striated muscle. Diabetes, 2001, 50(11), 2419-2424.
[http://dx.doi.org/10.2337/diabetes.50.11.2419] [PMID: 11679416]
[91]
Liu, B.; Huang, Z-B.; Chen, X.; See, Y-X.; Chen, Z-K.; Yao, H-K. Mammalian target of rapamycin 2 (MTOR2) and C-MYC modulate glucosamine-6-phosphate synthesis in glioblastoma (GBM) cells through glutamine: Fructose-6-phosphate aminotransferase 1 (GFAT1). Cell. Mol. Neurobiol., 2019, 39(3), 415-434.
[http://dx.doi.org/10.1007/s10571-019-00659-7] [PMID: 30771196]
[92]
Brennan, C.W.; Verhaak, R.G.; McKenna, A.; Campos, B.; Noushmehr, H.; Salama, S.R.; Zheng, S.; Chakravarty, D.; Sanborn, J.Z.; Berman, S.H.; Beroukhim, R.; Bernard, B.; Wu, C.J.; Genovese, G.; Shmulevich, I.; Barnholtz-Sloan, J.; Zou, L.; Vegesna, R.; Shukla, S.A.; Ciriello, G.; Yung, W.K.; Zhang, W.; Sougnez, C.; Mikkelsen, T.; Aldape, K.; Bigner, D.D.; Van Meir, E.G.; Prados, M.; Sloan, A.; Black, K.L.; Eschbacher, J.; Finocchiaro, G.; Friedman, W.; Andrews, D.W.; Guha, A.; Iacocca, M.; O’Neill, B.P.; Foltz, G.; Myers, J.; Weisenberger, D.J.; Penny, R.; Kucherlapati, R.; Perou, C.M.; Hayes, D.N.; Gibbs, R.; Marra, M.; Mills, G.B.; Lander, E.; Spellman, P.; Wilson, R.; Sander, C.; Weinstein, J.; Meyerson, M.; Gabriel, S.; Laird, P.W.; Haussler, D.; Getz, G.; Chin, L. TCGA Research Network. The somatic genomic landscape of glioblastoma. Cell, 2013, 155(2), 462-477.
[http://dx.doi.org/10.1016/j.cell.2013.09.034] [PMID: 24120142]
[93]
Verhaak, R.G.; Hoadley, K.A.; Purdom, E.; Wang, V.; Qi, Y.; Wilkerson, M.D.; Miller, C.R.; Ding, L.; Golub, T.; Mesirov, J.P.; Alexe, G.; Lawrence, M.; O’Kelly, M.; Tamayo, P.; Weir, B.A.; Gabriel, S.; Winckler, W.; Gupta, S.; Jakkula, L.; Feiler, H.S.; Hodgson, J.G.; James, C.D.; Sarkaria, J.N.; Brennan, C.; Kahn, A.; Spellman, P.T.; Wilson, R.K.; Speed, T.P.; Gray, J.W.; Meyerson, M.; Getz, G.; Perou, C.M.; Hayes, D.N. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell, 2010, 17(1), 98-110.
[PMID: 20129251]
[94]
Zhao, K.; Wang, Q.; Wang, Y.; Huang, K.; Yang, C.; Li, Y.; Yi, K.; Kang, C. EGFR/c-myc axis regulates TGFβ/Hippo/Notch pathway via epigenetic silencing miR-524 in gliomas. Cancer Lett., 2017, 406, 12-21.
[PMID: 28778566]
[95]
He, L.; Thomson, J.M.; Hemann, M.T.; Hernando-Monge, E.; Mu, D.; Goodson, S.; Powers, S.; Cordon-Cardo, C.; Lowe, S.W.; Hannon, G.J. A microRNA polycistron as a potential human oncogene. nature, 2005, 435(7043), 828-833.
[96]
Sun, Y.; Wu, J.; Wu, S.H.; Thakur, A.; Bollig, A.; Huang, Y.; Liao, D.J. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res. Treat., 2009, 118(1), 185-196.
[PMID: 18777135]
[97]
Zeller, K.I.; Zhao, X.; Lee, C.W.; Chiu, K.P.; Yao, F.; Yustein, J.T.; Ooi, H.S.; Orlov, Y.L.; Shahab, A.; Yong, H.C.; Fu, Y.; Weng, Z.; Kuznetsov, V.A.; Sung, W.K.; Ruan, Y.; Dang, C.V.; Wei, C.L. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl. Acad. Sci. USA, 2006, 103(47), 17834-17839.
[http://dx.doi.org/10.1073/pnas.0604129103] [PMID: 17093053]
[98]
Si, W.; Shen, J.; Du, C.; Chen, D.; Gu, X.; Li, C.; Yao, M.; Pan, J.; Cheng, J.; Jiang, D.; Xu, L.; Bao, C.; Fu, P.; Fan, W. A miR-20a/MAPK1/c-Myc regulatory feedback loop regulates breast carcinogenesis and chemoresistance. Cell Death Differ., 2018, 25(2), 406-420.
[http://dx.doi.org/10.1038/cdd.2017.176] [PMID: 29125598]
[99]
Xu, Q.; Ahmed, A.K.; Zhu, Y.; Wang, K.; Lv, S.; Li, Y.; Jiang, Y. Oncogenic MicroRNA-20a is downregulated by the HIF-1α/c-MYC pathway in IDH1 R132H-mutant glioma. Biochem. Biophys. Res. Commun., 2018, 499(4), 882-888.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.011] [PMID: 29625108]
[100]
Zimmer, A.S.; Steinberg, S.M.; Smart, D.D.; Gilbert, M.R.; Armstrong, T.S.; Burton, E.; Houston, N.; Biassou, N.; Gril, B.; Brastianos, P.K.; Carter, S.; Lyden, D.; Lipkowitz, S.; Steeg, P.S. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future oncology (London, England), 2020.
[101]
Marinho, M.A.G.; da Silva Marques, M.; Lettnin, A.P.; de Souza Votto, A.P.; de Moraes Vaz Batista Filgueira, D.; Horn, A.P. Interaction between near-infrared radiation and temozolomide in a glioblastoma multiform cell line: A treatment strategy? Cell. Mol. Neurobiol., 2020.
[http://dx.doi.org/10.1007/s10571-020-00835-0] [PMID: 32236902]
[102]
Zhang, H.; Zhao, B.; Wang, X.; Zhang, F.; Yu, W. LINC00511 knockdown enhances paclitaxel cytotoxicity in breast cancer via regulating miR-29c/CDK6 axis. Life Sci., 2019, 228, 135-144.
[http://dx.doi.org/10.1016/j.lfs.2019.04.063] [PMID: 31047896]
[103]
Huang, L.; Hu, C.; Chao, H.; Wang, R.; Lu, H.; Li, H.; Chen, H. miR-29c regulates resistance to paclitaxel in nasopharyngeal cancer by targeting ITGB1. Exp. Cell Res., 2019, 378(1), 1-10.
[http://dx.doi.org/10.1016/j.yexcr.2019.02.012] [PMID: 30779921]
[104]
Luo, H.; Chen, Z.; Wang, S.; Zhang, R.; Qiu, W.; Zhao, L.; Peng, C.; Xu, R.; Chen, W.; Wang, H-W.; Chen, Y.; Yang, J.; Zhang, X.; Zhang, S.; Chen, D.; Wu, W.; Zhao, C.; Cheng, G.; Jiang, T.; Lu, D.; You, Y.; Liu, N.; Wang, H. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain, 2015, 138(Pt 12), 3654-3672.
[http://dx.doi.org/10.1093/brain/awv287] [PMID: 26450587]
[105]
Jope, R.S.; Johnson, G.V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci., 2004, 29(2), 95-102.
[http://dx.doi.org/10.1016/j.tibs.2003.12.004] [PMID: 15102436]
[106]
Li, H.; Li, J.; Zhang, G.; Da, Q.; Chen, L.; Yu, S.; Zhou, Q.; Weng, Z.; Xin, Z.; Shi, L.; Ma, L.; Huang, A.; Qi, S.; Lu, Y. HMGB1-induced p62 overexpression promotes snail-mediated epithelial-mesenchymal transition in glioblastoma cells via the degradation of GSK-3β. Theranostics, 2019, 9(7), 1909-1922.
[http://dx.doi.org/10.7150/thno.30578] [PMID: 31037147]
[107]
Yang, W.; Wu, P.F.; Ma, J.X.; Liao, M.J.; Wang, X.H.; Xu, L.S.; Xu, M.H.; Yi, L. Sortilin promotes glioblastoma invasion and mesenchymal transition through GSK-3β/β-catenin/twist pathway. Cell Death Dis., 2019, 10(3), 208.
[http://dx.doi.org/10.1038/s41419-019-1449-9] [PMID: 30814514]
[108]
Miyashita, K.; Kawakami, K.; Nakada, M.; Mai, W.; Shakoori, A.; Fujisawa, H.; Hayashi, Y.; Hamada, J.; Minamoto, T. Potential therapeutic effect of glycogen synthase kinase 3β inhibition against human glioblastoma. Clin. Cancer Res., 2009, 15(3), 887-897.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0760] [PMID: 19188159]
[109]
Pyko, I.V.; Nakada, M.; Sabit, H.; Teng, L.; Furuyama, N.; Hayashi, Y.; Kawakami, K.; Minamoto, T.; Fedulau, A.S.; Hamada, J. Glycogen synthase kinase 3β inhibition sensitizes human glioblastoma cells to temozolomide by affecting O6-methylguanine DNA methyltransferase promoter methylation via c-Myc signaling. Carcinogenesis, 2013, 34(10), 2206-2217.
[http://dx.doi.org/10.1093/carcin/bgt182] [PMID: 23715499]
[110]
Li, N.; Yang, G.; Luo, L.; Ling, L.; Wang, X.; Shi, L.; Lan, J.; Jia, X.; Zhang, Q.; Long, Z.; Liu, J.; Hu, W.; He, Z.; Liu, H.; Liu, W.; Zheng, G. lncRNA THAP9-AS1 promotes pancreatic ductal adenocarcinoma growth and leads to a poor clinical outcome via sponging miR-484 and interacting with YAP. Clin. Cancer. Res.,, 2020, 26(7), 1736-1748.
[111]
Zhou, D.; Sun, Y.; Li, X. Diagnostic value of microtubule-associated protein-2 in small cell lung carcinoma: an analysis of 240 biopsy cases. Chinese J. Pathol., 2013, 42(5), 321-324.
[112]
Sung, C.O.; Suh, Y.L.; Hong, S.C. CD34 and microtubule-associated protein 2 expression in dysembryoplastic neuroepithelial tumours with an emphasis on dual expression in non-specific types. Histopathology, 2011, 59(2), 308-317.
[http://dx.doi.org/10.1111/j.1365-2559.2011.03936.x] [PMID: 21884210]
[113]
Gambichler, T.; Rotterdam, S.; Radkowski, K.; Altmeyer, P.; Kreuter, A. Differential expression of microtubule-associated protein 2 in melanocytic skin lesions. Am. J. Clin. Pathol., 2009, 131(5), 710-714.
[http://dx.doi.org/10.1309/AJCPR84ULYVMNJHG] [PMID: 19369632]
[114]
Fischer, I.; Shea, T.B.; Sapirstein, V.S.; Kosik, K.S. Expression and distribution of microtubule-associated protein 2 (MAP2) in neuroblastoma and primary neuronal cells. Brain Res., 1986, 390(1), 99-109.
[http://dx.doi.org/10.1016/0165-3806(86)90156-2] [PMID: 3512042]
[115]
Yi, R.; Feng, J.; Yang, S.; Huang, X.; Liao, Y.; Hu, Z.; Luo, M. miR-484/MAP2/c-Myc-positive regulatory loop in glioma promotes tumor-initiating properties through ERK1/2 signaling. J. Mol. Histol., 2018, 49(2), 209-218.
[http://dx.doi.org/10.1007/s10735-018-9760-9] [PMID: 29480405]
[116]
Ma, T.; Jiang, J-L.; Liu, Y.; Ye, Z-B.; Zhang, J. Preparation and evaluation of nanoparticles loading plasmid DNAs inserted with siRNA fragments targeting c-Myc gene. Pharm. Biol., 2014, 52(9), 1179-1188.
[http://dx.doi.org/10.3109/13880209.2014.880489] [PMID: 24646303]
[117]
Avigan, M.I.; Strober, B.; Levens, D. A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J. Biol. Chem., 1990, 265(30), 18538-18545.
[PMID: 2211718]
[118]
Duncan, R.; Bazar, L.; Michelotti, G.; Tomonaga, T.; Krutzsch, H.; Avigan, M.; Levens, D. A sequence-specific, single-strand binding protein activates the far upstream element of c-myc and defines a new DNA-binding motif. Genes Dev., 1994, 8(4), 465-480.
[PMID: 8125259]
[119]
Ding, Z.; Liu, X.; Liu, Y.; Zhang, J.; Huang, X.; Yang, X.; Yao, L.; Cui, G.; Wang, D. Expression of far upstream element (FUSE) binding protein 1 in human glioma is correlated with c-Myc and cell proliferation. Mol. Carcinog., 2015, 54(5), 405-415.
[http://dx.doi.org/10.1002/mc.22114] [PMID: 24347226]
[120]
Kurita, K.; Maeda, M.; Mansour, M.A.; Kokuryo, T.; Uehara, K.; Yokoyama, Y.; Nagino, M.; Hamaguchi, M.; Senga, T. TRIP13 is expressed in colorectal cancer and promotes cancer cell invasion. Oncol. Lett., 2016, 12(6), 5240-5246.
[http://dx.doi.org/10.3892/ol.2016.5332] [PMID: 28105232]
[121]
Karthik, L.; Kumar, G.; Keswani, T.; Bhattacharyya, A.; Chandar, S.S.; Bhaskara Rao, K.V. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PLoS One, 2014, 9(3), e90972.
[http://dx.doi.org/10.1371/journal.pone.0090972] [PMID: 24618707]
[122]
Tipton, A.R.; Wang, K.; Oladimeji, P.; Sufi, S.; Gu, Z.; Liu, S-T. Identification of novel mitosis regulators through data mining with human centromere/kinetochore proteins as group queries. BMC Cell Biol., 2012, 13(1), 15.
[http://dx.doi.org/10.1186/1471-2121-13-15] [PMID: 22712476]
[123]
Eytan, E.; Wang, K.; Miniowitz-Shemtov, S.; Sitry-Shevah, D.; Kaisari, S.; Yen, T.J.; Liu, S-T.; Hershko, A. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31(comet). Proc. Natl. Acad. Sci. USA, 2014, 111(33), 12019-12024.
[http://dx.doi.org/10.1073/pnas.1412901111] [PMID: 25092294]
[124]
Ye, Q.; Rosenberg, S.C.; Moeller, A.; Speir, J.A.; Su, T.Y.; Corbett, K.D. TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching. eLife, 2015, 4, e07367.
[http://dx.doi.org/10.7554/eLife.07367] [PMID: 25918846]
[125]
Zhang, Q.; Dong, Y.; Hao, S.; Tong, Y.; Luo, Q.; Aerxiding, P. The oncogenic role of TRIP13 in regulating proliferation, invasion, and cell cycle checkpoint in NSCLC cells. Int. J. Clin. Exp. Pathol., 2019, 12(9), 3357-3366.
[PMID: 31934178]
[126]
Yu, L.; Xiao, Y.; Zhou, X.; Wang, J.; Chen, S.; Peng, T.; Zhu, X. TRIP13 interference inhibits the proliferation and metastasis of thyroid cancer cells through regulating TTC5/p53 pathway and epithelial-mesenchymal transition related genes expression. Biomed. Pharmacother., 2019, 120, 109508.
[127]
Dolly, S.O.; Gurden, M.D.; Drosopoulos, K.; Clarke, P.; de Bono, J.; Kaye, S.; Workman, P.; Linardopoulos, S. RNAi screen reveals synthetic lethality between cyclin G-associated kinase and FBXW7 by inducing aberrant mitoses. Br. J. Cancer, 2017, 117(7), 954-964.
[http://dx.doi.org/10.1038/bjc.2017.277] [PMID: 28829765]
[128]
Zhang, G.; Zhu, Q.; Fu, G.; Hou, J.; Hu, X.; Cao, J.; Peng, W.; Wang, X.; Chen, F.; Cui, H. TRIP13 promotes the cell proliferation, migration and invasion of glioblastoma through the FBXW7/c-MYC axis. Br. J. Cancer, 2019, 121(12), 1069-1078.
[http://dx.doi.org/10.1038/s41416-019-0633-0] [PMID: 31740732]
[129]
Hoffmann, I.; Roatsch, M.; Schmitt, M.L.; Carlino, L.; Pippel, M.; Sippl, W.; Jung, M. The role of histone demethylases in cancer therapy. Mol. Oncol., 2012, 6(6), 683-703.
[http://dx.doi.org/10.1016/j.molonc.2012.07.004] [PMID: 22902149]
[130]
Thinnes, C.C.; England, K.S.; Kawamura, A.; Chowdhury, R.; Schofield, C.J.; Hopkinson, R.J. Targeting histone lysine demethylases - progress, challenges, and the future. Biochim. Biophys. Acta, 2014, 1839(12), 1416-1432.
[http://dx.doi.org/10.1016/j.bbagrm.2014.05.009] [PMID: 24859458]
[131]
Kim, S.; Bolatkan, A.; Kaneko, S.; Ikawa, N.; Asada, K.; Komatsu, M.; Hayami, S.; Ojima, H.; Abe, N.; Yamaue, H.; Hamamoto, R. Deregulation of the histone lysine-specific demethylase 1 is involved in human hepatocellular carcinoma. Biomolecules, 2019, 9(12), E810.
[http://dx.doi.org/10.3390/biom9120810] [PMID: 31805626]
[132]
Miller, S.A.; Policastro, R.A.; Savant, S.S.; Sriramkumar, S.; Ding, N.; Lu, X.; Mohammad, H.P.; Cao, S.; Kalin, J.H.; Cole, P.A.; Zentner, G.E.; O’Hagan, H.M. Lysine-specific demethylase 1 mediates AKT activity and promotes epithelial-to-mesenchymal transition in PIK3CA-mutant colorectal cancer. Mol. Cancer Res., 2020, 18(2), 264-277.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0748] [PMID: 31704733]
[133]
Herrlinger, E.M.; Hau, M.; Redhaber, D.M.; Greve, G.; Willmann, D.; Steimle, S.; Müller, M.; Lübbert, M.; Miething, C.C.; Schüle, R.; Jung, M. Nitroreductase-mediated release of inhibitors of Lysine-Specific Demethylase 1 (LSD1) from prodrugs in transfected acute myeloid leukaemia cells. ChemBioChem, 2020, 21(16), 2329-2347.
[http://dx.doi.org/10.1002/cbic.202000138] [PMID: 32227662]
[134]
Nagasaka, M.; Tsuzuki, K.; Ozeki, Y.; Tokugawa, M.; Ohoka, N.; Inoue, Y.; Hayashi, H. Lysine-specific demethylase 1 (LSD1/KDM1A) is a novel target gene of c-Myc. Biol. Pharm. Bull., 2019, 42(3), 481-488.
[http://dx.doi.org/10.1248/bpb.b18-00892] [PMID: 30828079]
[135]
Zhang, J.; Gong, W.H.; Li, Y.; Zhang, H.Y.; Zhang, C.X. Hsa-miR-337 inhibits non-small cell lung cancer cell invasion and migration by targeting TCF7. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(15), 6548-6553.
[PMID: 31378895]
[136]
Xu, X.; Liu, Z.; Tian, F.; Xu, J.; Chen, Y. Clinical significance of transcription factor 7 (TCF7) as a prognostic factor in gastric cancer. Med. Sci. Monit., 2019, 25, 3957-3963.
[http://dx.doi.org/10.12659/MSM.913913] [PMID: 31133633]
[137]
Wu, B.; Chen, M.; Gao, M.; Cong, Y.; Jiang, L.; Wei, J.; Huang, J. Down-regulation of lncTCF7 inhibits cell migration and invasion in colorectal cancer via inhibiting TCF7 expression. Hum. Cell, 2019, 32(1), 31-40.
[http://dx.doi.org/10.1007/s13577-018-0217-y] [PMID: 30225781]
[138]
Su, Y.; Wang, Y.; Sun, Y.; Zhou, X. Transcription factor 7 functions as an unfavorable prognostic marker of glioblastoma multiforme by promoting proliferation by upregulating c-Myc. Neuroreport, 2018, 29(9), 745-752.
[http://dx.doi.org/10.1097/WNR.0000000000001026] [PMID: 29642232]
[139]
Bi, L.; Xie, C.; Jiao, L.; Jin, S.; Hnit, S.S.T.; Mu, Y.; Wang, Y.; Wang, Q.; Ge, G.; Wang, Y.; Zhao, X.; Shi, X.; Kang, Y.; De Souza, P.; Liu, T.; Zhou, J.; Xu, L.; Dong, Q. CPF impedes cell cycle re-entry of quiescent lung cancer cells through transcriptional suppression of FACT and c-MYC. J. Cell. Mol. Med., 2020, 24(3), 2229-2239.
[http://dx.doi.org/10.1111/jcmm.14897] [PMID: 31960591]
[140]
Hu, M.H.; Wu, T.Y.; Huang, Q.; Jin, G. New substituted quinoxalines inhibit triple-negative breast cancer by specifically downregulating the c-MYC transcription. Nucleic Acids Res., 2019, 47(20), 10529-10542.
[http://dx.doi.org/10.1093/nar/gkz835] [PMID: 31584090]
[141]
Wang, T.; Chen, W.; Wu, J. H2-P, a honokiol derivative, exerts anti-angiogenesis effects via c-MYC signaling pathway in glioblastoma. J. Cell. Biochem., 2018, 119(4), 3142-3148.
[http://dx.doi.org/10.1002/jcb.26462] [PMID: 29080353]
[142]
Ferreira, W.A.S.; Burbano, R.R. do, O.P.C.; Harada, M.L.; Borges, B.D.N.; de Oliveira, E.H.C. Pisosterol induces G2/M Cell cycle arrest and apoptosis via the ATM/ATR signaling pathway in human glioma cells. Anticancer. Agents Med. Chem., 2020.
[http://dx.doi.org/10.2174/1871520620666200203160117]
[143]
Pereira, E.L.; Lima, P.D.; Khayat, A.S.; Bahia, M.O.; Bezerra, F.S.; Andrade-Neto, M.; Montenegro, R.C.; Pessoa, C.; Costa-Lotufo, L.V.; Moraes, M.O.; Yoshioka, F.K.; Pinto, G.R.; Burbano, R.R. Inhibitory effect of pisosterol on human glioblastoma cell lines with C-MYC amplification. J. Appl. Toxicol., 2011, 31(6), 554-560.
[http://dx.doi.org/10.1002/jat.1596] [PMID: 21061448]
[144]
Zhang, L.; Yao, H.R.; Liu, S.K.; Song, L.L. Long noncoding RNA ROR1-AS1 overexpression predicts poor prognosis and promotes metastasis by activating Wnt/β-catenin/EMT signaling cascade in cervical cancer. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(6), 2928-2937.
[PMID: 32271410]
[145]
Liu, R.; Li, Z.; Song, E.; Hu, P.; Yang, Q.; Hu, Y.; Liu, H.; Jin, A. LncRNA HOTTIP enhances human osteogenic BMSCs differentiation via interaction with WDR5 and activation of Wnt/β-catenin signalling pathway. Biochem. Biophys. Res. Commun., 2020, 524(4), 1037-1043.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.034] [PMID: 32067741]
[146]
Luo, Y.; Lin, J.; Zhang, Y.; Dai, G.; Li, A.; Liu, X. LncRNA PCAT6 predicts poor prognosis in hepatocellular carcinoma and promotes proliferation through the regulation of cell cycle arrest and apoptosis. Cell Biochem. Funct., 2020.
[http://dx.doi.org/10.1002/cbf.3510] [PMID: 32064636]
[147]
Liu, N.; Wang, Z.; Liu, D.; Xie, P. HOXC13-AS-miR-122-5p-SATB1-C-Myc feedback loop promotes migration, invasion and EMT process in glioma. OncoTargets Ther., 2019, 12, 7165-7173.
[http://dx.doi.org/10.2147/OTT.S220027] [PMID: 31564901]
[148]
Li, J.; Liu, Q.; Liu, Z.; Xia, Q.; Zhang, Z.; Zhang, R.; Gao, T.; Gu, G.; Wang, Y.; Wang, D.; Chen, X.; Yang, Y.; He, D.; Xin, T. KPNA2 promotes metabolic reprogramming in glioblastomas by regulation of c-myc. J. Exper. Clin. Cancer Res. (East Lansing Mich.), 2018, 37(1), 194.
[149]
Mair, R.; Wright, A.J.; Ros, S.; Hu, D.E.; Booth, T.; Kreis, F.; Rao, J.; Watts, C.; Brindle, K.M. Metabolic imaging detects low levels of glycolytic activity that vary with levels of c-Myc expression in patient-derived xenograft models of glioblastoma. Cancer Res., 2018, 78(18), 5408-5418.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0759] [PMID: 30054337]
[150]
Ishida, C.T.; Shu, C.; Halatsch, M.E.; Westhoff, M.A.; Altieri, D.C.; Karpel-Massler, G.; Siegelin, M.D. Mitochondrial matrix chaperone and c-myc inhibition causes enhanced lethality in glioblastoma. Oncotarget, 2017, 8(23), 37140-37153.
[http://dx.doi.org/10.18632/oncotarget.16202] [PMID: 28415755]
[151]
Kim, E.J.; Kim, S.H.; Jin, X.; Jin, X.; Kim, H. KCTD2, an adaptor of Cullin3 E3 ubiquitin ligase, suppresses gliomagenesis by destabilizing c-Myc. Cell Death Differ., 2017, 24(4), 649-659.
[http://dx.doi.org/10.1038/cdd.2016.151] [PMID: 28060381]
[152]
Bidwell, G.L., III; Perkins, E.; Hughes, J.; Khan, M.; James, J.R.; Raucher, D. Thermally targeted delivery of a c-Myc inhibitory polypeptide inhibits tumor progression and extends survival in a rat glioma model. PLoS One, 2013, 8(1), e55104.
[http://dx.doi.org/10.1371/journal.pone.0055104] [PMID: 23372821]
[153]
Rajagopalan, V.; Vaidyanathan, M.; Janardhanam, V.A.; Bradner, J.E. Pre-clinical analysis of changes in intra-cellular biochemistry of glioblastoma multiforme (GBM) cells due to c-Myc silencing. Cell. Mol. Neurobiol., 2014, 34(7), 1059-1069.
[http://dx.doi.org/10.1007/s10571-014-0083-4] [PMID: 25056450]
[154]
Xie, R.; Yang, H.; Xiao, Q.; Mao, F.; Zhang, S.; Ye, F.; Wan, F.; Wang, B.; Lei, T.; Guo, D. Downregulation of LRIG1 expression by RNA interference promotes the aggressive properties of glioma cells via EGFR/Akt/c-Myc activation. Oncol. Rep., 2013, 29(1), 177-184.
[http://dx.doi.org/10.3892/or.2012.2102] [PMID: 23124613]
[155]
Paul, I.; Ahmed, S.F.; Bhowmik, A.; Deb, S.; Ghosh, M.K. The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity. Oncogene, 2013, 32(10), 1284-1295.
[http://dx.doi.org/10.1038/onc.2012.144] [PMID: 22543587]
[156]
Zheng, H.; Ying, H.; Yan, H.; Kimmelman, A.; Hiller, D.; Chen, A-J.; Perry, S.; Tonon, G.; Chu, G.; Ding, Z. In Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press; , 2008, Vol. 73, pp. pp. 427-437.
[157]
Wang, J.; Wang, H.; Li, Z.; Wu, Q.; Lathia, J.D.; McLendon, R.E.; Hjelmeland, A.B.; Rich, J.N. c-Myc is required for maintenance of glioma cancer stem cells. PLoS One, 2008, 3(11), e3769.
[http://dx.doi.org/10.1371/journal.pone.0003769] [PMID: 19020659]
[158]
Kotliarova, S.; Pastorino, S.; Kovell, L.C.; Kotliarov, Y.; Song, H.; Zhang, W.; Bailey, R.; Maric, D.; Zenklusen, J.C.; Lee, J.; Fine, H.A. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res., 2008, 68(16), 6643-6651.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0850] [PMID: 18701488]
[159]
An, J.; Yang, D.Y.; Xu, Q.Z.; Zhang, S.M.; Huo, Y.Y.; Shang, Z.F.; Wang, Y.; Wu, D.C.; Zhou, P.K. DNA-dependent protein kinase catalytic subunit modulates the stability of c-Myc oncoprotein. Mol. Cancer, 2008, 7, 32.
[http://dx.doi.org/10.1186/1476-4598-7-32] [PMID: 18426604]
[160]
Lassman, A.B.; Dai, C.; Fuller, G.N.; Vickers, A.J.; Holland, E.C. Overexpression of c-MYC promotes an undifferentiated phenotype in cultured astrocytes and allows elevated Ras and Akt signaling to induce gliomas from GFAP-expressing cells in mice. Neuron Glia Biol., 2004, 1(2), 157-163.
[http://dx.doi.org/10.1017/S1740925X04000249] [PMID: 17047730]
[161]
Walter, K.A.; Hossain, M.A.; Luddy, C.; Goel, N.; Reznik, T.E.; Laterra, J. Scatter factor/hepatocyte growth factor stimulation of glioblastoma cell cycle progression through G(1) is c-Myc dependent and independent of p27 suppression, Cdk2 activation, or E2F1-dependent transcription. Mol. Cell. Biol., 2002, 22(8), 2703-2715.
[http://dx.doi.org/10.1128/MCB.22.8.2703-2715.2002] [PMID: 11909963]
[162]
Ouyang, Q.; Chen, G.; Zhou, J.; Li, L.; Dong, Z.; Yang, R.; Xu, L.; Cui, H.; Xu, M.; Yi, L. Neurotensin signaling stimulates glioblastoma cell proliferation by upregulating c-Myc and inhibiting miR-29b-1 and miR-129-3p. Neuro-oncol., 2016, 18(2), 216-226.
[http://dx.doi.org/10.1093/neuonc/nov114] [PMID: 26180082]
[163]
Luan, W.; Wang, Y.; Chen, X.; Shi, Y.; Wang, J.; Zhang, J.; Qian, J.; Li, R.; Tao, T.; Wei, W.; Hu, Q.; Liu, N.; You, Y. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget, 2015, 6(15), 13006-13018.
[http://dx.doi.org/10.18632/oncotarget.3514] [PMID: 25948776]
[164]
Katanasaka, Y.; Kodera, Y.; Kitamura, Y.; Morimoto, T.; Tamura, T.; Koizumi, F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol. Cancer, 2013, 12, 31.
[http://dx.doi.org/10.1186/1476-4598-12-31] [PMID: 23617883]
[165]
Yan, R.; Cui, F.; Dong, L.; Liu, Y.; Chen, X.; Fan, R. Repression of PCGF1 decreases the proliferation of glioblastoma cells in association with inactivation of c-Myc signaling pathway. OncoTargets Ther., 2020, 13, 253-261.
[http://dx.doi.org/10.2147/OTT.S234517] [PMID: 32021272]
[166]
Holmes, B.; Lee, J.; Landon, K.A.; Benavides-Serrato, A.; Bashir, T.; Jung, M.E.; Lichtenstein, A.; Gera, J. Mechanistic target of rapamycin (mTOR) inhibition synergizes with reduced internal ribosome entry site (IRES)-mediated translation of cyclin D1 and c-MYC mRNAs to treat glioblastoma. J. Biol. Chem., 2016, 291(27), 14146-14159.
[http://dx.doi.org/10.1074/jbc.M116.726927] [PMID: 27226604]
[167]
Mongiardi, M.P.; Savino, M.; Falchetti, M.L.; Illi, B.; Bozzo, F.; Valle, C.; Helmer-Citterich, M.; Ferrè, F.; Nasi, S.; Levi, A. c-MYC inhibition impairs hypoxia response in glioblastoma multiforme. Oncotarget, 2016, 7(22), 33257-33271.
[http://dx.doi.org/10.18632/oncotarget.8921] [PMID: 27119353]
[168]
Guo, P.; Nie, Q.; Lan, J.; Ge, J.; Qiu, Y.; Mao, Q. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells. Biochem. Biophys. Res. Commun., 2013, 441(1), 186-190.
[http://dx.doi.org/10.1016/j.bbrc.2013.10.034] [PMID: 24140063]
[169]
Bangert, A.; Cristofanon, S.; Eckhardt, I.; Abhari, B.A.; Kolodziej, S.; Häcker, S.; Vellanki, S.H.K.; Lausen, J.; Debatin, K-M.; Fulda, S. Histone deacetylase inhibitors sensitize glioblastoma cells to TRAIL-induced apoptosis by c-myc-mediated downregulation of cFLIP. Oncogene, 2012, 31(44), 4677-4688.
[http://dx.doi.org/10.1038/onc.2011.614] [PMID: 22266862]
[170]
Masui, K.; Tanaka, K.; Akhavan, D.; Babic, I.; Gini, B.; Matsutani, T.; Iwanami, A.; Liu, F.; Villa, G.R.; Gu, Y.; Campos, C.; Zhu, S.; Yang, H.; Yong, W.H.; Cloughesy, T.F.; Mellinghoff, I.K.; Cavenee, W.K.; Shaw, R.J.; Mischel, P.S. mTOR complex 2 controls glycolytic metabolism in glioblastoma through FoxO acetylation and upregulation of c-Myc. Cell Metab., 2013, 18(5), 726-739.
[http://dx.doi.org/10.1016/j.cmet.2013.09.013] [PMID: 24140020]
[171]
Rao, S.; Rajeswarie, R.T.; Chickabasaviah Yasha, T.; Nandeesh, B.N.; Arivazhagan, A.; Santosh, V. LIN28A, a sensitive immunohistochemical marker for embryonal tumor with multilayered rosettes (ETMR), is also positive in a subset of atypical teratoid/rhabdoid tumor (AT/RT). Childs Nerv. Syst., 2017, 33(11), 1953-1959.
[http://dx.doi.org/10.1007/s00381-017-3551-6] [PMID: 28744687]
[172]
Carvalho, R.M.; Pinto, G.R.; Yoshioka, F.K.; Lima, P.D.; Souza, C.R.; Guimarães, A.C.; Lamarão, L.M.; Rey, J.A.; Burbano, R.R. Prognostic value of the TP53 Arg72Pro single-nucleotide polymorphism and susceptibility to medulloblastoma in a cohort of Brazilian patients. J. Neurooncol., 2012, 110(1), 49-57.
[http://dx.doi.org/10.1007/s11060-012-0950-0] [PMID: 22886512]
[173]
Bai, R-Y.; Staedtke, V.; Rudin, C.M.; Bunz, F.; Riggins, G.J. Effective treatment of diverse medulloblastoma models with mebendazole and its impact on tumor angiogenesis. Neuro-oncol., 2015, 17(4), 545-554.
[http://dx.doi.org/10.1093/neuonc/nou234] [PMID: 25253417]
[174]
Ghorbanhosseini, S.S.; Nourbakhsh, M.; Zangooei, M.; Abdolvahabi, Z.; Bolandghamtpour, Z.; Hesari, Z.; Yousefi, Z.; Panahi, G.; Meshkani, R. MicroRNA-494 induces breast cancer cell apoptosis and reduces cell viability by inhibition of nicotinamide phosphoribosyltransferase expression and activity. EXCLI J., 2019, 18, 838-851.
[PMID: 31645844]
[175]
Peng, Q.P.; Du, D.B.; Ming, Q.; Hu, F.; Wu, Z.B.; Qiu, S. MicroRNA 494 increases chemosensitivity to doxorubicin in gastric cancer cells by targeting phosphodiesterases 4D. Cellular and molecular biology (Noisy-le-Grand, France), 2018, 64(15), 62-66.
[176]
Xu, X.H.; Zhang, S.J.; Hu, Q.B.; Song, X.Y.; Pan, W. Effects of microRNA-494 on proliferation, migration, invasion, and apoptosis of medulloblastoma cells by mediating c-myc through the p38 MAPK signaling pathway. J. Cell. Biochem., 2018, 120(2), 2594-2606.
[http://dx.doi.org/10.1002/jcb.27559] [PMID: 30304554]
[177]
Azizi, A.A.; Li, L.; Ströbel, T.; Chen, W-Q.; Slavc, I.; Lubec, G. Identification of c-myc-dependent proteins in the medulloblastoma cell line D425Med. Amino Acids, 2012, 42(6), 2149-2163.
[http://dx.doi.org/10.1007/s00726-011-0953-8] [PMID: 21667264]
[178]
Schaefer, M.; Lyko, F. Solving the Dnmt2 enigma. Chromosoma, 2010, 119(1), 35-40.
[http://dx.doi.org/10.1007/s00412-009-0240-6] [PMID: 19730874]
[179]
Mytych, J.; Lewinska, A.; Bielak-Zmijewska, A.; Grabowska, W.; Zebrowski, J.; Wnuk, M. Nanodiamond-mediated impairment of nucleolar activity is accompanied by oxidative stress and DNMT2 upregulation in human cervical carcinoma cells. Chem. Biol. Interact., 2014, 220, 51-63.
[PMID: 24928743]
[180]
Lewinska, A.; Adamczyk-Grochala, J.; Kwasniewicz, E.; Deregowska, A.; Semik, E.; Zabek, T.; Wnuk, M. Reduced levels of methyltransferase DNMT2 sensitize human fibroblasts to oxidative stress and DNA damage that is accompanied by changes in proliferation-related miRNA expression. Redox Biol., 2018, 14, 20-34.
[PMID: 28843151]
[181]
Lewinska, A.; Klukowska-Rötzler, J.; Deregowska, A.; Adamczyk-Grochala, J.; Wnuk, M. c-Myc activation promotes cofilin-mediated F-actin cytoskeleton remodeling and telomere homeostasis as a response to oxidant-based DNA damage in medulloblastoma cells. Redox Biol., 2019, 24, 101163.
[http://dx.doi.org/10.1016/j.redox.2019.101163] [PMID: 30901604]
[182]
Bamburg, J.R. Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu. Rev. Cell Dev. Biol., 1999, 15, 185-230.
[http://dx.doi.org/10.1146/annurev.cellbio.15.1.185] [PMID: 10611961]
[183]
Elam, W.A.; Kang, H.; De la Cruz, E.M. Biophysics of actin filament severing by cofilin. FEBS Lett., 2013, 587(8), 1215-1219.
[http://dx.doi.org/10.1016/j.febslet.2013.01.062] [PMID: 23395798]
[184]
Bravo-Cordero, J.J.; Magalhaes, M.A.; Eddy, R.J.; Hodgson, L.; Condeelis, J. Functions of cofilin in cell locomotion and invasion. Nat. Rev. Mol. Cell Biol., 2013, 14(7), 405-415.
[http://dx.doi.org/10.1038/nrm3609] [PMID: 23778968]
[185]
Jenkins, N.C.; Rao, G.; Eberhart, C.G.; Pedone, C.A.; Dubuc, A.M.; Fults, D.W. Somatic cell transfer of c-Myc and Bcl-2 induces large-cell anaplastic medulloblastomas in mice. J. Neurooncol., 2016, 126(3), 415-424.
[http://dx.doi.org/10.1007/s11060-015-1985-9] [PMID: 26518543]
[186]
Kenney, A.M.; Widlund, H.R.; Rowitch, D.H. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development, 2004, 131(1), 217-228.
[http://dx.doi.org/10.1242/dev.00891] [PMID: 14660435]
[187]
Hernan, R.; Fasheh, R.; Calabrese, C.; Frank, A.J.; Maclean, K.H.; Allard, D.; Barraclough, R.; Gilbertson, R.J. ERBB2 up-regulates S100A4 and several other prometastatic genes in medulloblastoma. Cancer Res., 2003, 63(1), 140-148.
[PMID: 12517790]
[188]
Del Valle, L.; Enam, S.; Lassak, A.; Wang, J.Y.; Croul, S.; Khalili, K.; Reiss, K. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin. Cancer Res., 2002, 8(6), 1822-1830.
[189]
Guerreiro, A.S.; Fattet, S.; Fischer, B.; Shalaby, T.; Jackson, S.P.; Schoenwaelder, S.M.; Grotzer, M.A.; Delattre, O.; Arcaro, A. Targeting the PI3K p110alpha isoform inhibits medulloblastoma proliferation, chemoresistance, and migration. Clini. Cancer Res., 2008, 14(21), 6761-6769.
[190]
Guerreiro, A.S.; Fattet, S.; Kulesza, D.W.; Atamer, A.; Elsing, A.N.; Shalaby, T.; Jackson, S.P.; Schoenwaelder, S.M.; Grotzer, M.A.; Delattre, O.; Arcaro, A. A sensitized RNA interference screen identifies a novel role for the PI3K p110γ isoform in medulloblastoma cell proliferation and chemoresistance. Mol. Cancer Res., 2011, 9(7), 925-935.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0200] [PMID: 21652733]
[191]
Reynolds, C.P.; Kang, M.H.; Carol, H.; Lock, R.; Gorlick, R.; Kolb, E.A.; Kurmasheva, R.T.; Keir, S.T.; Maris, J.M.; Billups, C.A.; Houghton, P.J.; Smith, M.A. Initial testing (stage 1) of the phosphatidylinositol 3′ kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatr. Blood Cancer, 2013, 60(5), 791-798.
[http://dx.doi.org/10.1002/pbc.24301] [PMID: 23002019]
[192]
Deng, Q.F.; Fang, Q.Y.; Ji, X.X.; Zhou, S.W. Cyclooxygenase-2 mediates gefitinib resistance in non-small cell lung cancer through the EGFR/PI3K/AKT axis. J. Cancer, 2020, 11(12), 3667-3674.
[http://dx.doi.org/10.7150/jca.42850] [PMID: 32284763]
[193]
Engelman, J.A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer, 2009, 9(8), 550-562.
[http://dx.doi.org/10.1038/nrc2664] [PMID: 19629070]
[194]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[195]
Salm, F.; Dimitrova, V.; von Bueren, A.O.; Ćwiek, P.; Rehrauer, H.; Djonov, V.; Anderle, P.; Arcaro, A. The phosphoinositide 3-Kinase p110α isoform regulates leukemia inhibitory factor receptor expression via c-Myc and miR-125b to promote cell proliferation in medulloblastoma. PLoS One, 2015, 10(4), e0123958.
[http://dx.doi.org/10.1371/journal.pone.0123958] [PMID: 25915540]
[196]
Shehata, S.N.; Hunter, R.W.; Ohta, E.; Peggie, M.W.; Lou, H.J.; Sicheri, F.; Zeqiraj, E.; Turk, B.E.; Sakamoto, K. Analysis of substrate specificity and cyclin Y binding of PCTAIRE-1 kinase. Cell. Signal., 2012, 24(11), 2085-2094.
[http://dx.doi.org/10.1016/j.cellsig.2012.06.018] [PMID: 22796189]
[197]
Besset, V.; Rhee, K.; Wolgemuth, D.J. The cellular distribution and kinase activity of the Cdk family member Pctaire1 in the adult mouse brain and testis suggest functions in differentiation. Cell Growth Differentiation, 1999, 10(3), 173-181.
[198]
Le Bouffant, F.; Capdevielle, J.; Guillemot, J.C.; Sladeczek, F. Characterization of brain PCTAIRE-1 kinase immunoreactivity and its interactions with p11 and 14-3-3 proteins. Eur. J. Biochem., 1998, 257(1), 112-120.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2570112.x] [PMID: 9799109]
[199]
Malumbres, M.; Barbacid, M. Cell cycle, CDKs and cancer: A changing paradigm. Nat. Rev. Cancer, 2009, 9(3), 153-166.
[http://dx.doi.org/10.1038/nrc2602] [PMID: 19238148]
[200]
Ćwiek, P.; Leni, Z.; Salm, F.; Dimitrova, V.; Styp-Rekowska, B.; Chiriano, G.; Carroll, M.; Höland, K.; Djonov, V.; Scapozza, L.; Guiry, P.; Arcaro, A. RNA interference screening identifies a novel role for PCTK1/CDK16 in medulloblastoma with c-Myc amplification. Oncotarget, 2015, 6(1), 116-129.
[http://dx.doi.org/10.18632/oncotarget.2699] [PMID: 25402633]
[201]
Huang, S.W.; Chyuan, I.T.; Shiue, C.; Yu, M.C.; Hsu, Y.F.; Hsu, M.J. Lovastatin-mediated MCF-7 cancer cell death involves LKB1-AMPK-p38MAPK-p53-survivin signalling cascade. J. Cell. Mol. Med., 2020, 24(2), 1822-1836.
[http://dx.doi.org/10.1111/jcmm.14879] [PMID: 31821701]
[202]
Zhu, Z.; Zhang, P.; Li, N.; Kiang, K.M.Y.; Cheng, S.Y.; Wong, V.K.; Leung, G.K. Lovastatin enhances cytotoxicity of temozolomide via impairing autophagic flux in glioblastoma cells. BioMed Res. Int., 2019, 2019, 2710693.
[http://dx.doi.org/10.1155/2019/2710693] [PMID: 31662972]
[203]
Takwi, A.A.; Li, Y.; Becker Buscaglia, L.E.; Zhang, J.; Choudhury, S.; Park, A.K.; Liu, M.; Young, K.H.; Park, W.Y.; Martin, R.C.; Li, Y. A statin-regulated microRNA represses human c-Myc expression and function. EMBO Mol. Med., 2012, 4(9), 896-909.
[http://dx.doi.org/10.1002/emmm.201101045] [PMID: 22887866]
[204]
von Bueren, A.O.; Oehler, C.; Shalaby, T.; von Hoff, K.; Pruschy, M.; Seifert, B.; Gerber, N.U.; Warmuth-Metz, M.; Stearns, D.; Eberhart, C.G.; Kortmann, R.D.; Rutkowski, S.; Grotzer, M.A. c-MYC expression sensitizes medulloblastoma cells to radio- and chemotherapy and has no impact on response in medulloblastoma patients. BMC Cancer, 2011, 11, 74.
[http://dx.doi.org/10.1186/1471-2407-11-74] [PMID: 21324178]
[205]
Huang, X.; Sun, J.; Chen, G.; Niu, C.; Wang, Y.; Zhao, C.; Sun, J.; Huang, H.; Huang, S.; Liang, Y.; Shen, Y.; Cong, W.; Jin, L.; Zhu, Z. Resveratrol promotes diabetic wound healing via SIRT1-FOXO1-c-Myc signaling pathway-mediated angiogenesis. Front. Pharmacol., 2019, 10, 421.
[http://dx.doi.org/10.3389/fphar.2019.00421] [PMID: 31068817]
[206]
Zhao, B.; Liu, L.; Mao, J.; Zhang, Z.; Wang, Q.; Li, Q. PIM1 mediates epithelial-mesenchymal transition by targeting Smads and c-Myc in the nucleus and potentiates clear-cell renal-cell carcinoma oncogenesis. Cell Death Dis., 2018, 9(3), 307.
[http://dx.doi.org/10.1038/s41419-018-0348-9] [PMID: 29472550]
[207]
Stanić, G.; Cupić, H.; Zarković, K.; Tomas, D.; Kruslin, B. C-myc expression in the microvessels of medulloblastoma. Coll. Antropol., 2011, 35(1), 39-42.
[PMID: 21667531]
[208]
von Bueren, A.O.; Shalaby, T.; Oehler-Jänne, C.; Arnold, L.; Stearns, D.; Eberhart, C.G.; Arcaro, A.; Pruschy, M.; Grotzer, M.A. RNA interference-mediated c-MYC inhibition prevents cell growth and decreases sensitivity to radio- and chemotherapy in childhood medulloblastoma cells. BMC Cancer, 2009, 9, 10.
[http://dx.doi.org/10.1186/1471-2407-9-10] [PMID: 19134217]
[209]
Li, Y.; Guessous, F.; Johnson, E.B.; Eberhart, C.G.; Li, X.N.; Shu, Q.; Fan, S.; Lal, B.; Laterra, J.; Schiff, D.; Abounader, R. Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma. Lab. Invest., 2008, 88(2), 98-111.
[http://dx.doi.org/10.1038/labinvest.3700702] [PMID: 18059365]
[210]
Zhang, P.; Li, H.; Wu, M-L.; Chen, X-Y.; Kong, Q-Y.; Wang, X-W.; Sun, Y.; Wen, S.; Liu, J. c-Myc downregulation: a critical molecular event in resveratrol-induced cell cycle arrest and apoptosis of human medulloblastoma cells. J. Neurooncol., 2006, 80(2), 123-131.
[http://dx.doi.org/10.1007/s11060-006-9172-7] [PMID: 16724266]
[211]
Stearns, D.; Chaudhry, A.; Abel, T.W.; Burger, P.C.; Dang, C.V.; Eberhart, C.G. C-Myc overexpression causes anaplasia in medulloblastoma. Cancer Res., 2006, 66(2), 673-681.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1580] [PMID: 16423996]
[212]
Huang, A.; Ho, C.S.; Ponzielli, R.; Barsyte-Lovejoy, D.; Bouffet, E.; Picard, D.; Hawkins, C.E.; Penn, L.Z. Identification of a novel c-Myc protein interactor, JPO2, with transforming activity in medulloblastoma cells. Cancer Res., 2005, 65(13), 5607-5619.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0500] [PMID: 15994933]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy